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Abstract: We consider a variant of the game of Brussels Sprouts that, like Conway’s original version, ends in

a predetermined number of moves. We show that the endstates of the game are in natural bijection with non-

crossing trees and that the game histories are in natural bijection with both parking functions and factorizations

of a cycle of Sn.
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1. Introduction

Since its creation in the 1960s, the two-player topological game Sprouts introduced by Conway and Paterson [3]
has been studied for its interesting mathematical properties, and many basic questions about it remain unre-
solved. In contrast, the superficially similar topological game Brussels Sprouts introduced by Conway is of no
game-theoretic interest at all, since the identity of the winner is predetermined. Nonetheless, games that are
trivial from the point of view of strategy may still pose interesting questions for enumerative combinatorics.
(“If you can’t beat ’em, count how many ways they can beat you.”)

In Brussels Sprouts, n crosses are drawn in the plane, each with four free ends, or arms. To make a move, a
player connects two arms with a simple curve that does not intersect any of the previously-drawn curves, and
marks a notch on the curve that provides two further arms, one on each side of the curve; see page 603 of [1].
The game ends when no further moves can be played. By interpreting the game as a planar graph and using
Euler’s formula, one can show that the game will last precisely 5n− 2 moves.

Variants of Brussels Sprouts have been proposed. According to [3], Eric Gans proposed replacing crosses by
“stars” consisting of n concurrent crossbars (that is, stars with 2n arms), and named this new game Belgian
Sprouts. It was quickly realized that there is no need to require stars to have an even number of arms; in the
game Cloves (also called Stars-and-Stripes), stars may have any number of arms. Here we consider a version
of Brussels Sprouts we call Planted Brussels Sprouts. The initial state consist of a circle with n marked points;
attached to each marked point is an arm interior to the circle, as in the left side of Figure 1 (the case n = 4).
To make a move, a player connects two arms with a simple curve that does not intersect any of the previously-
drawn curves, which we will call an arc, and marks a notch on the arc that provides two further arms, one on
each side of the arc; see the right side of Figure 1. (Here, as in some of the other figures, we leave a slight gap
between the arms and the arcs; when positions become more complicated, this convention makes it easier to
see what has happened.) The game ends when no more moves are possible; this always happens after exactly
n− 1 moves (see Section 2 for the simple inductive proof). The game is equivalent to a game of Cloves in which
the initial position is a single n-armed star, though the equivalence involves some topological subtleties that we
discuss in section 5.

We will show that for Planted Brussels Sprouts on n labeled vertices, the number of topologically distinct
endstates is

(
3n−3
n−1

)
/(2n− 1) (see entry A001764 in the OEIS), while the number of topologically distinct lines

of game-play is nn−2 (see entry A000272 in the OEIS). For instance, for n = 3 there are three topologically
distinct endstates and three topologically distinct lines of play, while for n = 4 there are twelve topologically
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distinct endstates and sixteen topologically distinct lines of play. We prove the two formulas by showing that
the endstates are in bijection with noncrossing spanning trees while lines of play are in bijection with parking
functions.

Figure 1: A move in Planted Brussels Sprouts.

2. Number of moves

An elementary induction can be used to show that the game will last precisely n − 1 moves. The claim is
trivially true for n = 1. For larger n, assume that the claim is true for all n′ < n, and note that if the first
move connects an arm with another arm m positions away (we call m the length of the move), the game is
split into two subgames that are equivalent to Planted Brussels Sprouts with m vertices and Planted Brussels
Sprouts with n−m vertices. Since by the induction hypothesis these subgames last m− 1 and n−m− 1 moves
respectively, the original game lasts 1 + (m− 1) + (n−m− 1) = n− 1 moves, as claimed.

Since the game lasts n−1 moves, n−1 arcs are drawn. These need not correspond to what one might naively
call arcs in the final position of the game. For instance, the left panel of Figure 2, which shows an end position
for a game of Planted Brussels Sprouts with n = 4, contains three arcs, not two or four. The right panel makes
this point more clearly: the three arcs join a to b, c to d, and e to f respectively. Thus the horizontal diameter
of the disk is not itself an arc but contains two arcs, and the pairs of arms emanating from it do not count as
arcs at all.

It is worth mentioning that the endstate of a game does not usually determine the entire history of the game.
For instance, in Figure 2, we cannot tell which of arcs (c, d) and (e, f) was drawn first.

Figure 2: An end position and its three arcs (a, b), (c, d), and (e, f).

The observation that each state of the game naturally splits up into one or more smaller subgames, and
that each move separates an existing subgame into two smaller subgames, will be crucial to studying Planted
Brussels Sprouts. For convenience, we will henceforth assume that the original arms are labeled 1 through n
in clockwise order. Arms created later are labeled in an inductive fashion; if at some stage an arc is drawn
connecting two arms labeled α and β, then the two new arms are labeled (α, β) and (β, α), as illustrated in
Figure 3. If P (not labeled in the Figure) denotes the point on the arc from which the new arms spring, then
surrounding P one finds, in clockwise order, the old arm labeled α, the new arm labeled (α, β), the old arm
labeled β, and the new arm labeled (β, α). We call these labels the long labels of the arms. The utility of these
labels stems from the fact that they contain all topologically relevant information.

It will also be convenient to assign arms short labels, which are always numbers between 1 and n. When
an arc is drawn connecting two arms labeled i and j, the two new arms are labeled i and j, as illustrated in
Figure 4. If P again denotes the point on the old arc from which the new arms spring, then surrounding P one
finds, in clockwise order, the old arm i, the new arm i, the old arm j, and the new arm j.
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Figure 3: Long labels of arms, constructed iteratively.

It is easy to recover the short label of an arm from its long label; simply take the first component of the
pair, and then take the first component of that pair, and so on, until one arrives at something that is a number
rather than an ordered pair; this is the desired short label of the arm. For instance, an arm with long label
((4, 3), (2, (1, 5))) would have 4 as its short label.
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Figure 4: Short labels of arms, constructed iteratively.

It is also easy to determine the short labels of all the arms directly from a game state (not necessarily an
endstate) without following an iterative process that tracks the moves that led to that state. The arcs that have
been drawn at any stage divide the disk into smaller simply-connected sets (hereafter regions), each of which
contains a boundary segment of the original disk. To find the short label of a particular arm a that lies in a
particular region, draw a simple closed clockwise loop that traverses the interior of the region, starting from a
and hugging the boundary as it goes. Suppose that when the loop first encounters the boundary of the original
disk, the vertex it encounters is the one originally indexed as i. Then i is the short label of a. See Figure 5.
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Figure 5: Finding the short labels of the arms in a game state.

3. Number of endstates

After n − 1 moves have been made in a game of Planted Brussels Sprouts of order n, an endstate is reached.
Two endstates are considered topologically equivalent if and only if there is a homeomorphism of the disk to
itself that carries one picture to the other and preserves the long labels of the arms. Note that the long label of
an arm contains (as its two components) the long labels of the two arms that were joined when that arm was
first created, and so on recursively; thus each long label carries its own “ancestry” within itself.

Two lines of game-play are considered topologically equivalent if and only if for all 1 ≤ k ≤ n− 1, the state
of the first line of play after k moves is topologically equivalent to the the state of the second line of play after
k moves.
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Two Planted Brussels Sprouts Games (hereafter PBSGs) are topologically equivalent if and only if their
respective moves (that is, the arms that are added, listed in chronological order) have the same long labels.
Also, two Planted Brussels Sprouts Endstates (hereafter PBSEs) are topologically equivalent if and only if they
have the same set of long labels.

Each arc that is formed by joining two arms during the course of play can be assigned a label, namely the
set whose two elements are the short labels of the arms being joined (or, equivalently, the short labels of the
two new arms that get created when that arc is drawn). For instance, in Figure 4, the arc that gets added has
label {i, j}; in the next move of the game, one of three arcs will be added, with label {j, k}, {j, l}, or {k, l}.
The labels of the n− 1 arcs that are drawn in the course of a game can be thought of as edges in the complete
graph with vertex set {1, 2, . . . , n}. We picture the n vertices as being arranged on a circle, labeled 1 through
n in clockwise order. In this way, each state of the game corresponds to a graph G. This graph contains no
multiple edges because when arms labeled i and j are joined, the new arms that are created that bear the labels
i and j will lie on opposite sides of the new arc, as will any subsequent arms labeled i and j, so that it will
never again be possible to draw an arc labeled {i, j}. Furthermore:

Theorem 3.1. The topologically distinct endstates of the game that starts with n ≥ 1 labeled arms are in
bijective correspondence with the topologically distinct noncrossing trees on n labeled vertices.

Figure 6: A Planted Brussels Sprouts Endstate (left) and the associated Noncrossing Spanning Tree (right).

Before we prove this theorem, we will first define a few terms and then give an intuitive picture of the
relationship between PBSEs and NSTs (noncrossing spanning trees).

Definition 3.1. A noncrossing tree on n labeled vertices is a tree on n vertices labeled 1, 2, . . . , n with the
property that when the vertices are written in increasing clockwise order along a circle, no two distinct edges of
the tree intersect in their interiors.

Definition 3.2. A primary arc is an arc that joins two arms on the original circle. If an arc joining arms
labeled i and j is primary, then in every playing sequence of the game, that arc is drawn prior to all other arcs
involving an arm labeled i or j. On the other hand, if an arc joining arms labeled i and j is not primary, then
in every playing sequence of the game, there will be an earlier-drawn arc involving an arm labeled i or j. For
instance, in the left panel of Figure 6, the primary arcs are {5, 8} and {3, 4}.

Definition 3.3. In a noncrossing tree on n vertices, an edge between vertices i and j where i < j is a primary
edge if and only if vertex i is not connected by an edge to any vertex in the set {j+ 1, j+ 2, . . . , n, 1, 2, . . . , i−1}
and vertex j is not connected by an edge to any vertex in the set {i+ 1, i+ 2, . . . , j− 1}. Equivalently, an edge e
is not primary if and only if one can pivot e, holding one endpoint fixed and moving the other endpoint clockwise
around the circle, so as to obtain another edge e′ in the tree. For instance, in Figure 6, the edge {2, 4} fails to
be primary for two reasons: it can be pivoted to both {2, 8} and {3, 4}. The primary edges in this noncrossing
spanning tree are {5, 8} and {3, 4}.

The motivation for defining primary arcs and edges is the fact that they both split up the original game
or the graph into two disjoint parts. The fact that they correspond to each other is the basis for the proof of
Theorem 3.1.

One way to picture the correspondence is to imagine that the two arms that form a notch are free to move
independently of each other. Pick some parameter t in [0, 1]. When we draw an arc joining an arm labeled i
(attached to a point p) to an arm labeled j (attached to a point q), forming a curve of length L joining p to
q, we take new points p′, q′ along this curve at respective distance (t/2)L, (1 − t/2)L from p along the curve,
and we attach new arms labeled i and j to these points, so that as we move from p to q, the new arm labeled
i is on the left and the new arm labeled j is on the right. When t = 1, we have a PBSE; when t = 0, we have
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an NST. What prevents this attractive picture from being a valid proof are some hidden details about how this
homotopy occurs, given that the concept of “arc” is an inherently dynamical one whose nature depends on the
discrete-time-evolution of the state itself over the course of the game (recall Figure 2). The homotopy can be
well-defined, but we adopt a different approach.

Proof. First we make an observation: after k arcs have been drawn in a game, the game is separated into
k + 1 subgames. The sets of arms of these subgames are nonempty and partition the original set of arms, and
furthermore, these subgames are disjoint in that none of the n− k− 1 remaining arcs to be drawn can connect
arms from different subgames. These facts are easy to see through considering each arc: each arc connects two
arms in the same subgame and separates that subgame into two disjoint subgames whose sets of arms form a
partition of the set of arms of the original subgame.

Next we show by (strong) induction that the graphs obtained from an endstate are trees. The base case
n = 1 is clear. For n > 1, note that the first arc (joining arms i and j, say) divides the game into two subgames,
and by the induction hypothesis each of these subgames corresponds to a tree, one containing the vertex i
and the other containing the vertex j. The first arc then corresponds to edge {i, j}, whose inclusion turns the
two-component forest into a tree.

Now we show that every tree obtained from an endstate is embedded in the plane as a noncrossing tree.
Assume for sake of contradiction that there is a crossing of edges. Without loss of generality, say it comes from
edges between vertices i and k and between j and l, where i < j < k < l, and that the arc between j and
l is drawn after the arc between i and k. Consider the first arc that is drawn between an arm from the set
{l+1, l+2, . . . , n, 1, 2, . . . , j−1} and an arm from the set {j+1, j+2, . . . , l−1}. (It might be the aforementioned
arc between i and k or it might be an earlier-drawn arc.) We know this occurs before the arc between j and
l is drawn, and that every arc drawn earlier preserves the fact that such an edge would separate l and j into
distinct subgames. Thus after it is drawn, there is no way for an arc to connect l and j, contradiction. Thus
the graph G cannot have any crossing edges and is a noncrossing tree.

Now we show that any two distinct endstates must correspond to two different noncrossing trees. Take a
noncrossing tree T ; we will show that it uniquely determines an end-state A. First, we claim that the primary
edges of T correspond precisely to the primary arcs of A. Indeed, take a primary edge connecting vertices i and
j with i < j in T and assume that it is not a primary arc in A. This implies that either i or j must have been
connected to a different arm before being connected to j. Without loss of generality, say this is true of arm i.
Since the edge between i and j is primary in T , we know that i could not have been connected to any vertex in
the set {j+1, j+2, . . . , n, 1, . . . , i−1}. Thus it must have been connected to a vertex in the set {i+1, . . . , j−1},
but this would ensure that it would be placed in a different subgame from arm j. Then there could have been
no arc joining i and j in A, contradiction. Thus every primary edge in T corresponds to a primary edge in A.
Now take a primary arc of A connecting arms i and j. Then there must be an edge connecting vertices i and j
in T . Because the arc is primary in A, this implies that there can be no edges between i and the vertices from
the set {j+ 1, . . . , n, 1, . . . , i− 1} and no edges between j and the vertices from the set {i+ 1, . . . , j− 1}. Thus,
the edge between i and j in T must be a primary edge. Thus A has the same primary arcs as the primary
edges of T . Then apply the same argument to each of the subgames of A which its primary arcs divide it into.
Continuing in this fashion, we see that the ancestry of each arc in A is uniquely determined by T , so no two
distinct endstates can correspond to the same noncrossing tree.

Finally, we show that any noncrossing tree T can be realized from some possible endstate of the game. We
do this by induction. The result is easily verified for the cases of n = 1, 2, and 3. Now our goal is to find a
primary edge in T ; then by simply drawing the corresponding arc and applying the inductive hypothesis to the
two subgames that the arc creates, we obtain the desired result. Now take any vertex on the graph, and apply
the following algorithm until a primary edge is reached. Moving counterclockwise from the vertex around the
graph, take the first vertex it is connected to by an edge. If the edge between them is a primary one, then stop.
Otherwise, take that new vertex and repeat the algorithm on it. We claim that this algorithm will terminate
and return a primary edge. Indeed, for each vertex i, let f(i) be the first of its neighbors in the counterclockwise
ordering. Since the vertex set is finite, the sequence i, f(i), f(f(i)), . . . must eventually repeat. The repeating
pattern gives a cycle that contradicts acyclicity of the spanning tree unless the repeating pattern repeats with
period 2. But if j = f(i) and i = f(j), then {i, j} is a primary edge. Thus every noncrossing tree must have a
primary edge, finishing this proof.

Let an be the number of endstates of a game that begins with n arms. Then by Theorem 3.1, an is the
number of noncrossing trees on n vertices. The first few values of an are:

a1 = 1, a2 = 1, a3 = 3, a4 = 12, a5 = 55, a6 = 273.

This is sequence A001764 in the OEIS.
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Theorem 3.2. The number of endstates of a game of Planted Brussels Sprouts whose initial state has n ≥ 1
arms is

an =

(
3n−3
n−1

)
2n− 1

.

Proof. The number of noncrossing trees on n vertices is known to be equal to the number of ternary trees on

n− 1 vertices, which is known to be equal to
(3n−3

n−1 )
2n−1 by [6].

4. Number of lines of play

Let bn be the number of distinct (complete) playing sequences for a game of Planted Brussels Sprouts that
begins with n arms. Two playing sequences are considered different if for some i, the vertices connected at the
ith stage in the first sequence are not the vertices connected at the ith stage in the second sequence.

Theorem 4.1. The number of lines of play of a game of Planted Brussels Sprouts whose initial state has n ≥ 1
arms is

bn = nn−2.

4.1 Proof by recursion

Say the first move on a game beginning with n arms is of length i; that is, it separates the game into two
subgames of sizes i and n− i, for some 1 ≤ i ≤ n− 1. Then of the remaining n− 2 moves, i− 1 must be played
on the subgame of size i, and the remaining n− i− 1 moves are played on the other subgame. Thus there are(
n−2
i−1
)

ways to choose which moves will be played on which subgame. By definition there are bi and bn−i ways

to play the two games, giving a total of
(
n−2
i−1
)
bibn−i ways to move after the first move. Now given any fixed i,

note that connecting vertices a and a + i (taken mod n) as a ranges from 1 through n are the ways to make

a first move of length i. The associated sum
∑n−1

i=1

(
n−2
i−1
)
bibn−i undercounts by a factor of n, corresponding to

the n different choices of an initial arm, but also overcounts by a factor of 2, since either of the two ends of the
first arc could be treated as the initial arm (moves of length n − i are equivalent to moves of length i). Thus
the sum needs to be multiplied by n/2, giving the recursion

bn =
n

2

n−1∑
i=1

(
n− 2

i− 1

)
bibn−i. (1)

This recurrence relation also holds if bn is replaced by T (n), the number of trees on n labeled vertices; see [5].
In the interest of making our article self-contained, we here provide a short proof.

Consider all spanning trees on vertices 1, 2, . . . , n, and note that proportionately exactly n−1
(n
2)

= 2
n of them

have an edge between vertices 1 and 2. Indeed, each spanning tree has n − 1 edges out of
(
n
2

)
total possible

edges, and when all these trees are considered, no edge occurs more than any other. Now we count the number
of spanning trees where vertices 1 and 2 are connected by an edge. Note that removing this edge results in two
subtrees. If there are i − 1 other vertices in the subtree with vertex 1, then there are n − i − 1 vertices in the
subtree with the vertex 2. Since i can range from 1 through n− 1 and any i− 1 of the remaining n− 2 vertices
can be chosen to be in the first subtree, we obtain the recursion

Tn =
n

2

n−1∑
i=1

(
n− 2

i− 1

)
TiTn−i. (2)

Since the sequences b1, b2, . . . and T (1), T (2), . . . satisfy the same initial conditions b1 = T (1) = 1 and
the same recurrences (1) and (2), it follows that bn = T (n) for all n ≥ 1, and since it is well-known [5] that
Tn = nn−2, the theorem follows.

4.2 Bijection to parking functions

It is known that the number of parking functions of length n is (n+ 1)n−1 [4]. We will now exhibit a bijection
between the playing sequences of length n and the parking functions of length n − 1. This bijection between
maximal chains of noncrossing partitions and parking functions is due to Stanley (see Theorem 3.1 in [7]); here,
we restate it in terms of playing sequences of Planted Brussels Sprouts and prove it.

First, recall that a parking sequence of length n− 1 is an ordered n− 1-tuple (a1, a2, . . . , an−1) of integers
between 1 and n − 1, inclusive, satisfying the property that if the ai’s are arranged in increasing order a′1 ≤
a′2 ≤ · · · ≤ a′n−1, then a′i ≤ i for all 1 ≤ i ≤ n− 1.
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Using the same clockwise shift of numbering as used in Section 3, we can interpret each move of Planted
Brussels Sprouts as dividing the game into two subgames that partition the set of vertices. Thus, a move is
essentially equivalent to separating a contiguous set of arms from the rest of the arms. For each of the n − 1
moves, we obtain a number in the following way. Say that a move connects arms i and j. Now in the subgame
in which this move was made, consider the labels of the arms immediately counterclockwise to arm i and to
arm j. Take the lesser one of these labels.

Theorem 4.2. The sequences of n− 1 numbers obtained in this way are distinct for distinct playing sequences,
and are the parking functions of length n− 1.

Proof. First we will show that the sequences generated in this way are parking functions. Indeed, assume the
contrary. This implies that for some k, at least k + 1 of the numbers are at least n − k + 1. We proceed by
induction on k. The result is easy to verify for the base case of k = 0. Now for the inductive step, note that for
a move to generate such a number, it must connect to an arm with label at least n− k + 1. Consider the first
such move. At this point, at most one of the generated numbers is at least n− k. Furthermore, after this move,
these largest k arms are split into t separate subgames with t ≥ 2. Because they must be the largest arms in
their respective subgames, by the inductive hypothesis, at most 1 + k+ 1− t ≤ k of the numbers can be one of
those k + 1 largest numbers, contradiction.

Now we will show that each parking function (a1, a2, . . . , an−1) can be obtained through exactly one playing
sequence, which will complete the proof. We do this by induction. For the base cases of n = 2 and n = 3, the
result is easily checked. Now assuming the result for labels 2, 3, . . ., n− 1, we prove the result for n. Since the
first term of the sequence is a1, say that the first move connects arms a1 + 1 and j with j > a1 + 1 or j = 1.
This divides the game into a subgame containing the vertices a1 + 1, a1 + 2, . . ., j − 1 and another subgame
containing j, j + 1, . . ., n, 1, 2, . . ., a1. Now consider the remaining terms of the sequence: a2, a3, . . ., an−1.
The terms of this subsequence which correspond to arms in the first subgame must form a parking sequence
for the first subgame, and the rest must form a parking sequence for the second subgame. This is because they
must be played in their respective subgames, and each playing sequence of a game must give rise to a parking
sequence. Thus we must show that such a j strictly between a1 − 1 and n exists and is unique.

Let j move clockwise from a1+2 through n and 1 until the following condition is satisfied: there are precisely
j − a1 − 2 terms of the sequence a2, a3, . . ., an−1 which are equal to one of the numbers a1 + 1, a1 + 2, . . .,
j − 1, and if these terms are arranged in increasing order, the kth term is at most a1 + k. In other words,
the remaining terms of the sequence which are within this subgame form a parking sequence for this subgame.
Indeed, as j ranges, this condition must occur at some point. If a1 + 1 is not a term in this sequence, then
setting j = a1 + 2 works. Otherwise, there is at least 1 term of a1 + 1 in the sequence. Now as j ranges from
a1 + 2 through 1, define f(j) to be j − a1 − 2 subtracted from the number of terms between a1 + 1 and j − 1,
inclusive (when j = 1, consider it equal to n + 1). Thus, f(a1 + 2) is equal to the number of terms equal to
a1 + 1 in the sequence a2, a3, . . ., an−1. Because the original sequence is a parking sequence, there are at most
n−a1−1 terms at least a1 + 1. Thus, f(1) ≤ n−a1−1− (n−1−a1) = 0. Note that f(j) decreases by at most
1 on each step. Now take the first j as j moves clockwise from a1 + 2 through 1 such that f(j) = 0. Because
there are the right number of terms for a parking sequence and because of the minimality of j, this choice of j
works as desired.

Now we show that when this condition is satisfied, the remaining terms which fall in the other subgame form
a parking sequence on that subgame as well. Essentially, certain terms which form a parking sequence have
been taken away from the parking sequence a1, a2, . . ., an−1, and we must show that the result is a parking
sequence on the remaining terms: 1, 2, . . ., a1, j, j+1, . . ., n. This follows from the nature of parking sequences.
Indeed, when these are arranged in increasing order, for any i with 1 ≤ i ≤ a1, the ith term is at most i because
the original sequence is a parking sequence. Next, for any i with 1 ≤ i ≤ n − j, no more than i of them can
be at least n− i, for the same reason. Thus when the terms form a parking sequence on the first subgame, the
remaining terms must form a parking sequence on the second subgame.

Now it remains to show that such a choice of j is unique. Indeed, suppose that there are two choices j, j′

with j < j′. Note that because the terms form a parking sequence on the arms a1 + 1, a1 + 2, . . ., j − 1, then
j − 1 cannot be one of the terms. But if the terms also form a parking sequence on a1 + 1, a1 + 2, . . ., j′ − 1,
then there are j′− a1 terms in that range, but only j− a1 terms in a1− 1, a1, . . ., j− 1. This means that there
are j′ − j terms in the range j, j + 1, . . ., j′ − 2, contradiction.

4.3 Bijection to factorizations of the cycle

The n-cycle denoted by (1, 2, · · · , n) (in cycle notation) can be expressed as a product of n− 1 (but no fewer)
transpositions, and it has long been known [2] that the number of such expressions is equal to nn−2.

Recall that in our previous bijective proof, each arc gave rise to two labels, and by picking the smaller one,
we derived a parking function. If instead we take those same two labels to be a transposition, we claim that the
sequences of transpositions that can be obtained this way form the nn−2 factorizations of the cycle (1, 2, · · · , n).
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For example, in the case n = 3, there are three lines of play: the first has arc {1, 2} followed by arc {2, 3};
the second has arc {1, 3} followed by arc {1, 2}; and the third has arc {2, 3} followed by arc {1, 3}. These three
lines of play correspond to the factorizations (12)(23), (13)(12), and (23)(13), respectively, where the successive
inserted arcs correspond to the transpositions read from left to right (even though we imagine the permutations
being composed from right to left). As we will see later, for purposes of the inductive proof it will be more
convenient to increment shift the indices by 1 mod n, so that these three lines of play correspond instead to the
factorizations (23)(13), (12)(23), and (13)(12), respectively.

Theorem 4.3. For each arc in a PBSG connecting labels i and j, let i′ and j′ be the labels immediately
counterclockwise from i and j in the subgames the arc divides them into, respectively. Then consider the
sequences of n − 1 transpositions defined by transposing the labels i′ and j′ obtained from each arc of a PBSG
in this way. Then these sequences of transpositions obtained from the distinct PBSGs, applied to the identity
permutation in the order they are obtained, are the nn−2 factorizations of the cycle (1, 2, · · · , n) into n − 1
transpositions.

Proof. To demonstrate this bijection, we prove three things: first, each sequence of transpositions obtained in
this way is a factorization of (1, 2, . . . , n); second, distinct lines of play correspond to different sequences of
transpositions; and third, each of the nn−2 factorizations can be achieved in this way.

We prove the first claim through induction. For the base case n = 2, the result is clear. Now assume the
result holds for n = 1, 2, · · · , k−1 for some k ≥ 3. We prove the result for n = k. Say the first arc connects arms
i and j with i < j. This corresponds to the transposition (i−1, j−1), and breaks the game into subgames with
arms i, i + 1, . . . , j − 1, and j, j + 1, . . . , k, 1, . . . , i − 1. Then by the inductive hypothesis, the remaining n − 2
transpositions will act as a cycle on those two subgames. Since those cycles are disjoint, the final permutation
obtained is (i, i+ 1, . . . , j − 1)(j, j + 1, . . . , n, 1, . . . , i− 1)(i− 1, j − 1) = (1, 2, . . . , n), as desired.

The second claim follows from the fact that each stage of the game, each transposition uniquely determines
the arc necessary to obtain it. To prove this fact, we use induction. That is, we induct on the assertion that
there cannot be multiple distinct ways to produce the same sequence of the first l transpositions of a sequence of
n−1 transpositions, for any 1 ≤ l ≤ n−1. Say we are given a sequence of transpositions, denoted t1, t2, . . . , tn−1,
where tk transposes ik and jk for 1 ≤ k ≤ n− 1. Then for t1 to be obtained, the first move must connect i1 + 1
and j1 + 1, so the result holds for the base case. Now assume that there is a unique set of l moves to obtain
the transpositions t1, t2, . . . , tl for some 1 ≤ l ≤ n− 2. Indeed, if there is no way to obtain those transpositions,
then trivially there cannot be multiple ways to obtain the first l + 1 transpositions. Then in order for tl+1 to
be obtained, both il+1 and jl+1 need to be in the same subgame, and the only move will be to connect the
labels positioned directly clockwise to them in that subgame. Thus there cannot be multiple ways to achieve
t1, t2, . . . , tl+1, as desired.

To prove the third claim, first consider what defines an achievable sequence of transpositions from a PBSG.
The only restriction is that each transposition act on two elements of the same subgame; in particular, after
drawing an arc between i + 1 and j + 1, the remainder of the transpositions must act on elements of either
(i+ 1, i+ 2, . . . , j) or (j + 1, j + 2, . . . , n, 1, . . . , i).

Now take any sequence of transpositions ti, 1 ≤ i ≤ n− 1 such that tn−1tn−2 · · · t1 = (1, 2, . . . , n). Then we
have (1, 2, . . . , n)t1t2 . . . tn−1 = e. Note that as these transpositions are successively applied to (1, 2, . . . , n), the
cycle type of the permutation goes from 1 cycle to n− 1 cycles. Furthermore, each individual transposition can
only increase the number of cycles by 1, and that occurs if it transposes elements from different cycles. Thus
each of the transpositions must have this property. That is, each successive transposition tk must add one cycle
to the number of cycles in the permutation defined by (1, 2, . . . , n)t1 . . . tk−1.

Say t1 = (i, j). Then we have

(1, 2, . . . , n)t1 = (1, 2, . . . , n)(i, j) = (j + 1, j + 2, . . . , n, 1, . . . i− 1, i)(i+ 1, i+ 2, . . . , j − 1, j).

Then note that in order for t2 to add to the number of cycles, it must transpose two arms of the same cycle, for if
it does not, then it will merge the two cycles it connects. This is true at each stage; tk must act on two elements
of the same cycle of (1, 2, . . . , n)t1 . . . tk−1. But note that at each stage, the cycles correspond precisely to the
subgames which drawing the appropriate arc divides the game into. Indeed, when a permutation is applied to
two elements of the same cycle, the resulting two cycles correspond to the same two subgames that drawing
the corresponding arc divides the subgame it is drawn in into. Thus each of these sequences of transpositions
is allowed, because they act within each subgame. Thus each of these sequences can be obtained through a
PBSG, completing the proof.
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5. Odds and ends

5.1 Variants

A seemingly slightly different variant of Brussels Sprouts game that yields the same two integer sequences
A001764 and A000272 starts from an n-pointed star on a sphere. This is in fact the same game in disguise.
Indeed, we may replace the star by a small circle with n arms protruding outward, without changing any aspects
of the legal moves. The circle partitions the surface of the sphere into two parts, one of which is the region
which the arcs will be drawn on. Since this region is homeomorphic to the open disk, the enumerative properties
of this variant are the same as those of the original game.

We might also consider an n-pointed star on the plane. It is not hard to show that the number of endstates
for this game is exactly n times the number of endstates for the game treated in the previous paragraph. To
see this, think of the plane as a punctured sphere. When playing on a sphere, the drawn arcs always divide
the sphere into n regions at the end of the game. We may choose to place the puncture in any one of these
regions, and then by performing a stereographic projection onto the plane, we recover n distinct endstates for
each endstate of the game on a sphere. For the same reason, the number of lines of play for the star-on-a-plane
game is exactly n times the number of lines of play for the star-on-a-sphere game.

On the other hand, we might consider initial states consisting of several stars (on a plane or a sphere), as
in the original version of Brussels Sprouts. Now it might appear that there are infinitely many endstates, and
indeed infinitely many initial moves, since an arc joining an arm of one star to an arm of another star has
the freedom of winding around one star or the other; if we imagine the stars as being fixed in place (on the
plane or sphere), then there is no homotopy that can undo the winding. Hence it is unclear whether there are
enumerative results to be obtained here (though one might try to sweep the winding issue under the rug by
paying attention only to the combinatorics, and not the topology, of the connection patterns of the arcs).

Finally, one might consider a “type B” version of Planted Brussels Sprouts that maintains 180-degree
rotational symmetry throughout the game. This requires that there be two kinds of moves: a single arc joining
two points 180 degrees apart, and a pair of matched arcs related by 180 degree rotation.

5.2 Lines of play leading to a particular endstate

It is not hard to show that, for each Planted Brussels Sprouts Endstate, the PBSGs having that particular
PBSE as their endstate correspond to the linear extensions of a particular poset associated with the PBSE. We
can most conveniently describe the poset using the NST picture. Given a fixed NST T with edge-set ET , and
given two edges e, e′ ∈ ET , write e→ e′ to mean that e′ can be obtained from e by swinging e counterclockwise
around one of its two endpoints. We have already shown that the digraph associated with this relation is acyclic;
let ≤T be its reflexive-transitive closure. Then we claim that the PBSGs compatible with T are precisely the
linear extensions of the poset (ET ,≤T ). This is easily proved by induction making use of the primary edges,
which are the minimum elements of the poset. See Figure 7.

Figure 7: The partially ordered set associated with a noncrossing spanning tree. Each covering relation e <· e′
is indicated by an arrow e→ e′, indicating that edge e must be played before edge e′.
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