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A continued fraction of Jacobi-type (J-fraction) is of the form

∞∑
n=0

ant
n =
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1− γ0t−
β1t
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1− γ1t−
β2t

2

1− · · ·

, (1)

where an are its coefficients when expanded as a formal power series. Euler [4, section 21] discovered
a Stieltjes-type continued fraction for an = n! which can be contracted (see [13, p. V-31] for the
contraction formula) to obtain a J-fraction for an = n! with coefficients γn = 2n+ 1 and βn = n2.
One can introduce new variables in this J-fraction by replacing

• γn = 2n+ 1 with γ0 = z, γn = ([x2 + (n− 1)u2] + [y2 + (n− 1)v2] + w for n ≥ 1;

• and βn = n2 with βn = [x1 + (n− 1)u1][x2 + (n− 1)v1];

and then ask what permutation statistics are enumerated by the 10 variables x1, x2, y1, y2, u1, u2,
v1, v2, w, z. Sokal and Zeng systematically answered this question in [11]. In fact, they provide two
interpretations for this J-fraction. However, their second interpretation was left as a conjecture [11,
Conjecture 2.3] and they could only prove it with a specialisation. We have proved this conjecture
in [2].

Statement of result

Given a permutation σ ∈ Sn, an index i can be classified as per the cycle classification into the
following five disjoint categories: cycle peak if σ−1(i) < i > σ(i); cycle valley if σ−1(i) > i < σ(i);
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cycle double rise if σ−1(i) < i < σ(i); cycle double fall if σ−1(i) > i > σ(i); and fixed point if
σ−1(i) = i = σ(i).

Additionally, an index i can also be classified using the record classification . Following [8,
p. 4] we also reformulate these statistics in terms of mesh patterns.

• record (or left-to-right maximum) if σ(j) < σ(i) for all j < i; i.e., an occurrence of pattern

;

• antirecord (or right-to-left minimum) if σ(j) > σ(i) for all j > i; i.e., an occurrence of pattern

;

• exclusive record if it is a record and not also an antirecord; i.e., an occurrence of pattern
;

• exclusive antirecord if it is an antirecord and not also a record; i.e., an occurrence of pattern
;

• record-antirecord if it is both a record and an antirecord; i.e., an occurrence of pattern ;

• neither-record-antirecord if it is neither a record nor an antirecord ; i.e., an occurrence of
pattern , which is the pattern 321.

Every index i thus belongs to exactly one of the latter four types.

Furthermore, one can apply the record and cycle classifications simultaneously, to obtain 10 dis-
joint categories of the record-and-cycle classification : exclusive records that are either cycle
valleys (ereccval) or cycle double rises (ereccdrise); exclusive antirecords that are either cycle peaks
(eareccpeak) or cycle double falls (eareccdfall); record-antirecords (these are always fixed points)
(rar); neither-record-antirecords that are either cycle peaks (nrcpeak) or are cycle valleys (nrcval)
or cycle double rises (nrcdrise) or cycle double falls (nrcdfall) or fixed points (nrfix).

Using the record-and-cycle classification and the count of cycles the following 11-variable poly-
nomial Q̂n [11, Equation (2.29)] can be defined

Q̂n(x1, x2, y1, y2, u1, u2, v1, v2, z, w, λ) =
∑
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2 y
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2 zrar(σ) ×

u
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2 v
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The polynomials Q̂n have a nice J-fraction:
Theorem 0.1 ([11, Conjecture 2.3], [2, Theorem 3.1]). The ordinary generating function of the
polynomials Q̂n specialised to v1 = y1 has the J-type continued fraction

∞∑
n=0
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1
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with coefficients

γ0 = λw0 (4a)

γn = [x2+(n− 1)u2] + [y2+(n− 1)v2] + λwn for n ≥ 1 (4b)

βn = (λ+ n− 1)[x1+(n− 1)u1]y1 (4c)

Overview of proof

We first provide an overview of the Foata–Zeilberger bijection [7], and then briefly mention how
we reinterpet it to obtain the count of cycles in a permutation.

Let σ ∈ Sn be a permutation on n letters. This permutation σ partitions the set [n] into
excedance indices (F = {i ∈ [n] : σ(i) > i}), anti-excedance indices (G = {i ∈ [n] : σ(i) < i}), and
fixed points (H). Similarly, σ also partitions [n] into excedance values (F ′ = {i ∈ [n] : i > σ−1(i)}),
anti-excedance values (G′ = {i ∈ [n] : i < σ−1(i)}), and fixed points. Clearly, σ � F : F → F ′,
σ � G : G → G′, and σ � H : H → H are bijections, and the permutation σ can be obtained from
the following data:

• Two partitions of the set [n] = F ∪ G ∪ H = F ′ ∪ G′ ∪ H.

• The two subwords of σ: σ(x1) . . . σ(xm) and σ(y1) . . . σ(yl), where G = {x1 < x2 < . . . < xm}
and F = {y1 < y2 < . . . < yl}.

In their construction, Foata and Zeilberger [7] use this data to describe a bijection between Sn

to a set of labelled Motzkin paths of length n. One then uses Flajolet’s theorem [5] to obtain con-
tinued fractions from this bijection while keeping track of a multitude of simultaneous permutation
statistics.

The Foata–Zeilberger bijection consists of the following steps (following [11, Section 6.1]):

• Step 1: A Motzkin path ω is described from σ. The description of ω completely depends on
the sets F, F ′, G,G′, H.

• Step 2: The labels ξ associated to ω are obtained from σ. It turns out that the description
of the labels depend on σ � F : F → F ′, σ � G : G→ G′, and the set H, separately.

• Step 3: This step describes the construction of the inverse map (ω, ξ) 7→ σ and can be further
broken down as follows:

– Step 3(a): The sets F, F ′, G,G′, H are read off from the path ω.

– Step 3(b): This description is the crucial part of the construction (at least for our pur-
poses). We use the notion of inversion tables to construct the words σ: σ(x1) . . . σ(xm)
and σ(y1) . . . σ(yl), the former is constructed using “right-to-left” inversion table and
the latter is constructed using “left-to-right” inversion table.

It is, a priori, unclear how one might be able to track the number of cycles of σ in this construc-
tion. We resolve this issue by reinterpreting Step 3(b). We describe a “history” of this construction
using Laguerre digraphs [6, 10].
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A Laguerre digraph of size n is a directed graph where each vertex has a distinct label from the
label set [n] and has indegree 0 or 1 and outdegree 0 or 1. Clearly, any subgraph of a Laguerre
digraph is also a Laguerre digraph. A permutation σ in cycle notation is equivalent to a Laguerre
digraph L ([12, pp. 22-23]). The directed edges of L are precisely u→ σ(u).

For a subset S ⊆ [n], we let L|S denote the subgraph of L containing the same set of vertices
[n], but only the edges u → σ(u), with u ∈ S (we are allowed to have σ(u) 6∈ S). Let u1, . . . , un
be a rewriting of [n]. We consider the “history” L|∅ ⊂ L|{u1} ⊂ L|{u1,u2} ⊂ . . . ⊂ L|{u1,...,un} = L
as a process of building up the permutation σ by successively considering the status of vertices
u1, u2, . . . , un. Thus, at each step we insert a new edge into the digraph, and at the end of this
process, the resulting digraph obtained is the digraph of σ.

The crucial part of our construction is that the rewriting u1, . . . , un is obtained as follows: we
first go through H in increasing order (we call this stage (a)), we then go through G in increasing
order (stage (b)), finally we go through F but in decreasing order (stage (c)). This total order is
suggested by the inversion tables. On building up the permutation σ using this history, we will see
that the cycles can only be formed during stage (c) and we can now count the number of cycles.
Our total order on [n] only depends on the sets F,G,H, and hence, only on the path ω and not on
the labels ξ which is important for our proof to work.

Twist in the story and final remarks.

The continued fractions for permutations in [11] were classified as “second” or “first” depending
on whether or not they involved the count of cycles. The proofs of the first and second continued
fractions involved two different bijections: the first continued fractions used a variant of the Foata–
Zeilberger bijections, whereas the second continued fractions used the Biane bijection [1]. However,
our proof for the conjectured “second” continued fraction proceeds by employing the “first” bijection
but then reinterpreting it differently. This was a surprise to us.

We can adapt our proof technique to also resolve [9, Conjecture 12] from 1996, and [3, Con-
jecture 4.1]; both of these are continued fractions generalising the Genocchi and median Genocchi
numbers, respectively. More details can be found in [2].
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