
numerative
ombinatorics

pp
lic
at
io
ns

A ICECA
International Conference

Enumerative Combinatorics and Applications
University of Haifa – Virtual – September 4-6, 2023

MVP parking functions, permutation subgraphs and
Motzkin paths

Haoyue Zhu
Joint work with Thomas Selig

Department of Computing, School of Advanced Technology, Xi’an Jiaotong-Livepool
University

Haoyue.Zhu18@student.xjtlu.edu.cn

Abstract: In parking problems, a given number of cars enter a one-way street sequentially,
and try to park according to a specified preferred spot in the street. Various models are
possible depending on the chosen rule for collisions, when two cars have the same preferred
spot. We study a recent model introduced by Harris, Kamau, Mori, and Tian in recent work,
called the MVP parking problem. In this model, priority is given to the cars arriving later
in the sequence. When a car finds its preferred spot occupied by a previous car, it “bumps”
that car out of the spot and parks there. The earlier car then has to drive on, and parks in
the first available spot it can find. If all cars manage to park through this procedure, we say
that the list of preferences is a (MVP) parking function.

We study the outcome map of MVP parking functions, which describes in what order the
cars end up. In particular, we link the fibres of the outcome map to certain subgraphs of
the inversion graph of the outcome permutation. This allows us to reinterpret and improve
bounds from Harris et al. on the fibre sizes. We also focus on a subset of parking functions,
called Motzkin parking functions, where every spot is preferred by at most two cars. We
generalise results from Harris et al., and exhibit rich connections to Motzkin paths.

1. Introduction

In this section we introduce classical and MVP parking functions, and their outcome maps.
Throughout the paper, n represents a positive integer, and we denote [n] := {1, · · · , n}.

1

1.1. Classical and MVP parking functions. A parking preference is a vector p =
(p1, · · · , pn) ∈ [n]n. We think of pi as denoting the preferred parking spot of car i in a
car park with n labelled spots. The car park is one-directional, with cars entering on the
left in spot 1 and driving through to spot n (or until they park). Cars enter sequentially,
in order 1, · · · , n. If the spot pi is unoccupied when car i enters, it simply parks there. If
this is not the case, then a previous car j < i has already occupied spot pi. We call this a
collision between cars i and j.

In classical parking functions, such collisions are handled by giving priority to the earlier
car j. This means that car i is forced to drive on, and looks for the first unoccupied spot
k > pi. If no such spot exists, then car i exits the car park, having failed to find a spot. We
say that p is a parking function if all cars manage to park. Parking functions were originally
introduced by Konheim and Weiss [10] in their study of hashing functions. Since then,
they have been a popular research topic in Mathematics and Computer Science, with rich
connections to a variety of fields such as graph theory, representation theory, hyperplane
arrangements, discrete geometry, and statistical physics [3, 6, 7, 8, 12, 14]. We refer the
interested reader to the excellent survey by Yan [15].

One may notice that the collision rule for parking functions has many possible variations,
and indeed many variants of parking functions have been studied in the literature (see
e.g. [2, 11, 16]). To mention just one variation, we may allow cars to reverse a fixed number
of spots before driving on. This rule is called the Naples parking rule (see [4, 5]).

In this paper, we are interested in another variant called MVP parking functions. In this
model, if there is a collision between two cars j < i, priority is given to the later car i. In
other words, car i will park in its preferred spot pi. If that spot is already occupied by a
previous car j, then car j gets “bumped” out, and has to drive on. It then (re-)parks in the
first available spot k ≥ pi. Note that bumpings do not propagate: the “bumped” car j does
not subsequently bump any other car. If all cars manage to park in this process, we say that
p is an MVP parking function.

It is in fact straightforward to check that a parking preference p is an MVP parking
function if, and only if, p is a (classical) parking function. Indeed, in both MVP and classical
processes, in determining whether all cars can park, the labels of the cars are unimportant:
all that matters is which set of spots is occupied at any given time. We denote PFn or
MVPn the set of parking functions of length n. These sets are the same due to the previous
observation, but it will be convenient to use different notation depending on whether we are
considering the classical or MVP parking process.

1.2. The outcome maps. While the sets of MVP and classical parking functions are the
same, these two processes differ in their outcome map. This map describes where the cars
end up. More precisely, if p is a parking function, its outcome is a permutation π = π1 · · · πn,
where for all i ∈ [n], πi is the label of the car occupying spot i when all cars have parked.
The classical, resp. MVP, outcome map, denoted OPFn , resp. OMVPn , is then the map p 7→ π
describing the outcome of the classical, resp. MVP, parking process.

Example 1.1. Consider the parking function p = (3, 1, 1, 2). Under the classical parking
process, car 1 first parks in spot 3, followed by car 2 parking in spot 1. Then car 3 wishes
to park in spot 1 but cannot do so, so it drives on and parks in spot 2 (the first available
spot at this point). Finally, car 4 wishes to park in spot 2. However, 2 is occupied, so car 4

2

drives on: 3 is also occupied (by car 1), so car 4 ends up parking in spot 4. Finally, we get
the outcome π = OPF4 (p) = 2314.

Now consider the same parking function p, but for the MVP parking process. Again, cars
1 and 2 park in spots 3 and 1 respectively. Now car 3 arrives, and sees car 2 in its preferred
spot (spot 1). It bumps car 2 out of spot 1, forcing it to drive on. Spot 2 is available, so car
2 parks there. Finally car 4 arrives and sees car 2 in its preferred spot (spot 2). It bumps
car 2, forcing it to drive on and park in the only remaining spot, which is spot 4. Finally,
we get the outcome π = OMVP4 (p) = 3412.

In this paper, we mainly study the fibres of the MVP outcome map. That is, for a given,
fixed permutation π ∈ Sn, we are interested in the set O−1MVPn

(π) of parking functions whose
outcome is the permutation π. For the sake of brevity we omit proofs here: these can be
found in an upcoming companion paper.

2. General case

In this section we study the MVP outcome map in the general setting. We will give
an interpretation of the fibres in terms of certain subgraphs of the inversion graph of the
outcome permutation.

2.1. Inversion graphs and subgraphs. Given a permutation π = π1 · · · πn ∈ Sn, we
say that a pair (j, i) is an inversion of π if j < i and πj > πi. We denote Inv (π) the
set of inversions of π. For any i ∈ [n] we define the set of left-inversions at i in π by
LeftInvπ (i) := {j ∈ [n]; (j, i) ∈ Inv (π)}. The inversion graph of a permutation π, denoted
Gπ is the graph with vertex set [n] and edge set Inv (π).

It will be convenient to represent permutations and their inversion graphs graphically in
a n × n grid. We label columns and rows 1, · · · , n from top to bottom and left to right
respectively. The graphical representation of a permutation π consists in placing a dot in
each row πi and column i. The edges of the corresponding inversion graph are then pairs of
dots where one is above and to the right of the other. We think of edges (j, i) with j < i as
directed from j to i (i.e. from left to right), and refer to them as arcs.

Example 2.1. Consider the permutation π = 42315. The inversions are the pairs of indices
(1, 2), (1, 3), (1, 4), (2, 4) and (3, 4). Figure 1 shows the graphical representations of π and
of its inversion graph.

πi

i
1 2 3 4 5

1
2
3
4
5

Figure 1. The permutation π = 42315 and its inversion graph Gπ.

3

We will use certain subgraphs of inversion graphs to represent MVP parking functions.
Here, subgraphs are considered to be vertex-spanning, so that a subgraph is simply a subset
of edges of the original graph. For a permutation π and corresponding inversion graph Gπ,
we define Sub1 (Gπ) := {S ⊆ Inv (π) ; ∀i ∈ [n], |{j ∈ [n], (j, i) ∈ S}| ≤ 1}. In words, this is
the set of subgraphs of Gπ where the number of incident left-arcs at any vertex is at most
1. We refer to elements of Sub1 (Gπ) as 1-subgraphs of Gπ. Figure 2 below shows all four
1-subgraphs of G312.

πi

i
1 2 3

1

2

3

πi

i
1 2 3

1

2

3

πi

i
1 2 3

1

2

3

πi

i
1 2 3

1

2

3

Figure 2. The four 1-subgraphs of the inversion graph G312.

2.2. The MVP outcome map and 1-subgraphs. In this section, we explain how to
represent parking functions in the MVP outcome fibre of a given permutation π via 1-
subgraphs of the permutation’s inversion graph, and vice versa.

Definition 2.2. Let π ∈ Sn be a permutation. We define a map ΨPF→Sub : O−1MVPn
(π) →

Sub1 (Gπ), p 7→ S(p) as follows:

(1) S(p) := {(j, i) ∈ Inv (π) ; pπi = j}.

In words, if the car πi that ends up in spot i initially preferred some spot j < i in the
parking function p (so was eventually bumped to i in the MVP parking process), then we
put an edge from j to i in S(p). Note that for this bumping to occur, the car πj which
eventually ends up in spot j must enter the car park after car πi, which exactly means that
(j, i) is an inversion of π. Moreover, since exactly one car ends up in any given spot i, there is
at most one left-arc incident to i in S(p) (in the case where pπi = i, i.e. the car that ends up
in i wanted to park there, we have no incident left-arc), so that S(p) is indeed a 1-subgraph
of Gπ, as desired. We can then define an inverse for this map from parking functions to
sub-graphs, as follows.

Definition 2.3. Let π ∈ Sn be a permutation. We define a map ΨSub→PF : Sub1 (Gπ) →
MVPn, S 7→ p = p(S) as follows:

(2) pπi =

{
i if |{j ∈ [n]; (j, i) ∈ S}| = 0

j if j is the unique j < i such that (j, i) ∈ S
.

In words, if there is no left-arc incident to i in S, we set pπi = i. Otherwise, since S is a
1-subgraph, there is a unique left-arc (j, i) incident to i in S, and we set pπi = j.

Example 2.4. Consider the permutation π = 34125 and the 1-subgraph S ∈ Sub1 (Gπ)
consisting of the arcs (2, 3) and (2, 4) as in Figure 3. We calculate p := ΨSub→PF(S) as
follows. First, let us determine p1 the preference of car 1. Note that 1 = π3 here, so we
are looking at the vertex in row 1, column 3 (labelled 3 in our inversion graph labelling).

4

Here there is a left-arc incident to this vertex, whose left end-point is in column 2, yielding
p1 = 2. Similarly, p2 = 2 also, since there is a left arc incident to the dot in row 2, column
4, whose left-end point is also in column 2. However, the dot in row 3, column 1, has
no incident left-arc, and neither does the dot in row 4, column 2, or the dot in row 5,
column 5. We therefore set p3 = 1, p4 = 2, and p5 = 5. Finally, we get the preference
p(S) = (p2, p2, p3, p4, p5) = (2, 2, 1, 2, 5).

πi
↓

cars

i→ spots
1 2 3 4 5

1
2
3
4
5

Figure 3. A 1-subgraph of G34125 whose corresponding parking function is
p := ΨSub→PF(S) = (2, 2, 1, 2, 5)

Our main result of this Section 2 is the following.

Theorem 2.5. The maps ΨPF→Sub : O−1MVPn
(π) → Sub1 (Gπ) and ΨSub→PF : Sub1 (Gπ) →

MVPn are injective, and for any π ∈ Sn and p ∈ O−1MVPn
(π), we have ΨSub→PF(ΨPF→Sub(p)) =

p.

As such, for a given permutation π, the map ΨPF→Sub induces a bijection from the fi-
bre O−1MVPn

(π) unto its image ΨPF→Sub

(
O−1MVPn

(π)
)
. The question of calculating the fibre

O−1MVPn
(π) then becomes that of calculating the image set, or equivalently calculating the set

of 1-subgraphs S of Gπ such that OMVPn (ΨSub→PF(S)) = π. Our next results are essentially
re-formulations of [9, Theorems 3.1 3.2] in this subgraph context.

Theorem 2.6. Given any permutation π ∈ Sn, we have O−1MVPn
(π) ⊆ ΨSub→PF

(
Sub1 (Gπ)

)
,

with equality if and only if π avoids the patterns 321 and 3412, or equivalently if the graph
Gπ is acyclic.

Corollary 2.7. For any permutation π ∈ Sn, we have∣∣O−1MVPn
(π)
∣∣ ≤ ∣∣Sub1 (Gπ)

∣∣ =
∏
i∈[n]

(
1 + |LeftInvπ (i) |

)
.

Another useful feature of the subgraph representation introduced in this section is that
it allows certain statistics of parking functions to be easily read from the corresponding
subgraph. Given a parking function p, the displacement of car i in p as the number of spots
car i ends up from its original preference, i.e. |pi − π−1i |. The displacement of p, denoted
dispMVP(p), is simply the sum of the displacements of all cars in p. We have the following.

Proposition 2.8. Let p ∈ MVPn be a parking function, and S := ΨPF→Sub(p) the corre-
sponding 1-subgraph. Then we have dispMVP(p) =

∑
(j,i)∈S

(i− j).

5

2.3. Improved bounds on the fibre sizes. In this part, we improve the upper bound
from Corollary 2.7, and also give a lower bound for the fibre size. We call a 1-subgraph S−→
P2-free if there is no triple i < j < k such that (i, j) and (j, k) are both edges in S.

Proposition 2.9. Let π ∈ Sn be a permutation, and S ∈ Sub1 (Gπ) a 1-subgraph of Gπ. If

S is such that p(S) := ΨSub→PF(S) ∈ O−1MVPn
(π), then S is

−→
P2-free. In particular, we have∣∣O−1MVPn

(π)
∣∣ ≤ |{S ∈ Sub1 (Gπ) ; S is

−→
P2-free}|.

We say that a 1-subgraph S ∈ Sub1 (Gπ) is horizontally separated if for any pair of arcs
(j, i) and (j′, i′) of S, we either have i < j′ or i′ < j. In words, there is no pair of arcs in S
which “overlap horizontally” in the graphical representation, end-points included.

Proposition 2.10. Let π ∈ Sn be a permutation, and S ∈ Sub1 (Gπ) a 1-subgraph of Gπ. If
S is horizontally separated, then we have ΨSub→PF(S) ∈ O−1MVPn

(π). In particular, we have∣∣O−1MVPn
(π)
∣∣ ≥ |{S ∈ Sub1 (Gπ) ; S is horizontally separated}|.

Note that any subgraph consisting of a single arc is horizontally separated, as is the empty
subgraph. As such, the above implies in particular that

∣∣O−1MVPn
(π)
∣∣ ≥ 1 + |Inv (π)|.

3. Motzkin parking functions

3.1. Motzkin parking functions and Motzkin paths. We consider lattice paths starting
from (0, 0) with steps U = (1, 1) (upwards step), D = (1,−1) (downwards step), and H =
(1, 0) (horizontal step). A Motzkin path is a lattice path with these steps ending at some
point (n, 0) which never goes below the X-axis (see Figure 4). We denote Motzn the set of
Motzkin paths ending at (n, 0) (i.e. with n steps). Motzkin paths are enumerated by the
ubiquitous Motzkin numbers and are in bijection with a number of different combinatorial
objects (see e.g. [1] or [13]).

Given a parking function p ∈ PFn, we define a lattice path with n steps Φ(p) := φ1 · · ·φn
by:

(3) ∀j ∈ [n] φj =


U if #{j; pi = j} ≥ 2;

H if #{j; pi = j} = 1;

D if #{j; pi = j} = 0.

.

Definition 3.1. Let p = (p1, · · · , pn) ∈ PFn. We say that p is a Motzkin parking function
if ∀j ∈ [n], #{j; pi = j} ≤ 2. We denote MotzPFn the set of Motzkin paking functions of
length n.

In words, a Motzkin parking function is a parking function in which each spot is preferred
by at most two cars. The terminology of Motzkin parking function comes from the following
result.

Theorem 3.2. Let p be a parking preference. Then p ∈ MotzPFn if and only if Φ(p) is a
Motzkin path.

Example 3.3. Consider the Motzkin parking function p = (2, 2, 1, 4, 3, 6, 4, 6) ∈ MotzPF8.
The corresponding Motzkin path is Φ(p) = HUHUDUDD. Indeed, spots 1 and 3 are
preferred by one car, spots 2, 4 and 6 by two cars, and spots 5, 7 and 8 by no cars. We can
check that Φ(p), illustrated on Figure 4, is indeed a Motzkin path.

6

Figure 4. The Motzkin path Φ(p) = HUHUDUDD corresponding to the
Motzkin parking function p = (2, 2, 1, 4, 3, 6, 4, 6)

The definition of the map Φ in Equation (3) only depends on the number of cars which
prefer each spot, and not on the labels of the cars in question. It is therefore natural to
define an equivalence relationship on MotzPFn by p ∼ p′ if p′ is obtained by permuting the
preferences in p. For example, the parking functions (2, 1, 1, 4) and (1, 4, 1, 2) are equivalent.

We write MotzPFn�∼ for the set of equivalence classes of Motzkin parking functions. The
above observation implies that Φ is constant on the equivalence classes of ∼, so that with

slight abuse of notation, we can consider Φ to be defined on the set MotzPFn�∼. We then
have the following.

Theorem 3.4. The map Φ : MotzPFn�∼ → Motzn is a bijection.

This theorem can be viewed as a generalisation of a bijection between Motzkin paths and
parking functions whose MVP outcome is the decreasing permutation decn := n(n− 1) · · · 1,
which was established by Harris et al. [9, Theorem 4.2], as follows.

Theorem 3.5. For any p ∈ MotzPFn, there exists a unique p′ ∈ MotzPFn such that p ∼
p′, and OMVPn (p′) = decn. In particular, Φ induces a bijection from the decreasing fibre
O−1MVPn

(decn) to the set Motzn of Motzkin paths of length n.

3.2. Non-crossing arc diagrams. Theorem 3.5 implies in particular that the decreasing
fibres O−1MVPn

(decn) are enumerated by the Motzkin numbers. In this part we give a new
bijective explanation of this fact by using our subgraph representation from Section 2. Note
that the inversion graph of the decreasing permutation decn is just the complete graph Kn

on n vertices, since all pairs are inversions in decn.
Instead of subgraphs of Kn, we will consider arc diagrams. An arc diagram is simply a set

of pairs (j, i) ∈ [n]2 with j < i. For n ≥ 1, we define ArcDiag1
n to be the set of arc diagrams

of [n] such that for any i ∈ [n] there is at most one arc (j, i) with j < i. We call these 1-left
arc diagrams.

There is a clear one-to-one correspondence between ArcDiag1
n and Sub1(Kn), so with slight

abuse of notation we identify the two sets. In particular, we consider that the map ΨSub→PF

from Definition 2.3, mapping a 1-subgraph in Sub1(Kn) to a parking function is defined on
ArcDiag1

n. We say that an arc diagram D is a non-crossing matching if it satisfies the two
following conditions.

(1) Matching condition: for every vertex i ∈ [n], there is at most one arc incident to
i in D.

(2) Non-crossing condition: no two arcs of D “cross”, that is there are no four vertices
i < j < k < ` such that (i, k) and (j, `) are both arcs in D.

We denote NonCrossn the set of non-crossing arc diagrams on [n]. It is well-known that
non-crossing arc diagrams are enumerated by Motzkin numbers. Our main result of this
section is the following, which gives an alternate proof of the enumerative consequence of
Theorem 3.5.

7

Theorem 3.6. Let n ≥ 1. The map ΨSub→PF is a bijection from the set of non-crossing
matchings NonCrossn to the decreasing fibre O−1MVPn

(decn).

Example 3.7. Consider the non-crossing matching D in Figure 5 below. We wish to com-
pute the corresponding MVP parking function p := ΨSub→PF(D). To get the parking pref-
erence pi of car i, we look at the vertex n + 1 − i (equivalently, the i-th vertex from the
right). If there is a left-arc incident to that vertex, we set pi to be the label of the left
end-point j of that arc. Otherwise we set pi = n + 1 − i. We get the parking function
p = (11, 7, 8, 8, 7, 1, 3, 4, 3, 2, 1). One can check that we do indeed have OMVP11 (p) = dec11,
as desired.

1 2 3 4 5 6 7 8 9 10 11

Figure 5. An example of a non-crossing matching D on 11 vertices. The cor-
responding parking function is p := ΨSub→PF(D) = (11, 7, 8, 8, 7, 1, 3, 4, 3, 2, 1).

References

[1] E. Barcucci, R. Pinzani, and R. Sprugnoli. The Motzkin family. PU.M.A., Pure Math. Appl., Ser. A,
2(3-4):249–279, 1991.

[2] Peter Jephson Cameron, Daniel Johannsen, Thomas Prellberg, and Pascal Schweitzer. Counting defec-
tive parking functions. Electron. J. Comb., 15(1):research paper R92, 378–388, 2008.

[3] Denis Chebikin and Pavlo Pylyavskyy. A family of bijections between G-parking functions and spanning
trees. J. Comb. Theory, Ser. A, 110(1):31–41, 2005.

[4] Alex Christensen, Pamela E. Harris, Zakiya Jones, Marissa Loving, Andrés Ramos Rodŕıguez, Joseph
Rennie, and Gordon Rojas Kirby. A generalization of parking functions allowing backward movement.
Electron. J. Comb., 27(1):research paper p1.33, 18, 2020.

[5] Laura Colmenarejo, Pamela E. Harris, Zakiya Jones, and Christo Keller. Counting k-naples parking
functions through permutations and the k-naples area statistic. Enumer. Comb. Appl., 1(2):Paper No.
S2R11, 2021.

[6] Robert Cori and Dominique Poulalhon. Enumeration of (p,q)-parking functions. Discrete Math.,
256(3):609–623, 2002. LaCIM 2000 Conference on Combinatorics, Computer Science and Appl ications.

[7] Robert Cori and Dominique Rossin. On the sandpile group of dual graphs. Eur. J. Comb., 21(4):447–459,
2000.

[8] Mark Dukes. The sandpile model on the complete split graph, motzkin words, and tiered parking
functions. J. Comb. Theory, Ser. A, 180:105418, 2021.

[9] Pamela E. Harris, Brian M. Kamau, J. Carlos Mart́ınez Mori, and Roger Tian. On the outcome map
of mvp parking functions: Permutations avoiding 321 and 3412, and motzkin paths. Enumer. Comb.
Appl., 3(2):Paper No. S2R11, 16, 2023.

[10] Alan G. Konheim and Benjamin Weiss. An occupancy discipline and applications. SIAM J. Appl. Math.,
14(6):1266–1274, 1966.

[11] Alexander Postnikov and Boris Shapiro. Trees, parking functions, syzygies, and deformations of mono-
mial ideals. T Am Math Soc, 356:3109–3142, 2004.

[12] Richard P. Stanley. Hyperplane arrangements, interval orders, and trees. Proc. Natl. Acad. Sci. USA,
93(6):2620–2625, 1996.

[13] Richard P. Stanley and Sergey Fomin. Enumerative Combinatorics, volume 2 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 1999.

8

[14] Richard P. Stanley and Jim Pitman. A polytope related to empirical distributions, plane trees, parking
functions, and the associahedron. Discrete Comput. Geom., 27(4):603–634, 2002.

[15] Catherine H. Yan. Parking Functions, chapter 13. CRC Press, 2015.
[16] Catalin Zara. Parking functions, stack-sortable permutations, and spaces of paths in the johnson graph.

Electron. J. Comb., 9(2):research paper R11, 2003.

9

