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ABSTRACT: Let Z/dZ&,, denote the wreath product of the cyclic group Z/dZ with the symmetric group
S,. We define generating functions for monomial (induced one-dimensional) characters of Z/dZ 1 &,, and
express these in terms of determinants and permanents. This extends work of Littlewood (The Theory of Group
Characters and Representations of Groups, 1940) and Merris and Watkins (Linear Algebra Appl., 64, 1985) on

generating functions for the monomial characters of &,,.
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1. Introduction

Let z = (z;;) be an n x n matrix of indeterminates and let &,, be the symmetric group. For each linear

functional 6 : C[&,,] — C, define the generating function

Immg(2) := Z O(W)z1,w1 "+ Znw, € ClZ] (1)
wes,
for 0, and call this the #-immanant. Such functions appeared originally in [7, p.81] for 8 equal to irreducible
&, -characters x*, and were extended in [14, §3] to general #. As is the case with many functions, a simple
formula for a generating function for § can be as useful as a simple formula for the numbers {§(w)|w € &,}
themselves.

Particularly simple generating functions for the monomial (induced one-dimensional) characters of &,, are
expressed in terms of integer partitions, ordered set partitions, and submatrices of z. Call a nonnegative integer
sequence A = (A1,..., \.) satisfying Ay + -+ + A\, = n a weak composition of n and write |A| = n, £(\) = r.
If the components of A are weakly decreasing and positive, call it an (integer) partition of n and write A - n.
For any weak composition A of n, call a sequence (I3, ..., ) of pairwise disjoint subsets of [n] := {1,...,n} an
ordered set partition of [n] of type X if |I;| = A, for j =1,...,r. (Note that this nonstandard terminology allows
empty sets in ordered set partitions, whereas standard terminology [13, pp. 39, 73] does not.) Given subsets I,
J of [n], define the (I, J)-submatriz of z to be

21,0 = (2i3)iel jes- (2)

The class function space of &,, has two standard bases consisting of monomial characters: the induced trivial
character basis {n* = tringK A n} and the induced sign character basis {e* = sgnTg;‘ | A Fn}, where &y is
the Young subgroup of &,, indexed by A. (See, e.g., [9].) Littlewood [7, §6.5] and Merris and Watkins [8] came

close to expressing the n*- and e*-immanants as
Imme,\ (Z) = Z det(ZJth) ce det(ZJ£7J£),
(J1,esde)

Imm,s(2) = Y per(zs,,0,) - per(zs,.5,),
(Jroade)
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where the sums are over all ordered set partitions (J,...,Jg) of [n] of type A = (A1,...,A¢). For example, we

have

21,1 21,2 21,1 21 22,2 22
Imm 21 (z) = det ’ 233 + det ’ 3 Z29 + det ’ 3 21,1
221 22,2 23,1 23,3 23,2 23,3

= 32’1,122,223,3 — 21,2%2,1%3,3 — 21,322,223,1 — 21,1%2,3%3,2,

and €21(123) = 3, €21(213) = €21(321) = €21(132) = —1, €2}(312) = €21(231) = 0. While Littlewood, Merris,
and Watkins may not have written the equations (3) explicitly, we call them the Littlewood—Merris—Watkins
identities. These identities have played an important role in the evaluation of (type-A) Hecke algebra characters
at Kazhdan-Lusztig basis elements [3], [4], [5], the formulation of a generating function for irreducible Hecke
algebra characters [6], and the interpretation of coefficients of chromatic symmetric functions [3], [10]. The
identity in our main result (Theorem 3.1) plays an important role in the evaluation of hyperoctahedral group
characters at elements of the type-BC Kazhdan-Lusztig basis [11].

Let G = G(n) be the wreath product Z/dZ16&,,. (We will suppress d and sometimes n from the notation.) Its
class function space has 2% standard bases consisting of monomial characters, and it is possible to use a matrix
of dn? indeterminates to construct generating functions analogous to (3) for the elements of these bases. In

Section 2 we review G and its monomial characters; in Section 3 we present our generating functions for these.

2. G and its monomial characters

The group G is generated by n elements sq,...,S,_1,t subject to the relations
s?:e fori=1,...,n—1,
tt=e

tsi1tsy = s1tsit,
8iS; = 8;8; for |i — j| > 2,
ts; = s;t for j > 2,
5i8;8; = sjs;8; for |i — j| = 1.
A one-line notation for elements of G, analogous to that for elements of &,,, uses sequences of integer multiples

of complex dth roots of unity. Let ¢ be a primitive dth root of unity, and let S be the set of sequences

{(¢"wy, ..., wy) Jwy - wy, € Gy (Y15 -+,Y0) € Z/dAZT Y. (4)
We define an action of G on S by letting the generators act on a sequence (ay,...,a,) as follows.
1. sio(ar,...;an) = (a1, ..., Qi—1, Qix1, 05, Qigo, .., Ap),
2. to(ay,...,an) = (Car,az,...,a,).
Letting each element g € G act on the sequence (1,...,n), we obtain a bijection between G and S. If
go(l,....,n) = (("wy,...,{"w,), we define this second sequence to be the one-line notation of g, and we

write g = (y,w), where v = (y1,...,7v,) € Z/dZ", w € &,. In particular, the identity element e has one-line
notation 1---n.

Since G is a finite group, Brauer’s Induced Character Theorem implies that the set of monomial characters
of G spans the trace space T(G) of G, the set of all linear functionals 6 : C[G] — C satisfying 68(gh) = 6(hg)
for all g,h € G. (See, e.g., [12].) This includes all G-characters. 7 (G) has dimension equal to the number
of conjugacy classes of G, equivalently, to the number of sequences A = (\°,...  A971) of d (possibly empty)
integer partitions, with

IO 4 N =
We call such a sequence a d-partition of [n] and write A F n.

In order to describe natural bases of 7(G), we introduce certain subgroups of G which are analogous to
Young subgroups of &,,. Fix d-partition A = (A\°,..., A1) - n, and define ry = £(\F) for k =0,...,d—1. We
will say that an ordered set partition of [n] of type

CY D C D I RS s SO Lt §

T0’ 17 Td—1
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has type A. In particular, let K(A) = (K?,...,K?

07

Kl,... K}

ryo”

LK K&71) be the ordered set
partition of [n] of type A whose blocks are the rg + - -+ + r4—1 subintervals

KY=[1,))], K2=D0+1,0 419, ..., K& =[n-X"1 +1,n0] (5)

Td—1 Td—1

of [n]. For 1 <i < j < n, define the element ¢; = s;_1 ---s1ts1---8;—1 € G, and let
G(li,J]) 2Z/dZ16&; ;11
be the subgroup of G generated by {t;,s;,...,sj_1}. For k=0,...,d —1, use (5) to define the subgroup
G K) = G(KT) - G(KS,) = GOAT) x - x G\ ),

of G, and finally define the Young subgroup

d—1
G(A) == G(A0)---GAd=1) = T (GOT) x -+ x G(AL))

k=0

of G. Each element y € G(A) factors uniquely as yo - - - ya—1 with yr € G(A, k).

Several natural representations of G are defined by using symmetric group representations and induction
from G(A). First, observe that the subgroup of G generated by si,...,s,—1 is isomorphic to &,,, and that each
r-dimensional &,,-representation p can trivially be extended to an r-dimensional G-representation in at least
d ways: by defining p(t) = ¢*I for k = 0,...,d — 1. If the character of the &,-representation is ¥, call its

extension dxx. Thus the two one-dimensional &,,-representations

l:si—1 (w1forall w € &,,),

€:s— —1 (w = (—1)™®) for all w € &,,)
yield 2d one-dimensional G-representations:

okt (s, t) = (1,¢M), (g = (v, w) = CFOMH+7) for all g € G),
ke (s, t) = (=1,¢%), (9= (y,w) = (=1 CFOT57) for all g € G),

for k=0,...,d— 1. Here, inv(w) denotes the Coxeter length of w. (See, e.g., [2, p.15].) Next, observe that for
any d-tuple (Ho, ..., Hq_1) of subgroups of a group G which satisfy

H:=Hy - Hy 1= Hyx - x Hy_1, (6)

and any d-tuple (6o, ...,04_1) of characters of these, we have that the function § = 6y ® --- ® 041 defined
by 6(ho -+ hg—1) = Oo(hg) -+ -04—1(ha—1) is a character of H, and 7% is a character of G. In particular, the
Young subgroup G(\) has the form (6) with Hy, = G(\, k). For every d-tuple B = (8o, --,B4-1) € {1,€}? of
one-dimensional symmetric group characters we have the one-dimensional G(\)-character

0080 @ -+ - ® dg—18d-1, (7)

the corresponding monomial G-character
B = (6B @ ® 5d—15d—1)Tg(>\)7

and the basis {8 | A F n} of T(G). The irreducible character basis {x*|A F n} of T(G) can be defined
somewhat similarly. Given A = (A\°,... A4"1) I n, define the d-partition X* = (|]AY),...,|A?"]), and the
G(X*)-character

1

0 d—
Sox @ ®@0g_1x

where X>‘k is the irreducible &)\ -character indexed by the partition A¥. The corresponding induced characters
0 d—1
X)\ = (50X>\ ® e ® 5d—1X)\ )Tg()\o)

are the irreducible characters of G. (See, e.g., [1, p.219].)
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For the purpose of creating generating functions for characters ,8)‘7 it will be convenient to realize each as
the character of a submodule of the group algebra C[G], with G acting by left multiplication. To do this, we

consider an arbitrary finite group G, a subgroup H, an H-character 6, and the element

Th =Y 6(h~")h e C[G].
heH
Proposition 2.1. Let H be a subgroup of a finite group G and let p be a one-dimensional complex representation
of H with character § (= p). Let U = (uq,...,u,) be a transversal of representatives of cosets of H in G. Let
G act by left multiplication on the submodule

V = spanc{w;TH |1 <i < r} (8)
of C[G]. Then'V is a G-module with character 61

Proof. To see that V' is a G-module, consider the action of g € G on the jth element of the defining basis of V.
Let u; H be the unique coset satisfying gu; H = u; H, i.e., u;lguj € H. Then we have

gu;TY = gu; Z O(h™Hh = u; Z O(h Ny tguih = u; Z O((h') " u; L guy )b
heH heH heH

= 0(u;  gu;)uTh,
since § = p is a homomorphism. It follows that in the jth column of the matrix representing g, all components

are 0 except for the ith, which is 6(u; 'gu;). But this is precisely the formula for entries of the matrix prI (9)-
(See, e.g., [9, Defn. 1.12.2].) O

For x = GTg, Proposition 2.1 allows us to express 75 as a sum of conjugates of TY.

Lemma 2.2. Let groups G, H, transversal U = (uq, ..., u,), H-character §, and G-module V be as in Proposi-
tion 2.1, and let A = (a; ;) be the matrix of g € G with respect to the defining basis (8) of V. Then «a; ; equals

Lin ujTgui_l. In particular if x is the character of V', then we have the identity

.
Do wThut =" x(g9)g™"
=1

geG

the coeflicient of g~

in C[G].

Proof. By the proof of Proposition 2.1, we have a; ; = H(uflguj) if some h € H satisfies g = uihugl, and is 0
otherwise. On the other hand, we have

u Thut = Z O(h™Hujhu;t. (9)
heH

If there is no h € H satisfying ¢!

of g7t is

= u;hu; ', then the coefficient of g=! in (9) is 0. Otherwise, the coefficient

0(h™") = 0(u; " guy).

It follows that a; ; is equal to the coefficient of g=! in uijIui_l. Thus x(g) = >, ai,; is equal to the coefficient

of g7V in 3, w;Thu; . O

For G = G, H = G(\), and 6 as in (7), the module V (8) has a particularly nice form. The element T%

factors as Tg‘(’ﬁ"o) - T g‘(i;f_di)l, and each coset uG(A) of G(A) has a unique representative g = (v, w) satisfying

y1 ==, =0 and w; < w;11 for 4,7 + 1 belonging to the same block of K(\), i.e.,
wy << Wy, Wyo 41 < r < WAOLAGs - s Wy gt 4 <ot < W (10)

Letting G(A)~ be the set of such coset representatives, we have
Sd—1Bd— —
V=V(\pB) = spanC{ungf?O) e Tg‘(iAjf_‘il)l lu €GN},

and the following special case of Lemma 2.2.
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Corollary 2.3. Fiz a d-partition X b n. For each one-dimensional G(\)-character 6 of the form (7), the
monomial G-character B = ng(A) satisfies

S uTgu™ =Y BNg g (11)
u€G(A)~ geyg
For d = 1,2, the group G (equal to the symmetric group or the hyperoctahedral group) has real-valued

irreducible characters. Therefore each group element is conjugate to its inverse, and the final sum of (11) may

be expressed as deg ,Bk(g)g.

3. Main result

To construct generating functions analogous to (3) for monomial characters of G, we first extend the ring
Clz] = Clz11,21,2,---52n,n) and its nl-dimensional subspace span{zi ., --2Znw, |w € &,} which make the
definition (1) possible. The one-line notation (4) for elements of G suggests that we define a ring C[z] using the
dn? indeterminates

x = {x; crp |0, p € [n), k € Z/dZL}

and the d"n!-dimensional subspace

gEe G} (12)
of C[z], where g; - - - g,, has the form (4). We call (12) the G-immanant space.

span{x1 g, - Tng,

One can think of z as an n X dn matrix of indeterminates, and of each monomial in the G-immanant space
as a collection of n entries of z, with one entry per row and one entry per column (mod d). For example let
(n,d) = (4,3), so that ¢ = ¢>™/3. Let us economize notation by writing 1 := (m, 1 = (?>m, e.g., 235 = To c23.
Then the 48 indeterminates are
r1,1 Ti2 T1,3 T14 T1i T12 T1,3 14 T X133 T3 X1 g
T2,1 T22 T23 X24 3321 $22 $23 332,4:1 9321 $22 3523 3?2%1: ) (13)
r3,1 32 33 T34 X3i T332 L33 T34 T3T X33 T3F T3]

T41 T42 T43 Ta4 T4l T43 T43 Tad T4T T3 T43 Taj

xr =

Some monomials belonging to the G-immanant space are
T1,202,4%3,3%4,1, X1,4T23T33T4,i, L1,3T2,iT3,2T44, L1,iT23T34T43.

For u € 6,,, g € G, we will find it convenient to write monomials in the G-immanant space as

u,9 .— .
€ T xulxgl xumgn'

By the action defined after (4) and commutativity, these monomials satisfy

Siu,Sig __ = g9
ot = xul,gl 'T'U«i—lygi—l'T'U«'H—l7gi+lxuiygixui+2agi+2 ‘rumgn =x7

and thus
—1 —1 —1
WY — pU WU g _ geutg (14)

for all u € &, g € G. It follows that for any fixed u € &,,, the G-immanant subspace of C[z] may also be
expressed as spanc{z™?|g € G}. The left- and right-regular representations of G,

hl ogoh2 = hlghg
for g, hy, ho € G, define left- and right-actions of G on the G-immanant space,
hiox%9 o hy = x&Mghz, (15)

Now we state a natural G-analog of the definition (1). For any function 6 : G — C, define the type-G

f-immanant to be the generating function

Immg () = > 6(g~")a*? (16)
geg
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Lin place of ¢ is necessitated by Proposition 2.1 — Corol-

for evaluations of . Our counterintuitive use of g~
lary 2.3. (See also [15, Eq. (1)].) By the comment following Corollary 2.3, symmetric group and hyperoctahedral

group (B, = Z/271 S,) immanants can be written without inverses:

Z O(w)z®", Tmmy " () = Z 0(g)x™9.

weES, geEB,

Immg " (2) =

For economy, we will supress &,, from the notation of symmetric group immanants.
Immanants for the 2d one-dimensional characters dg,...,d4—1, g€, -..,d4—1€ of G may be expressed very
simply in terms of n X n matrices whose entries are linear combinations of the indeterminates x. In particular,

define the d n x n matrices Qo(z),...,Q4—1(x) by Qr(7) = (¢ j,x(7))i jem), where

Qi () = @ij + (Mg + g e+ TR o

Then we have
por(Qu() = 3 ¢ I00 = I, (),
g=(v,w)€G
det(Qr(z)) = D (=)™t 3509 = Tmmf ().

g=(v,w)€g

Returning to our (n,d) = (4, 3) example, we have the matrices

Qo(x) =

T11+2x1,i+211
Toq + X221+ T2 g
T31 +x3i+ X3
Ta1 +Xg1+ Ty T

Ti2+ X153+ T13
To o+ X253+ T3
T32 + X332+ T33
Ta2+ Xg2+ Ty3

13+ 21,3+ T3
T3+ X23+ T23
T3 3+ X33+ T33
T43+Te4 3+ Ta3

Ti4a+ x4+ 214
To4+ X2 4+ Toj
T34+ T34+ T34
T4+ Tgd+ Tai

(210 + Cari+Coi z120+Cris+Cms zi3+Crig+Crs x4+ Cari+ (o]
Q1 () To,1 + C;@,i +(x2i T22+ sz,é +(T23 T23+ CzZ‘Q,é +Cr23 T4+ sz,zl +(xa i
31+ (P23 i+ (37 w32+ (w32 +Cx33 233+ (233 +Cr33 T34+ (“w3a+ (23
(241 + Caai+ (et @ao+ Coas + (a3 was+ Crad + (a3 wag+ Crad+ (wai]
(211 +Cr1i+Cari mip+Crms+Cas zig+Crii+Cai via+Cra+Ca
Qs () Z2,1 + (T2 + Cz@,i’ Ta2 + (x25 + szzi T23 + (x5 + le“z,'?; Ta4 + (T2 + C2$2,2i
31+ Cr3i+ (T3 32+ Cx35+(Cx33 233+ (33 +(C w35 T34+ (x3i+(Cx3i
(241 4 Cai+ Caat wao+Cras+ Caas was+Cras+ Caad was+ (wai+ Cogli]

Immanants for the other monomial characters of G may be expressed as sums of products of &,-immanants
of p x p submatrices of Qo(z),...,RQ4—1(x), or of G(p)-immanants of p x dp submatrices of z. In terms of the
submatrix notation (2), these submatrices will have the forms Qg (x)a,p and zas,c,m for some subset M C [n],
where

Co={C*ken/dz},  CyM={¢*m|kecZ/dZ,me M}.

For example, with (n,d) = (4,3) and M = {2, 3}, we have
03 = {L<7C2}> CSM: {2,3,2,37273}7

and the matrices (18) and (13) have submatrices

Qo) rinr = [x2,2 + 225+ x23

Ta3+ T2 3+ X23
232+ X35+ X33 ’

r3 3+ X33+ T33

T2 3
3,3

Now we may state G-analogs of the Littlewood-Merris-Watkins generating functions (3) in terms of the

23
33

T2,3
3,3

T2
3,2

Z2.2
£3,2

T2,3

TM,C3M = { 3

monomial characters n* = 1Tgf’ and e = eTgf’ of &), for p < n.

Theorem 3.1. Fix d-partition X = (\°,...,\¥71) = n, and let ap, = |\F|. Fiz symmetric group character
sequence 3 = (Bo,...,Ba_1) € {1,e}¢ and define

k S, k k
2 :ﬂkTGAZ e{et M), k=0,...,d-1

ECA 1:2 (2021) Article #S2R10 6
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Then we have

Immg Z IInmgko (QO( )Io Io) -Imm gle (Qdfl(x)ld—lyld—l)7 (19)
(oseeesTa—1)
where the sum is over all ordered set partitions of [n] of type X* = (ag, ..., a4—1).

Proof. Define the G(A)-character § = §pBy®- - -®@04—14—1 and let 8 = eTg(,\) y (16), (15), and Corollary 2.3,
we can express the left-hand side of (19) as

Y BMg e =) Mg Dgoat) = D (uIfnutoa). (20)

geg g€eg u€G(A)~

Now consider the right-hand side of (19), and define r, = £(AF). By (3), we may rewrite this as a sum of

products of permanents and determinants,

To Td—1
> <HImmgO(Q0(x)JZQ}J?)> ( 11 Immﬁdl(le(m)ngJgQ), (21)
J =0 =0
where the sum is over all ordered set partitions J = (J{,...,J7 ..., Ji J&71) of [n] of type A, and where

Imm, = det, Imm; = per. For all 7, k, the indeterminates that appear in Qy(z);x jx are ;5 o, ;. By (17), we

may again rewrite (21) as a sum

o a1
G(A? G(ad-1y
E (Hlmméo(ﬁo)(mJ?)cho ) (H Immgd 8y 1(gch N 1)) (22)

J i=1

in which each factor of each term has the form

Z C—k(vl+~~+%)(xjik7Cde)e,g if B, =1,
G(A¥) 9=(7,w)€G(JF)
Imm; % (x ) =
supi (V2t.Ca7t) Do RO ) O @ g, )0 B =

g=(v,w)€G(JF)

Define the set partition K = (K9,..., K9 ..., K{"', ..., K&1) of type X as in (5), and for each ordered
set partition J of type A define u = u(J) € G(A)~ to be the element whose one-line notation has the ¥
consecutive letters sz in positions Jf7 for k=0,...,d—1andi=1,...,7r,. In particular, ! is the element
in &,, C G whose one-line notation contains the increasing rearrangement of Ji’c in the consecutive positions K Zk
for k=0,...,d—1and i =1,...,7,. By (10), the map J — u(J) defines a bijective correspondence between
ordered set partitions of type A and g (A)~. Thus in the expansion of the product (22), the monomials which
appear are precisely the set {x“il’y |y € G(A)}. Factoring y = yo - - - ya—1 with yi € G(\, k), we may express
the coefficient of each such monomial as

60B0(yo ") - Sa—1Ba—1(yz ') = 0(y~H).

Using these facts and (14), (15), we may rewrite (21) as

Z Z 0y _1 Z Z 0y Y (uyu" ox®®) = Z (uTg(A)u_l o x%°)

u€G(X)~ yeG(A) u€G(A)~ yeG(A) u€G(X)~

to see that it is equal to (20). O

We illustrate with an example. Consider the group G = Z/3Z1S¢. Its trace space T(G) has dimension equal

to the number of 3-partitions of 6, and its immanant space

SpaHC{xlygl ©T6,g6 ‘ (917 ce 7.96) € g}

requires the 62 - 3 = 108 indeterminates {z; m, T; i, T; i | i, m € [6]} where we define 1 := (m, i := (*m, as
n (13). The 2® = 8 monomial character bases correspond to the triples of one-dimensional symmetric group

characters (1,1,1),(1,1,¢),(1,¢,1),..., (¢ ¢€€), so that the basis corresponding to (e,¢€,1) is

{(6,6,1))‘ = (e®516®52)Tg(A) | A6}

ECA 1:2 (2021) Article #S2R10 7
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21,1,2) 21,1,2)(9)

Consider the basis element (e, ¢, 1) To evaluate (e, ¢, 1) for all g € G, we write its immanant

Imm(g€ 1)@11.2) (z) as a sum of 60 terms

Imme21 (Qo(2)123,123) Imme (Q1 () 4,4)Imm, 2 (Q2(7)56,56)

+Imm.21 (Qo () 123,123) Imme1 (Q1(2)5,5) Imm, 2 (Q2 () 46,46)

+Imme21 (Qo(2)123,123) Imme (Q1(2)6,6) Immy2 (Q2() 45 45)
( )

+Imm621(Q0 $)124,124)Imm61(Q1($ 3,3) min,2 (Qz(x) 656)

+Imm 21 (Qo () 456,456 ) Immer (Q1 ()3,3)Imm, 2 (Q2()12,12),

each corresponding to an ordered set partition of [6] of type (3,1,2). Consider the term corresponding to the
ordered set partition (136,4,25). It is a product of the three factors
Ti1+Tii+211 Ti3+x13+ 213
Imm, x =det| ’ ’ ’ ’ T (x Te. ¢ + T 6
21(Qo()136,136) [37371 Fa3i+ 23] Tas+Tas 3333}( 6,6 + 76,6 + T6,6)

11+ 21i+ 217 Tiet+T16+ 16
+det|: 9 ) 3 9 B 9

. . . N(x3 3+ 233+ 233)
Te,1 + Xe,i+ Te1 Tee+ Test -T6,6:|

Taa -t @aidb et Dot Tadt e
+det[ 3,3 3,3 3,3 36 3,6 3,6

. . . @ +xi+Hxi
T6,3+ %63+ 263 Teet+ Test 1’6,6:| ( )
Imm: (Q1(2)44) = 244 + Caai + CTa i,

T2+ Cres+ (Paas  Tos+ (ras + oo
Imm T =per| © ’ ’ ’ ’ 2.
n2(Qa2(7)25.25) = p [96572 +Crss+ Cass w55+ Cwss + Casi

It is easy to see that this term, like all others in (23), contributes 3 to the coefficient of x1 122 223 324 425 56 6-
Thus we have
(e,€6,1)2112)(123456) = 180.

Now consider the computation of (e, e, 1)(?11:2)(623451). Terms in (23) with nonzero contributions to the

coefficient of

T1,622,223 374,45 5%6,1 (25)
are those corresponding to ordered set partitions in which 1 and 6 belong to the same block. (Otherwise the
variables 1,6, %6,i will not appear in the term.) Each such ordered set partition has one of the forms

(1a6,4,bc), (lab,b,4c), (abd,c,16), (235,4,16).
There are three terms corresponding to ordered set partitions of the first form, including (24). Multiplying the
three factors in (24), we find the desired monomial (25) as
(—21,626,1)(03,3)(CPwa,i) (w2,25,5),

i.e., the term contributes —(? to the coefficient. The remaining two terms having ordered set partitions of
the form (1a6, 4, bc) contribute —(¢? as well. Terms corresponding to the six ordered set partitions (1a6, b, 4c)
contribute —( each,

(—21,6%6,1) (Ta,a) (Tb,0) ((T4,4Tcc),
terms corresponding to the three ordered set partitions (ab4, ¢, 16) contribute 3¢ each,
(3%4,020,b%4,3) (Tc,c) (1,6(T6,1),

and the term corresponding to the ordered set partition (235,4,16) contributes 3¢?¢ = 3,

(3x2,225,325,5) ((P2a,1) (21,6(T6,1)-

Thus we have
(e,6,1)L12)(623451) = —3¢% — 6¢ +9¢ 4 3 = 6 + 6C.

It would be interesting to extend Theorem 3.1 to obtain a generating function for the monomial characters
of Hecke algebras of wreath products [1], as was done for monomial characters of the Hecke algebra of &,
in [6, Thm. 2.1].
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