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Abstract: Let Z/dZ o Sn denote the wreath product of the cyclic group Z/dZ with the symmetric group

Sn. We define generating functions for monomial (induced one-dimensional) characters of Z/dZ o Sn and

express these in terms of determinants and permanents. This extends work of Littlewood (The Theory of Group

Characters and Representations of Groups, 1940) and Merris and Watkins (Linear Algebra Appl., 64, 1985) on

generating functions for the monomial characters of Sn.
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1. Introduction

Let z = (zi,j) be an n × n matrix of indeterminates and let Sn be the symmetric group. For each linear

functional θ : C[Sn]→ C, define the generating function

Immθ(z) :=
∑
w∈Sn

θ(w)z1,w1
· · · zn,wn ∈ C[z] (1)

for θ, and call this the θ-immanant. Such functions appeared originally in [7, p. 81] for θ equal to irreducible

Sn-characters χλ, and were extended in [14, §3] to general θ. As is the case with many functions, a simple

formula for a generating function for θ can be as useful as a simple formula for the numbers {θ(w) |w ∈ Sn}
themselves.

Particularly simple generating functions for the monomial (induced one-dimensional) characters of Sn are

expressed in terms of integer partitions, ordered set partitions, and submatrices of z. Call a nonnegative integer

sequence λ = (λ1, . . . , λr) satisfying λ1 + · · · + λr = n a weak composition of n and write |λ| = n, `(λ) = r.

If the components of λ are weakly decreasing and positive, call it an (integer) partition of n and write λ ` n.

For any weak composition λ of n, call a sequence (I1, . . . , Ir) of pairwise disjoint subsets of [n] := {1, . . . , n} an

ordered set partition of [n] of type λ if |Ij | = λj for j = 1, . . . , r. (Note that this nonstandard terminology allows

empty sets in ordered set partitions, whereas standard terminology [13, pp. 39, 73] does not.) Given subsets I,

J of [n], define the (I, J)-submatrix of z to be

zI,J = (zi,j)i∈I,j∈J . (2)

The class function space of Sn has two standard bases consisting of monomial characters: the induced trivial

character basis {ηλ = triv
xSn
Sλ
|λ ` n} and the induced sign character basis {ελ = sgn

xSn
Sλ
|λ ` n}, where Sλ is

the Young subgroup of Sn indexed by λ. (See, e.g., [9].) Littlewood [7, §6.5] and Merris and Watkins [8] came

close to expressing the ηλ- and ελ-immanants as

Immελ(z) =
∑

(J1,...,J`)

det(zJ1,J1) · · · det(zJ`,J`),

Immηλ(z) =
∑

(J1,...,J`)

per(zJ1,J1) · · · per(zJ`,J`),
(3)
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where the sums are over all ordered set partitions (J1, . . . , J`) of [n] of type λ = (λ1, . . . , λ`). For example, we

have

Immε21(z) = det

[
z1,1 z1,2
z2,1 z2,2

]
z3,3 + det

[
z1,1 z1,3
z3,1 z3,3

]
z2,2 + det

[
z2,2 z2,3
z3,2 z3,3

]
z1,1

= 3z1,1z2,2z3,3 − z1,2z2,1z3,3 − z1,3z2,2z3,1 − z1,1z2,3z3,2,
and ε21(123) = 3, ε21(213) = ε21(321) = ε21(132) = −1, ε21(312) = ε21(231) = 0. While Littlewood, Merris,

and Watkins may not have written the equations (3) explicitly, we call them the Littlewood–Merris–Watkins

identities. These identities have played an important role in the evaluation of (type-A) Hecke algebra characters

at Kazhdan–Lusztig basis elements [3], [4], [5], the formulation of a generating function for irreducible Hecke

algebra characters [6], and the interpretation of coefficients of chromatic symmetric functions [3], [10]. The

identity in our main result (Theorem 3.1) plays an important role in the evaluation of hyperoctahedral group

characters at elements of the type-BC Kazhdan-Lusztig basis [11].

Let G = G(n) be the wreath product Z/dZ oSn. (We will suppress d and sometimes n from the notation.) Its

class function space has 2d standard bases consisting of monomial characters, and it is possible to use a matrix

of dn2 indeterminates to construct generating functions analogous to (3) for the elements of these bases. In

Section 2 we review G and its monomial characters; in Section 3 we present our generating functions for these.

2. G and its monomial characters

The group G is generated by n elements s1, . . . , sn−1, t subject to the relations

s2i = e for i = 1, . . . , n− 1,

td = e,

ts1ts1 = s1ts1t,

sisj = sjsi for |i− j| ≥ 2,

tsj = sjt for j ≥ 2,

sisjsi = sjsisj for |i− j| = 1.

A one-line notation for elements of G, analogous to that for elements of Sn, uses sequences of integer multiples

of complex dth roots of unity. Let ζ be a primitive dth root of unity, and let S be the set of sequences

{(ζγ1w1, . . . , ζ
γnwn) |w1 · · ·wn ∈ Sn, (γ1, . . . , γn) ∈ Z/dZn}. (4)

We define an action of G on S by letting the generators act on a sequence (a1, . . . , an) as follows.

1. si ◦ (a1, . . . , an) = (a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an),

2. t ◦ (a1, . . . , an) = (ζa1, a2, . . . , an).

Letting each element g ∈ G act on the sequence (1, . . . , n), we obtain a bijection between G and S. If

g ◦ (1, . . . , n) = (ζγ1w1, . . . , ζ
γnwn), we define this second sequence to be the one-line notation of g, and we

write g = (γ,w), where γ = (γ1, . . . , γn) ∈ Z/dZn, w ∈ Sn. In particular, the identity element e has one-line

notation 1 · · ·n.

Since G is a finite group, Brauer’s Induced Character Theorem implies that the set of monomial characters

of G spans the trace space T (G) of G, the set of all linear functionals θ : C[G] → C satisfying θ(gh) = θ(hg)

for all g, h ∈ G. (See, e.g., [12].) This includes all G-characters. T (G) has dimension equal to the number

of conjugacy classes of G, equivalently, to the number of sequences λ = (λ0, . . . , λd−1) of d (possibly empty)

integer partitions, with

|λ0|+ · · ·+ |λd−1| = n.

We call such a sequence a d-partition of [n] and write λ ` n.

In order to describe natural bases of T (G), we introduce certain subgroups of G which are analogous to

Young subgroups of Sn. Fix d-partition λ = (λ0, . . . , λd−1) ` n, and define rk = `(λk) for k = 0, . . . , d− 1. We

will say that an ordered set partition of [n] of type

(λ01, . . . , λ
0
r0 , λ

1
1, . . . , λ

1
r1 , . . . , λ

d−1
1 , . . . , λd−1rd−1

),
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has type λ. In particular, let K(λ) = (K0
1 , . . . ,K

0
r0 ,K

1
1 , . . . ,K

1
r1 , . . . ,K

d−1
1 , . . . ,Kd−1

rd−1
) be the ordered set

partition of [n] of type λ whose blocks are the r0 + · · ·+ rd−1 subintervals

K0
1 = [1, λ01], K0

2 = [λ01 + 1, λ01 + λ02], . . . , Kd−1
rd−1

= [n− λd−1rd−1
+ 1, n] (5)

of [n]. For 1 ≤ i ≤ j ≤ n, define the element ti = si−1 · · · s1ts1 · · · si−1 ∈ G, and let

G([i, j]) ∼= Z/dZ oSj−i+1

be the subgroup of G generated by {ti, si, . . . , sj−1}. For k = 0, . . . , d− 1, use (5) to define the subgroup

G(λ, k) := G(Kk
1 ) · · · G(Kk

rk
) ∼= G(λk1)× · · · × G(λkrk),

of G, and finally define the Young subgroup

G(λ) := G(λ, 0) · · · G(λ, d− 1) ∼=
d−1∏
k=0

(
G(λk1)× · · · × G(λkrk)

)
of G. Each element y ∈ G(λ) factors uniquely as y0 · · · yd−1 with yk ∈ G(λ, k).

Several natural representations of G are defined by using symmetric group representations and induction

from G(λ). First, observe that the subgroup of G generated by s1, . . . , sn−1 is isomorphic to Sn, and that each

r-dimensional Sn-representation ρ can trivially be extended to an r-dimensional G-representation in at least

d ways: by defining ρ(t) = ζkI for k = 0, . . . , d − 1. If the character of the Sn-representation is χ, call its

extension δkχ. Thus the two one-dimensional Sn-representations

1 : si 7→ 1 (w 7→ 1 for all w ∈ Sn),

ε : si 7→ −1 (w 7→ (−1)inv(w) for all w ∈ Sn)

yield 2d one-dimensional G-representations:

δk : (si, t) 7→ (1, ζk), (g = (γ,w) 7→ ζk(γ1+···+γn) for all g ∈ G),

δkε : (si, t) 7→ (−1, ζk), (g = (γ,w) 7→ (−1)inv(w)ζk(γ1+···+γn) for all g ∈ G),

for k = 0, . . . , d− 1. Here, inv(w) denotes the Coxeter length of w. (See, e.g., [2, p. 15].) Next, observe that for

any d-tuple (H0, . . . ,Hd−1) of subgroups of a group G which satisfy

H := H0 · · ·Hd−1 ∼= H0 × · · · ×Hd−1, (6)

and any d-tuple (θ0, . . . , θd−1) of characters of these, we have that the function θ = θ0 ⊗ · · · ⊗ θd−1 defined

by θ(h0 · · ·hd−1) = θ0(h0) · · · θd−1(hd−1) is a character of H, and θ
xG
H is a character of G. In particular, the

Young subgroup G(λ) has the form (6) with Hk = G(λ, k). For every d-tuple β = (β0, . . . , βd−1) ∈ {1, ε}d of

one-dimensional symmetric group characters we have the one-dimensional G(λ)-character

δ0β0 ⊗ · · · ⊗ δd−1βd−1, (7)

the corresponding monomial G-character

βλ := (δ0β0 ⊗ · · · ⊗ δd−1βd−1)
xG
G(λ),

and the basis {βλ |λ ` n} of T (G). The irreducible character basis {χλ |λ ` n} of T (G) can be defined

somewhat similarly. Given λ = (λ0, . . . , λd−1) ` n, define the d-partition λ• = (|λ0|, . . . , |λd−1|), and the

G(λ•)-character

δ0χ
λ0

⊗ · · · ⊗ δd−1χλ
d−1

,

where χλ
k

is the irreducible S|λk|-character indexed by the partition λk. The corresponding induced characters

χλ = (δ0χ
λ0

⊗ · · · ⊗ δd−1χλ
d−1

)
xG
G(λ•)

are the irreducible characters of G. (See, e.g., [1, p. 219].)
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For the purpose of creating generating functions for characters βλ, it will be convenient to realize each as

the character of a submodule of the group algebra C[G], with G acting by left multiplication. To do this, we

consider an arbitrary finite group G, a subgroup H, an H-character θ, and the element

T θH :=
∑
h∈H

θ(h−1)h ∈ C[G].

Proposition 2.1. Let H be a subgroup of a finite group G and let ρ be a one-dimensional complex representation

of H with character θ (= ρ). Let U = (u1, . . . , ur) be a transversal of representatives of cosets of H in G. Let

G act by left multiplication on the submodule

V := spanC{uiT θH | 1 ≤ i ≤ r} (8)

of C[G]. Then V is a G-module with character θ
xG
H .

Proof. To see that V is a G-module, consider the action of g ∈ G on the jth element of the defining basis of V .

Let uiH be the unique coset satisfying gujH = uiH, i.e., u−1i guj ∈ H. Then we have

gujT
θ
H = guj

∑
h∈H

θ(h−1)h = ui
∑
h∈H

θ(h−1)u−1i gujh = ui
∑
h′∈H

θ((h′)−1u−1i guj)h
′

= θ(u−1i guj)uiT
θ
H ,

since θ = ρ is a homomorphism. It follows that in the jth column of the matrix representing g, all components

are 0 except for the ith, which is θ(u−1i guj). But this is precisely the formula for entries of the matrix ρ
xG
H(g).

(See, e.g., [9, Defn. 1.12.2].)

For χ = θ
xG
H , Proposition 2.1 allows us to express TχG as a sum of conjugates of T θH .

Lemma 2.2. Let groups G, H, transversal U = (u1, . . . , ur), H-character θ, and G-module V be as in Proposi-

tion 2.1, and let A = (ai,j) be the matrix of g ∈ G with respect to the defining basis (8) of V . Then ai,j equals

the coefficient of g−1 in ujT
θ
Hu
−1
i . In particular if χ is the character of V , then we have the identity

r∑
i=1

uiT
θ
Hu
−1
i =

∑
g∈G

χ(g)g−1.

in C[G].

Proof. By the proof of Proposition 2.1, we have ai,j = θ(u−1i guj) if some h ∈ H satisfies g = uihu
−1
j , and is 0

otherwise. On the other hand, we have

ujT
θ
Hu
−1
i =

∑
h∈H

θ(h−1)ujhu
−1
i . (9)

If there is no h ∈ H satisfying g−1 = ujhu
−1
i , then the coefficient of g−1 in (9) is 0. Otherwise, the coefficient

of g−1 is

θ(h−1) = θ(u−1i guj).

It follows that ai,j is equal to the coefficient of g−1 in ujT
θ
Hu
−1
i . Thus χ(g) =

∑
i ai,i is equal to the coefficient

of g−1 in
∑
i uiT

θ
Hu
−1
i .

For G = G, H = G(λ), and θ as in (7), the module V (8) has a particularly nice form. The element T θH
factors as T δ0β0

G(λ,0) · · ·T
δd−1βd−1

G(λ,d−1) , and each coset uG(λ) of G(λ) has a unique representative g = (γ,w) satisfying

γ1 = · · · = γn = 0 and wi < wi+1 for i, i+ 1 belonging to the same block of K(λ), i.e.,

w1 < · · · < wλ0
1
, wλ0

1+1 < · · · < wλ0
1+λ

0
2
, . . . , wn−λd−1

rd−1
+1 < · · · < wn. (10)

Letting G(λ)− be the set of such coset representatives, we have

V = V (λ,β) = spanC{uT
δ0β0

G(λ,0) · · ·T
δd−1βd−1

G(λ,d−1) |u ∈ G(λ)−},

and the following special case of Lemma 2.2.
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Corollary 2.3. Fix a d-partition λ ` n. For each one-dimensional G(λ)-character θ of the form (7), the

monomial G-character βλ = θ
xG
G(λ) satisfies∑

u∈G(λ)−

uT θG(λ)u
−1 =

∑
g∈G

βλ(g−1)g. (11)

For d = 1, 2, the group G (equal to the symmetric group or the hyperoctahedral group) has real-valued

irreducible characters. Therefore each group element is conjugate to its inverse, and the final sum of (11) may

be expressed as
∑
g∈G β

λ(g)g.

3. Main result

To construct generating functions analogous to (3) for monomial characters of G, we first extend the ring

C[z] = C[z1,1, z1,2, . . . , zn,n] and its n!-dimensional subspace span{z1,w1
· · · zn,wn |w ∈ Sn} which make the

definition (1) possible. The one-line notation (4) for elements of G suggests that we define a ring C[x] using the

dn2 indeterminates

x = {xi,ζkp | i, p ∈ [n], k ∈ Z/dZ}

and the dnn!-dimensional subspace

span{x1,g1 · · ·xn,gn | g ∈ G} (12)

of C[x], where g1 · · · gn has the form (4). We call (12) the G-immanant space.

One can think of x as an n× dn matrix of indeterminates, and of each monomial in the G-immanant space

as a collection of n entries of x, with one entry per row and one entry per column (mod d). For example let

(n, d) = (4, 3), so that ζ = e2πi/3. Let us economize notation by writing
.
m := ζm,

..
m := ζ2m, e.g., x2,

..
3 = x2,ζ23.

Then the 48 indeterminates are

x =


x1,1 x1,2 x1,3 x1,4 x1,

.
1 x1,

.
2 x1,

.
3 x1,

.
4 x1,

..
1 x1,

..
2 x1,

..
3 x1,

..
4

x2,1 x2,2 x2,3 x2,4 x2,
.
1 x2,

.
2 x2,

.
3 x2,

.
4 x2,

..
1 x2,

..
2 x2,

..
3 x2,

..
4

x3,1 x3,2 x3,3 x3,4 x3,
.
1 x3,

.
2 x3,

.
3 x3,

.
4 x3,

..
1 x3,

..
2 x3,

..
3 x3,

..
4

x4,1 x4,2 x4,3 x4,4 x4,
.
1 x4,

.
2 x4,

.
3 x4,

.
4 x4,

..
1 x4,

..
2 x4,

..
3 x4,

..
4

 . (13)

Some monomials belonging to the G-immanant space are

x1,2x2,4x3,3x4,1, x1,
.
4x2,

.
3x3,

.
2x4,

.
1, x1,3x2,

.
1x3,2x4,

..
4, x1,

.
1x2,

..
2x3,4x4,

.
3.

For u ∈ Sn, g ∈ G, we will find it convenient to write monomials in the G-immanant space as

xu,g := xu1,g1 · · ·xun,gn .

By the action defined after (4) and commutativity, these monomials satisfy

xsiu,sig = xu1,g1 · · ·xui−1,gi−1
xui+1,gi+1

xui,gixui+2,gi+2
· · ·xun,gn = xu,g

and thus

xu,g = xu
−1u,u−1g = xe,u

−1g (14)

for all u ∈ Sn, g ∈ G. It follows that for any fixed u ∈ Sn, the G-immanant subspace of C[x] may also be

expressed as spanC{xu,g | g ∈ G}. The left- and right-regular representations of G,

h1 ◦ g ◦ h2 = h1gh2

for g, h1, h2 ∈ G, define left- and right-actions of G on the G-immanant space,

h1 ◦ xe,g ◦ h2 = xe,h1gh2 . (15)

Now we state a natural G-analog of the definition (1). For any function θ : G → C, define the type-G
θ-immanant to be the generating function

ImmGθ (x) =
∑
g∈G

θ(g−1)xe,g (16)
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for evaluations of θ. Our counterintuitive use of g−1 in place of g is necessitated by Proposition 2.1 – Corol-

lary 2.3. (See also [15, Eq. (1)].) By the comment following Corollary 2.3, symmetric group and hyperoctahedral

group (Bn
∼= Z/2Z oSn) immanants can be written without inverses:

ImmSn
θ (x) =

∑
w∈Sn

θ(w)xe,w, ImmBn

θ (x) =
∑
g∈Bn

θ(g)xe,g.

For economy, we will supress Sn from the notation of symmetric group immanants.

Immanants for the 2d one-dimensional characters δ0, . . . , δd−1, δ0ε, . . . , δd−1ε of G may be expressed very

simply in terms of n× n matrices whose entries are linear combinations of the indeterminates x. In particular,

define the d n× n matrices Q0(x), . . . , Qd−1(x) by Qk(x) = (qi,j,k(x))i,j∈[n], where

qi,j,k(x) = xi,j + ζ−kxi,ζj + ζ−2kxi,ζ2j + · · ·+ ζ−(d−1)kxi,ζ(d−1)j .

Then we have
per(Qk(x)) =

∑
g=(γ,w)∈G

ζ−k(γ1+···+γn)xe,g = ImmGδk(x),

det(Qk(x)) =
∑

g=(γ,w)∈G

(−1)inv(w)ζ−k(γ1+···+γn)xe,g = ImmGδkε(x).
(17)

Returning to our (n, d) = (4, 3) example, we have the matrices

Q0(x) =


x1,1 + x1,

.
1 + x1,

..
1 x1,2 + x1,

.
2 + x1,

..
2 x1,3 + x1,

.
3 + x1,

..
3 x1,4 + x1,

.
4 + x1,

..
4

x2,1 + x2,
.
1 + x2,

..
1 x2,2 + x2,

.
2 + x2,

..
2 x2,3 + x2,

.
3 + x2,

..
3 x2,4 + x2,

.
4 + x2,

..
4

x3,1 + x3,
.
1 + x3,

..
1 x3,2 + x3,

.
2 + x3,

..
2 x3,3 + x3,

.
3 + x3,

..
3 x3,4 + x3,

.
4 + x3,

..
4

x4,1 + x4,
.
1 + x4,

..
1 x4,2 + x4,

.
2 + x4,

..
2 x4,3 + x4,

.
3 + x4,

..
3 x4,4 + x4,

.
4 + x4,

..
4

 , (18)

Q1(x) =


x1,1 + ζ2x1,

.
1 + ζx1,

..
1 x1,2 + ζ2x1,

.
2 + ζx1,

..
2 x1,3 + ζ2x1,

.
3 + ζx1,

..
3 x1,4 + ζ2x1,

.
4 + ζx1,

..
4

x2,1 + ζ2x2,
.
1 + ζx2,

..
1 x2,2 + ζ2x2,

.
2 + ζx2,

..
2 x2,3 + ζ2x2,

.
3 + ζx2,

..
3 x2,4 + ζ2x2,

.
4 + ζx2,

..
4

x3,1 + ζ2x3,
.
1 + ζx3,

..
1 x3,2 + ζ2x3,

.
2 + ζx3,

..
2 x3,3 + ζ2x3,

.
3 + ζx3,

..
3 x3,4 + ζ2x3,

.
4 + ζx3,

..
4

x4,1 + ζ2x4,
.
1 + ζx4,

..
1 x4,2 + ζ2x4,

.
2 + ζx4,

..
2 x4,3 + ζ2x4,

.
3 + ζx4,

..
3 x4,4 + ζ2x4,

.
4 + ζx4,

..
4

 ,

Q2(x) =


x1,1 + ζx1,

.
1 + ζ2x1,

..
1 x1,2 + ζx1,

.
2 + ζ2x1,

..
2 x1,3 + ζx1,

.
3 + ζ2x1,

..
3 x1,4 + ζx1,

.
4 + ζ2x1,

..
4

x2,1 + ζx2,
.
1 + ζ2x2,

..
1 x2,2 + ζx2,

.
2 + ζ2x2,

..
2 x2,3 + ζx2,

.
3 + ζ2x2,

..
3 x2,4 + ζx2,

.
4 + ζ2x2,

..
4

x3,1 + ζx3,
.
1 + ζ2x3,

..
1 x3,2 + ζx3,

.
2 + ζ2x3,

..
2 x3,3 + ζx3,

.
3 + ζ2x3,

..
3 x3,4 + ζx3,

.
4 + ζ2x3,

..
4

x4,1 + ζx4,
.
1 + ζ2x4,

..
1 x4,2 + ζx4,

.
2 + ζ2x4,

..
2 x4,3 + ζx4,

.
3 + ζ2x4,

..
3 x4,4 + ζx4,

.
4 + ζ2x4,

..
4

 .
Immanants for the other monomial characters of G may be expressed as sums of products of Sp-immanants

of p × p submatrices of Q0(x), . . . , Qd−1(x), or of G(p)-immanants of p × dp submatrices of x. In terms of the

submatrix notation (2), these submatrices will have the forms Qk(x)M,M and xM,CdM for some subset M ⊂ [n],

where

Cd = {ζk | k ∈ Z/dZ}, CdM = {ζkm | k ∈ Z/dZ,m ∈M}.

For example, with (n, d) = (4, 3) and M = {2, 3}, we have

C3 = {1, ζ, ζ2}, C3M = {2, 3,
.
2,
.
3,
..
2,
..
3},

and the matrices (18) and (13) have submatrices

Q0(x)M,M =

[
x2,2 + x2,

.
2 + x2,

..
2 x2,3 + x2,

.
3 + x2,

..
3

x3,2 + x3,
.
2 + x3,

..
2 x3,3 + x3,

.
3 + x3,

..
3

]
,

xM,C3M =

[
x2,2 x2,3 x2,

.
2 x2,

.
3 x2,

..
2 x2,

..
3

x3,2 x3,3 x3,
.
2 x3,

.
3 x3,

..
2 x3,

..
3

]
.

Now we may state G-analogs of the Littlewood-Merris-Watkins generating functions (3) in terms of the

monomial characters ηµ = 1
xSp
Sµ

and εµ = ε
xSp
Sµ

of Sp, for p ≤ n.

Theorem 3.1. Fix d-partition λ = (λ0, . . . , λd−1) ` n, and let ak = |λk|. Fix symmetric group character

sequence β = (β0, . . . , βd−1) ∈ {1, ε}d and define

βλ
k

k = βk
xSak
S
λk
∈ {ελ

k

, ηλ
k

}, k = 0, . . . , d− 1.
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Then we have

ImmG
βλ(x) =

∑
(I0,...,Id−1)

Imm
βλ

0
0

(Q0(x)I0,I0) · · · Imm
βλ
d−1

d−1

(Qd−1(x)Id−1,Id−1
), (19)

where the sum is over all ordered set partitions of [n] of type λ• = (a0, . . . , ad−1).

Proof. Define the G(λ)-character θ = δ0β0⊗· · ·⊗δd−1βd−1 and let βλ = θ
xG
G(λ). By (16), (15), and Corollary 2.3,

we can express the left-hand side of (19) as∑
g∈G

βλ(g−1)xe,g =
∑
g∈G

βλ(g−1)(g ◦ xe,e) =
∑

u∈G(λ)−

(uT θG(λ)u
−1 ◦ xe,e). (20)

Now consider the right-hand side of (19), and define rk = `(λk). By (3), we may rewrite this as a sum of

products of permanents and determinants,

∑
J

( r0∏
i=0

Immβ0
(Q0(x)J0

i ,J
0
i
)

)
· · ·
( rd−1∏

i=0

Immβd−1
(Qd−1(x)Jd−1

i ,Jd−1
i

)

)
, (21)

where the sum is over all ordered set partitions J = (J0
1 , . . . , J

0
r0 , . . . , J

d−1
1 , . . . , Jd−1rd−1

) of [n] of type λ, and where

Immε = det, Imm1 = per. For all i, k, the indeterminates that appear in Qk(x)Jki ,Jki are xJki ,CdJki . By (17), we

may again rewrite (21) as a sum

∑
J

( r0∏
i=1

Imm
G(λ0

i )
δ0β0

(xJ0
i ,CdJ

0
i
)

)
· · ·
( rd−1∏

i=1

Imm
G(λd−1

i )
δd−1βd−1

(xJd−1
i ,CdJ

d−1
i

)

)
(22)

in which each factor of each term has the form

Imm
G(λki )
δkβk

(xJki ,CdJki ) =


∑

g=(γ,w)∈G(Jki )

ζ−k(γ1+···+γn)(xJki ,CdJki )e,g if βk = 1,∑
g=(γ,w)∈G(Jki )

ζ−k(γ1+···+γn)(−1)`(w)(xJki ,CdJki )e,g if βk = ε.

Define the set partition K = (K0
1 , . . . ,K

0
r0 , . . . ,K

d−1
1 , . . . ,Kd−1

rd−1
) of type λ as in (5), and for each ordered

set partition J of type λ define u = u(J) ∈ G(λ)− to be the element whose one-line notation has the λki
consecutive letters Kk

i in positions Jki , for k = 0, . . . , d− 1 and i = 1, . . . , rk. In particular, u−1 is the element

in Sn ⊂ G whose one-line notation contains the increasing rearrangement of Jki in the consecutive positions Kk
i

for k = 0, . . . , d − 1 and i = 1, . . . , rk. By (10), the map J 7→ u(J) defines a bijective correspondence between

ordered set partitions of type λ and G(λ)−. Thus in the expansion of the product (22), the monomials which

appear are precisely the set {xu−1,yu−1 | y ∈ G(λ)}. Factoring y = y0 · · · yd−1 with yk ∈ G(λ, k), we may express

the coefficient of each such monomial as

δ0β0(y−10 ) · · · δd−1βd−1(y−1d−1) = θ(y−1).

Using these facts and (14), (15), we may rewrite (21) as∑
u∈G(λ)−

∑
y∈G(λ)

θ(y−1)xu
−1,yu−1

=
∑

u∈G(λ)−

∑
y∈G(λ)

θ(y−1)(uyu−1 ◦ xe,e) =
∑

u∈G(λ)−

(uT θG(λ)u
−1 ◦ xe,e)

to see that it is equal to (20).

We illustrate with an example. Consider the group G = Z/3Z oS6. Its trace space T (G) has dimension equal

to the number of 3-partitions of 6, and its immanant space

spanC{x1,g1 · · ·x6,g6 | (g1, . . . , g6) ∈ G}

requires the 62 · 3 = 108 indeterminates {xi,m, xi, .m, xi,..m | i,m ∈ [6]} where we define
.
m := ζm,

..
m := ζ2m, as

in (13). The 23 = 8 monomial character bases correspond to the triples of one-dimensional symmetric group

characters (1, 1, 1), (1, 1, ε), (1, ε, 1), . . . , (ε, ε, ε), so that the basis corresponding to (ε, ε, 1) is{
(ε, ε, 1)λ = (ε⊗ δ1ε⊗ δ2)

xG
G(λ)

∣∣λ ` 6
}
.
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Consider the basis element (ε, ε, 1)(21,1,2). To evaluate (ε, ε, 1)(21,1,2)(g) for all g ∈ G, we write its immanant

ImmG
(ε,ε,1)(21,1,2)

(x) as a sum of 60 terms

Immε21(Q0(x)123,123)Immε1(Q1(x)4,4)Immη2(Q2(x)56,56)

+Immε21(Q0(x)123,123)Immε1(Q1(x)5,5)Immη2(Q2(x)46,46)

+Immε21(Q0(x)123,123)Immε1(Q1(x)6,6)Immη2(Q2(x)45,45)

+Immε21(Q0(x)124,124)Immε1(Q1(x)3,3)Immη2(Q2(x)56,56)

...

+Immε21(Q0(x)456,456)Immε1(Q1(x)3,3)Immη2(Q2(x)12,12),

(23)

each corresponding to an ordered set partition of [6] of type (3, 1, 2). Consider the term corresponding to the

ordered set partition (136, 4, 25). It is a product of the three factors

Immε21(Q0(x)136,136) = det

[
x1,1 + x1,

.
1 + x1,

..
1 x1,3 + x1,

.
3 + x1,

..
3

x3,1 + x3,
.
1 + x3,

..
1 x3,3 + x3,

.
3 + x3,

..
3

]
(x6,6 + x6,

.
6 + x6,

..
6)

+ det

[
x1,1 + x1,

.
1 + x1,

..
1 x1,6 + x1,

.
6 + x1,

..
6

x6,1 + x6,
.
1 + x6,

..
1 x6,6 + x6,

.
6 + x6,

..
6

]
(x3,3 + x3,

.
3 + x3,

..
3)

+ det

[
x3,3 + x3,

.
3 + x3,

..
3 x3,6 + x3,

.
6 + x3,

..
6

x6,3 + x6,
.
3 + x6,

..
3 x6,6 + x6,

.
6 + x6,

..
6

]
(x1,1 + x1,

.
1 + x1,

..
1),

Immε1(Q1(x)4,4) = x4,4 + ζ2x4,
.
4 + ζx4,

..
4,

Immη2(Q2(x)25,25) = per

[
x2,2 + ζx2,

.
2 + ζ2x2,

..
2 x2,5 + ζx2,

.
5 + ζ2x2,

..
5

x5,2 + ζx5,
.
2 + ζ2x5,

..
2 x5,5 + ζx5,

.
5 + ζ2x5,

..
5

]
.

(24)

It is easy to see that this term, like all others in (23), contributes 3 to the coefficient of x1,1x2,2x3,3x4,4x5,5x6,6.

Thus we have

(ε, ε, 1)(21,1,2)(123456) = 180.

Now consider the computation of (ε, ε, 1)(21,1,2)(623
.
45
.
1). Terms in (23) with nonzero contributions to the

coefficient of

x1,6x2,2x3,3x4,
.
4x5,5x6,

.
1 (25)

are those corresponding to ordered set partitions in which 1 and 6 belong to the same block. (Otherwise the

variables x1,6, x6,
.
1 will not appear in the term.) Each such ordered set partition has one of the forms

(1a6, 4, bc), (1a6, b, 4c), (ab4, c, 16), (235, 4, 16).

There are three terms corresponding to ordered set partitions of the first form, including (24). Multiplying the

three factors in (24), we find the desired monomial (25) as

(−x1,6x6,.1)(x3,3)(ζ2x4,
.
4)(x2,2x5,5),

i.e., the term contributes −ζ2 to the coefficient. The remaining two terms having ordered set partitions of

the form (1a6, 4, bc) contribute −ζ2 as well. Terms corresponding to the six ordered set partitions (1a6, b, 4c)

contribute −ζ each,

(−x1,6x6,.1)(xa,a)(xb,b)(ζx4,
.
4xc,c),

terms corresponding to the three ordered set partitions (ab4, c, 16) contribute 3ζ each,

(3xa,axb,bx4,
.
4)(xc,c)(x1,6ζx6,

.
1),

and the term corresponding to the ordered set partition (235, 4, 16) contributes 3ζ2ζ = 3,

(3x2,2x3,3x5,5)(ζ2x4,
.
4)(x1,6ζx6,

.
1).

Thus we have

(ε, ε, 1)(21,1,2)(623
.
45
.
1) = −3ζ2 − 6ζ + 9ζ + 3 = 6 + 6ζ.

It would be interesting to extend Theorem 3.1 to obtain a generating function for the monomial characters

of Hecke algebras of wreath products [1], as was done for monomial characters of the Hecke algebra of Sn

in [6, Thm. 2.1].
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