
numerative
ombinatorics

pp
lic
at
io
ns

A Enumerative Combinatorics and Applications
ecajournal.haifa.ac.il

ECA 1:2 (2021) Article #S2R11
https://doi.org/10.54550/ECA2021V1S2R11

Counting k-Naples Parking Functions Through Permutations and the
k-Naples Area Statistic

Laura Colmenarejo1, Pamela E. Harris2, Zakiya Jones3, Christo Keller4,

Andrés Ramos Rodŕıguez5, Eunice Sukarto6 and Andrés R. Vindas-Meléndez7

1Department of Mathematics and Statistics, UMass Amherst, United States
Email: laura.colmenarejo.hernando@gmail.com

2Department of Mathematics and Statistics, Williams College, United States
Email: peh2@williams.edu

3Department of Mathematics, Pomona College, United States
Email: zakiyacmjones@gmail.com

4Department of Mathematics and Statistics, UMass Amherst, United States
Email: thechristokeller@gmail.com

5Department of Mathematics, Universidad de Puerto Rico, Rı́o Piedras, United States
Email: ramosandres443@gmail.com

6Department of Mathematics, University of California, Berkeley, United States
Email: eunicesukarto@berkeley.edu

7Department of Mathematics, University of Kentucky, United States
Email: andres.vindas@uky.edu

Received: October 15, 2020 Accepted: January 22, 2021, Published: February 19, 2021
The authors: Released under the CC BY-ND license (International 4.0)

Abstract: The k-Naples parking functions of length n (a generalization of parking functions) are defined by

requiring that a car which finds its preferred spot occupied must first back up a spot at a time (up to k spots)

before proceeding down the street. Note that the well-studied parking functions are the specialization of k to

0. For fixed 0 ≤ k ≤ n− 1, we define a function ϕk which maps a k-Naples parking function to the permutation

denoting the order in which its cars park. Summing the sizes of the fibers of ϕk gives a new formula for the

number of k-Naples parking functions as a sum over the permutations of length n.

We note that our formula for enumerating k-Naples parking functions is not recursive, in contrast to the

previously known formula of Christensen et al [10]. It can be expressed as the product of the lengths of

particular subsequences of permutations, and its specialization to k = 0 gives another way to describe the

number PFn = (n + 1)n−1 of parking functions of length n. We give a formula for the sizes of the fibers of

the map ϕ0, and provide a recurrence relation for its logarithmic generating function. Furthermore, we relate

the q-analog of our formula to a new statistic that we denote areak and call the k-Naples area statistic, the

specialization of which to k = 0 gives the usual area statistic on the parking functions.

Keywords:k-Naples parking functions; permutations; q-analogs; generating functions; area statistic

2020 Mathematics Subject Classification: 05A15; 05A19

1. Introduction

Parking functions are combinatorial objects introduced in [11] to study hashing problems. To define these

objects, consider a one-way street with n parking spots labeled 1 though n and a line of n cars, c1, c2, . . . , cn

waiting to park. A parking preference is a tuple α = (α1, . . . , αn) ∈ [n]n, where αi is the preferred parking spot

of car ci. The rule for parking cars is that car ci goes to its preferred spot αi and if it is empty, parks there. If

Laura Colmenarejo et al.

the space is occupied, ci moves forward until it finds the next available space. We say that a parking preference

α is a parking function if all the cars can park within the given n spots without cars driving off the road.

Parking functions have received much attention in the combinatorics literature [7]. The study of parking

functions has led to connections with fields such as graph theory, representation theory, hyperplane arrange-

ments, and discrete geometry [6, 12, 13, 19]. Moreover, in the last few years many generalizations of parking

functions have appeared in the literature [1–4]. For a survey of generalizations and open problems related to

parking functions, see [8]. Among those generalizations, we find the k-Naples parking functions, introduced by

Baumgardner for k = 1 and by Christensen et. al. for general k, see [5, 10]. This generalization modifies the

parking rule so that car ci, upon finding its preferred space αi occupied, first backs up and checks if the spot

αi − 1 is occupied. If it is empty it parks there, otherwise it backs up, a spot at a time, at most k spaces

attempting to park in the first available space before going forward once again. The set of k-Naples parking

functions is the set of parking functions that can park under the k-Naples rule. In [10], the authors study this

generalization and provide a recursive formula for the number of k-Naples parking functions and provide some

connections to signature Dyck paths.

This paper continues the study of the k-Naples parking functions by extending it to a new q-analog. To

make our results concrete we begin by describing our process. Let Sn denote the symmetric group on n letters,

PFn,k denote the set of k-Naples parking functions of length n, and PFn,0 := PFn denote the set of parking

functions of length n. For a fixed 0 ≤ k ≤ n−1, we define a map ϕk which maps a k-Naples parking function to

the permutation denoting the order in which the cars park (see Definition 3.3). Then we count the size of the

fibers of this map under each permutation in Sn (see Theorem 3.1), thereby giving a formula for the number of

k-Naples parking functions as a sum over Sn (see Theorem 3.2). This formula enumerating k-Naples parking

functions is new and not recursive, in contrast to the one in [10]. Moreover, our formula is given as the product

of the lengths of particular subsequences of permutations. In the parking function case, that is when k = 0,

we also give a recurrence relation for the fibers of the map ϕ0, providing a recursive formula to compute the

coefficients of the corresponding generating function. We continue our work by studying a q-statistic of k-Naples

parking functions of length n. Given a non-negative integer n, we denote its q-analog

[n]q =
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1.

With this q-analog, one may define q-analogs of almost any formula. For instance, the q-factorial or the q-

binomial coefficients. In general, we denote by [?]q the q-analog of the formula ? by substituting any number

appearing in ? by its q-analog. It turns out that the q-analog of our formula for counting parking functions

coincides with the fermionic formula presented in [12], taking t = 0. We describe the relation between the

distribution of the area statistic and the q-analog of our formula (see Proposition 5.1). We also define the

k-Naples area statistic, and give the analogous result for the k-Naples parking functions.

The paper is organized as follows. In Section 2, we include main definitions and results related to parking

functions and k-Naples parking functions. In Section 3, we present our main result counting k-Naples parking

functions through permutations, and we include the result for parking functions to illustrate the intuitive idea

of the proof. Then in Section 4 we give a recursive formula to enumerate permutations whose preimage under

ϕ0 has a given cardinality and present the associated generating function. Finally, in Section 5, we define the

areak statistic for k-Naples parking functions and relate our enumerative results to it.

2. Background

Let us start by defining the main objects of our study, as well as the notation we use.

Definition 2.1. Let α = α1, . . . , αn, with αi ∈ [n] := {1, . . . , n}. We say that α is a parking preference sequence

meaning that the ith car, henceforth denoted ci, wants to park in spot αi. Then, α is a parking function of length

n if all the cars park under the following parking rule:

Imagine n cars travel down a one-way street with n parking spots. Each car prefers a spot, which it

attempts to park in. If the spot is empty, it parks there and succeeds; otherwise, it continues down

the road until it finds an empty spot to park in.

ECA 1:2 (2021) Article #S2R11 2

Laura Colmenarejo et al.

We denote by PPn the set of parking preferences of length n, and by PFn the set of parking functions of

length n. It is worth noting that the parking functions are the sequences p = (p1, p2, . . . , pn) of positive integers

for which the non-decreasing rearrangement (q1, q2, . . . , qn) with q1 ≤ q2 ≤ · · · ≤ qn satisfies qi ≤ i.

Example 2.1. Consider the parking preference (2, 1, 1). We have three open spots and c1 takes the 2nd spot.

In comes c2 and parks in spot 1. Now c3 drives up to the 1st spot and sees that the parking spot is occupied.

Following the parking rule, it proceeds to the 2nd spot, which is also taken. Finally it tries the 3rd spot, where

it parks successfully since the other cars have taken other spots. All three cars park, so (2, 1, 1) ∈ PF3.

The k-Naples parking functions generalize these objects by modifying the parking rule.

Definition 2.2. We say that a parking preference α = α1, . . . , αn is a k-Naples parking function, with 0 ≤ k ≤
n, if all the cars are able to park under the following k-Naples parking rule:

Imagine n cars travel down a one-way street with n parking spots. Each car prefers a spot, which it

attempts to park in. If the spot is empty, it backs up checking up to k spots behind its preferred spot

and parks in the first available. If all the k spots preceding its preferred spot are occupied, then the

car continues down the street until it finds an empty spot in which to park.

We denote by PFn,k the set of k-Naples parking functions of length n. Moreover, we denote by PF dn,k the

subset of PFn,k given by the decreasing k-Naples parking functions, i.e., those with α1 ≥ α2 ≥ · · · ≥ αn.

Note that the case when k = 0 is precisely the case where cars do not back up, which is exactly the

definition of a parking function. Hence PFn,0 = PFn. Also, if the cars are able to back up and check up to

n− 1 spots behind their preferred spot, this would allow cars to check the entire length of the street in search

for an empty parking spot. Hence, every car can park regardless of their parking preference, which implies that

PFn,n−1 = PPn. Moreover, whenever 1 ≤ k ≤ n it follows that the containment PFn,k−1 ⊆ PFn,k holds. But

it is not the case that every k-Naples parking function is a parking function.

Example 2.2. Take the parking preference (3, 2, 2). Let us check how the cars behave trying to park under the

parking rule. The first two cars park, but c3 drives off the road. Following the 1-Naples parking rule, the first

two cars park (as before) and c3 finding the 2nd parking spot occupied, it subsequently checks the (2− 1)th = 1st

spot, where it is able to park. Therefore (3, 2, 2) ∈ PF3,1 even though (3, 2, 2) 6∈ PF3,0 = PF3.

Parking functions are in bijection with many other combinatorial objects. For instance, rooted forests [16],

maximal chains of non-crossing partitions [20], and regions in the Shi arrangement [19]. For our purposes, we

present their bijection to labeled Dyck paths then a similar result for the k-Naples case.

Definition 2.3. A Dyck path of length 2n is a lattice path from (0, n) to (n, 0) consisting of n steps east by

(1, 0) and n steps south by (0,−1) all of which have the path staying above the diagonal y = n− x. The number

of Dyck paths is the nth Catalan number Cn. A labeled Dyck path of length 2n is a Dyck path such that the

south steps are labeled with numbers 1, . . . , n and consecutive south steps have increasing labels.

Theorem 2.1. The parking functions of length n are in bijection with the labeled Dyck paths of length 2n.

Given a parking function α = (α1, α2, . . . , αn) ∈ PFn, let ui denote the number of occurrences of i in α.

Consider an n× n grid, and label the vertical lines from left to right with 1, . . . , n. Notice the last vertical line

on the right is not labeled. Then we define the Dyck path P by drawing ui south steps in the ith column and

we label each south step with the position of the value i in α, making sure that the labels are increasing for

consecutive south steps. See [12] for details. We illustrate the bijection of Theorem 2.1 with an example.

Example 2.3. Consider the parking function α = (3, 3, 1, 4, 2, 2). Then, u1 with label {3}, u2 = 2 with labels

{5, 6}, u3 = 2 with labels {1, 2}, u4 = 1 with label {4}, and u5 = u6 = 0. See Figure 1 for this Dyck path.

There is no known generalization of this result to all the k-Naples parking functions. However, using k-lattice

paths of length 2n, we have a partial characterization for weakly decreasing k-Naples parking functions.

ECA 1:2 (2021) Article #S2R11 3

Laura Colmenarejo et al.

3

5

6

1

2

4

Figure 1: Labeled Dyck path corresponding to the parking function α = (3, 3, 1, 4, 2, 2).

Definition 2.4. Given n, k ∈ N with 0 ≤ k ≤ n− 1, a k-lattice path of length 2n is a lattice path from (0, n) to

(n, 0) consisting of n steps east and n steps south, such that the path never goes above the line y = n− x+ k.

Theorem 2.2 (Theorem 1.3, [10]). Given n, k ∈ N with k ≤ n − 1, the set of decreasing k-Naples parking

functions of length n is in bijection with the k-lattice paths of length 2n where the first step is south.

Remark 2.1. The definition of k-lattice paths does not require that the first step be south. However, it is a

necessary condition for the bijection, as the authors of [10] point out in the proof.

In the most general case, parking preferences are in bijection with lattice paths. This bijection sends a

parking preference, α = (α1, . . . , αn) ∈ PPn, to the lattice path with east steps (i − 1, αi − 1) to (i, αi − 1),

for i = 1, . . . , n. In [10, Theorem 1.3], the authors show that this bijection restricts nicely to k-Naples parking

functions, establishing Theorem 2.2. We consider the following example to illustrate this bijection.

Example 2.4. We draw the 2-lattice path corresponding to the 2-Naples parking function α = (6, 6, 4, 4, 2, 2).

Figure 2: 2-lattice path corresponding to α = (6, 6, 4, 4, 2, 2).

Note that αi corresponds to the ith east step. Moreover, the facts that the first step is south and the path

cannot pass the line n− x+ k implies that for all i, αi ≤ min(n, n− i+ k + 1).

This line of thought gives us the following variant of Theorem 2.2:

Theorem 2.3. Let α = (α1, . . . , αn) ∈ PPn be a decreasing parking preference. Then, α ∈ PF dn,k if and only

if αi ≤ min(n, n− i+ 1 + k) for all 1 ≤ i ≤ n.

Formulas enumerating the number of parking functions and k-Naples parking functions are presented below.

Theorem 2.4 (See [11,14]). For n ≥ 1,

|PFn| = (n+ 1)n−1.

In the next section we give a new formula to enumerate the number of k-Naples parking function. Prior to

the present work, the only result enumerating k-Naples parking function was the following recursive formula.

Theorem 2.5 (Theorem 1.1, [10]). For n ≥ 0 and 0 ≤ k ≤ n,

|PFn+1,k| =
n∑
i=0

(
n

i

)
min(i+ 1 + k, n+ 1)|PFi,k|(n− i+ 1)n−i−1.

ECA 1:2 (2021) Article #S2R11 4

Laura Colmenarejo et al.

3. Counting parking functions through permutations

In this section, we provide a non-recursive formula for |PFn,k| as a sum over permutations. We begin by

establishing the formula for the case k = 0, as it helps build intuition to generalize the result to k > 0.

3.1 The parking function case

Given a parking function, we consider the permutation, written in one-line notation, resulting from recording

the position in which each car parks. The fibers of this map will allow us to count the parking functions.

Definition 3.1. Given a parking function α, consider the function ϕ : PFn → Sn which maps α = (α1, . . . , αn) ∈
PFn to ϕ(α) = σ1 · · ·σn, where parking spot i is occupied by the σi

th car.

We remark that the map ϕ is the inverse of the outcome map defined in [9] and slightly different from the

definition which appears in FindStat St001346 [15]. However, our results follow more naturally by defining ϕ

as in Definition 3.1. In order for a parking preference to be a parking function, all the cars have to park and

there cannot be two cars in the same parking space, therefore ϕ is well-defined. Moreover, every permutation

is a parking function. In fact, ϕ maps each permutation to itself, so ϕ is surjective.

Example 3.1. Let α = (4, 2, 2, 4, 1) ∈ PF5, so the cars c1, c2, c3, c4, c5 park in the following way

spot 1 spot 2 spot 3 spot 4 spot 5
c5 c2 c3 c1 c4

Therefore, ϕ(α) = 52314.

Now that we have a well-defined map from parking functions to permutations, a natural question to ask

is how many parking functions map to a given permutation. In other words, given σ ∈ Sn, we would like to

determine the size of the fiber
∣∣ϕ−1(σ)

∣∣. For that, we need to introduce one more concept.

Definition 3.2. Given a permutation σ = σ1 · · ·σn ∈ Sn, we define ` (i;σ) as the length of the longest subse-

quence σj · · ·σi of σ such that σt ≤ σi for all j ≤ t ≤ i.

Let us see one example of how to compute ` (i;σ).

Example 3.2. Let σ = 23514. We want to count the number of parking functions α such that ϕ(α) = σ by

determining all possible entries of α given the entries of σ. To begin, we let entries of σ = σ1σ2σ3σ4σ5 and

consider each σi for 1 ≤ i ≤ 5 individually:

- Since σ1 = 2, we know that c2 parked in spot 1. This implies that c2 preferred the parking spot 1. We

have ` (1; 23514) = 1, which is the length of the subsequence 2 in σ.

- Since σ2 = 3, we know that c3 parked in spot 2. This implies that c3 preferred the parking spots 1 or 2.

We have ` (2; 23514) = 2, which is the length of the subsequence 23 in σ.

- Since σ3 = 5, we know that c5 parked in spot 3. This implies that c5 preferred the parking spots 1, 2, or

3. We have ` (3; 23514) = 3, which is the length of the subsequence 235 in σ.

- Since σ4 = 1, we know that c1 parked in spot 4. This implies that c1 preferred the parking spot 4. We

have ` (4; 23514) = 1, which is the length of the subsequence 1 in σ.

- Finally, since σ5 = 4, we know that c4 parked in spot 5. This implies that c4 preferred the spot 4 or 5.

We have ` (5; 23514) = 2, which is the length of the subsequence 14 in σ.

The following result answers the aforementioned question.

Proposition 3.1. Let σ = σ1 · · ·σn ∈ Sn be a permutation. Then

|ϕ−1(σ)| =
n∏
i=1

` (i;σ) .

ECA 1:2 (2021) Article #S2R11 5

Laura Colmenarejo et al.

Example 3.3. Continuing with Example 3.2, for σ = 23514, we have that multiplying all values of ` (i; 23514)

for 1 ≤ i ≤ 5, we have 12 distinct parking functions of length 5 mapping to σ = 23514 via the map ϕ. We list

these 12 parking functions below:

41141, 41142, 41143, 41151, 41152, 41153,
41241, 41242, 41243, 41251, 41252, 41253.

Proof of Proposition 3.1. Let α = (α1, . . . , αn) ∈ ϕ−1(σ), σ = σ1σ2 · · ·σn ∈ Sn, and define π ∈ Sn in such a

way that σπ(i) = i for all i ∈ [n]. That is, ci parks in the parking spot π(i). Note that this corresponds to the

outcome map [9]. Now, since π is a permutation in Sn, we have that

n∏
i=1

` (π(i);σ) =

n∏
i=1

` (i;σ)

as the product of the lengths only changes the order of the terms. Thus, it suffices to show

|ϕ−1(σ)| =
n∏
i=1

` (π(i);σ) . (1)

To do so, for i ∈ [n] we claim that ` (π(i);σ) is the number of possible preferred parking spots αi of ci satisfying

ϕ(α) = σ. Proving this then implies that (1) follows by taking the product over all possibilities for α1, . . . , αn.

Let us prove our claim:

Given ci, ` (π(i);σ) is the number of possible preferred parking spots αi such that ϕ(α) = σ.

To establish this claim we prove the following:

Fact 1: Every possible αi is an index of the longest subsequence σj · · ·σπ(i) of σ such that σt ≤ σπ(i) for all

j ≤ t ≤ π(i).

Fact 2: Every index of the longest subsequence σj · · ·σπ(i) of σ such that σt ≤ σπ(i) for all j ≤ t ≤ π(i) gives a

possible αi.

We begin by establishing Fact 1. By definition, ci parks in the spot numbered π(i). Otherwise, ci would not be

able to park in spot π(i). More explicitly, we must have either

(i) ci parks in its preferred spot, and so αi = π(i), or

(ii) ci tries to park in a previous spot αi < π(i) but the parking spots αi, . . . , π(i)− 1 are all occupied. Thus

{αi, . . . , π(i)− 1} ⊂ {π(1), . . . , π(i− 1)}, so {σαi , . . . , σπ(i)−1} ⊂ {σπ(1), . . . , σπ(i−1)}
= {1, . . . , i−1}. This means that for any choice of t satisfying αi ≤ t < π(i), there exists r ∈ {1, . . . , i−1}
such that σt = σπ(r) = r < i = σπ(i).

Conditions (i) and (ii) imply that for all t satisfying αi ≤ t ≤ π(i), we have σt ≤ σπ(i), where the equality

arises from condition (i). Hence, we have a necessary condition for αi, which completes the proof of Fact 1.

Now we prove Fact 2. Consider σj · · ·σπ(i) such that σt ≤ σπ(i), for all j ≤ t ≤ π(i). This means spots

j, . . . , π(i) − 1 have been occupied before ci attempts to park. If αi = π(i), then ci parks in spot π(i) and we

are done. If j ≤ αi < π(i), as we know the spots j, . . . , π(i)− 1 are occupied, so ci will find αi occupied and by

the parking rule will move forward and park at the first available spot which is spot π(i). This establishes Fact

2 as the number of possibilities for αi is precisely the length of the longest subsequence σj · · ·σπ(i) such that

σt ≤ σπ(i), for all j ≤ t ≤ π(i).

Summing over the fiber for each permutation gives the number of parking functions.

Corollary 3.1 (Exercise 5.49(d,e) [21]).∑
σ∈Sn

(n∏
i=1

` (i;σ)

)
= |PFn| = (n+ 1)n−1,

where for each σ = σ1 · · ·σn, ` (i;σ) is the length of the longest subsequence σj . . . σi with σt ≤ i for all j ≤ t ≤ i.

Remark 3.1. Recently, Sanyal and Drohla [17] gave a different formula for counting parking functions, which

they then related to binary trees.

ECA 1:2 (2021) Article #S2R11 6

Laura Colmenarejo et al.

3.2 k-Naples parking functions

We now generalize Corollary 3.1 to k-Naples parking functions. To start, we generalize the map ϕ.

Definition 3.3. Given a k-Naples parking function, consider the function ϕk : PFn,k → Sn given by mapping

a k-Naples parking function α ∈ PFn,k to the permutation denoting the position in which the cars park under α

using the k-Naples parking rule. That is, given α = (α1, α2, . . . , αn) ∈ PFn, ϕ(α) = σ1σ2 · · ·σn, where the spot

i is occupied by the σi
th car.

As before, ϕk is the identity on Sn ⊂ PFn,k for all k. Moreover, from Definition 3.1 we note that ϕ = ϕ0.

However, ϕk is not an extension of ϕ for k > 0. Moreover, we note that the order in which cars park under

ϕk might change when allowing the cars to back up one additional spot, as they might find that spot available

rather than moving forward, in which case ϕk+1 would be different than ϕk.

Example 3.4. Consider α = (4, 2, 2, 4, 1). By Example 3.1, we know that α is a parking function. In fact, α

is also a 1-Naples parking function. Under the 1-Naples parking rule, the cars park in the following order:

spot 1 spot 2 spot 3 spot 4 spot 5
c3 c2 c4 c1 c5

Therefore, ϕ1(α) = 32415. From Example 3.1, we note that ϕ1(α) 6= ϕ(α).

Just as ` (i;σ) was defined in terms of the subsequences to the left (see Proposition 3.1), we must now

extend its definition and consider also subsequences to the right. This allows us to account for the backwards

movement of the cars arising from the k-Naples parking rule.

Definition 3.4. Let σ = σ1 · · ·σn ∈ Sn be a permutation. For each 1 ≤ i ≤ n, let leftk (i;σ) be the length

of longest subsequence σj · · ·σi−1 of σ such that σt < σi, for all j ≤ t < i and let rightk (i;σ) be the length of

longest subsequence σi · · ·σr of σ such that r ≤ i + k and σt ≤ σi for all i ≤ t ≤ r. If these subsequences are

empty, leftk (i;σ) = 0 or rightk (i;σ) = 0, respectively. Let `k (i;σ) be the function defined by

`k (i;σ) =

{
leftk (i;σ) + rightk (i;σ) if leftk (i;σ) = i− 1

max(leftk (i;σ)− k, 0) + rightk (i;σ) if leftk (i;σ) < i− 1.

Before working through an example illustrating Definition 3.4 we remind the reader that the parameter k is

the same as the parameter defining the k-Naples parking functions. Moreover, we can also restate the definition

of `k (i;σ) in terms of the ` (i;σ) and the reversal map rev(σ) which sends σi to σn−i+1.

Remark 3.2. The values leftk (i;σ) and rightk (i;σ) can be expressed in terms of ` (i;σ). In particular,

leftk (i;σ) = ` (i;σ)− 1

rightk (i;σ) = min(k + 1, ` (n+ 1− i; rev(σ))).

Therefore, `k (i;σ) can also be expressed in terms of ` (i;σ). In particular,

`k (i;σ) =

{
` (i;σ)− 1 + min(k + 1, ` (n+ 1− i; rev(σ))) if ` (i;σ) = i

max(` (i;σ)− 1− k, 0) + min(k + 1, ` (n+ 1− i; rev(σ))) if ` (i;σ) < i.

Example 3.5. Let n = 5 and k = 2, and consider the permutation σ = 51423 ∈ S5. Then, left2 (1; 51423) =

left2 (2; 51423) = left2 (4; 51423) = 0 because the corresponding subsequences are all the empty subsequence.

Moreover, left2 (3; 51423) = left2 (5; 51423) = 1, corresponding to the subsequences 1 and 2, respectively.

Similarly, right2 (1; 51423) = right2 (3; 51423) = 3, corresponding to the subsequences 514 and 423, respec-

tively, and right2 (2; 51423) = right2 (4; 51423) = right2 (5; 51423) = 1, corresponding to the subsequences 1,

2 and 3, respectively.

Therefore, we get the following values for `k (i; 51423): `2 (1; 51423) = 3, `2 (2; 51423) = 1, `2 (3; 51423) =

max(1− 2, 0) + 3 = 3, `2 (4; 51423) = 1, and `2 (5; 51423) = max(1− 2, 0) + 1 = 1.

ECA 1:2 (2021) Article #S2R11 7

Laura Colmenarejo et al.

A straight forward computation establishes that there are 9 distinct 2-Naples parking functions of length 5

whose image under ϕ2 is the permutation 51423. We list them below,

24531 24532 24533 24541 24542 24543 24551 24552 24553.

In our next result we establish that the count of these nine distinct 2-Naples parking functions arises as the

product of the values `k (i;σ), which from above we note is given by 3× 1× 3× 1× 1 = 9.

We are now ready to state the main result.

Theorem 3.1. Let σ ∈ Sn be a permutation. Then,

|ϕ−1k (σ)| =
n∏
i=1

`k (i;σ) .

In particular, for k = 0, we obtain the result in Proposition 3.1.

Proof. Let α = (α1, . . . , αn) ∈ ϕ−1k (σ) and take π ∈ Sn such that σπ(i) = i. That is, ci parks in the parking

spot π(i). To establish the result it suffices to show the following:

Claim: For each 1 ≤ i ≤ n, `k (π(i);σ) is the number of possible preferred parking spots αi which

allows ci to park in spot π(i).

Proving this claim then implies the result as we take the product over all possibilities for α1, . . . , αn.

Given i, let σj · · ·σπ(i)−1 be the longest subsequence of σ = σ1 · · ·σn such that σt < σπ(i) for all j ≤ t < π(i)

and σπ(i) · · ·σr the longest subsequence of σ such that σt ≤ σπ(i) for all π(i) ≤ t ≤ r ≤ π(i) + k. These are

exactly the subsequences whose length define the values leftk (π(i);σ) and rightk (π(i);σ) in the definition of

`k (π(i);σ) (See Definition 3.4.)

Our next step is to show that these are precisely all the possibilities for the parking preferences αi of ci. By

definition, ci parks in the spot numbered π(i). Note that just before ci parks, the parking spots π(1), . . . , π(i−1)

have been occupied by c1, . . . , ci−1 respectively. By the k-Naples parking rule, we consider three cases depending

on where ci parks:

Case 1: ci parks in its preferred spot αi, or

Case 2: ci parks in a spot before its preferred spot αi, or

Case 3: ci parks in a spot after its preferred spot αi.

By definition, the count for rightk (π(i);σ) involves only the cases (1) and (2), whereas the count for leftk (π(i);σ)

involves only case (3). Note also that the contribution of rightk (π(i);σ) to `k (π(i);σ) is the same indepen-

dently of the value of leftk (π(i);σ).

We now consider the implications arising from each of the possible cases defined above.

Case 1: Assume ci parks in its preferred spot αi.

In this case, αi = π(i) and this contributes to the value of rightk (π(i);σ).

Case 2: Assume ci parks in a spot before its preferred spot αi.

In this case, ci tries to park in the spot αi, with π(i) < αi ≤ π(i) + k. However, the park-

ing spots π(i) + 1, . . . , αi are all occupied, and ci backs up until spot π(i). Now, this implies

that {π(i) + 1, . . . , αi} is a subset of the previously occupied spots {π(1), . . . , π(i − 1)}. Thus,

{σπ(i)+1, . . . , σαi
} ⊂ {σπ(1), . . . , σπ(i−1)} = {1, . . . , i− 1}. Therefore, for any t satisfying π(i) < t ≤

αi, there exists r ∈ {1, . . . , i− 1} such that σt = σπ(r) = r ≤ i = σπ(i) and this case contributes to

the value of rightk (π(i);σ).

Case 3: Assume ci parks in a spot after its preferred spot αi.

In this case, ci tries to park in αi, with αi < π(i), which is occupied. In this case, the contribution

to `k (π(i);σ) depends on the value of leftk (π(i);σ). We look at each possible case:

ECA 1:2 (2021) Article #S2R11 8

Laura Colmenarejo et al.

Subcase 3a: If leftk (π(i);σ) = π(i) − 1, the spots before π(i) are all occupied. That is, there are no

empty spots available before αi and between αi and π(i). Then, {αi, . . . , π(i) − 1} is a

subset of the previously occupied spots {π(1), . . . , π(i − 1)}. Thus, {σαi
, . . . , σπ(i)−1} ⊂

{σπ(1), . . . , σπ(i−1)} = {1, . . . , i − 1}. Therefore, for any t satisfying αi ≤ t < π(i), there

exists r ∈ {1, . . . , i − 1} such that σt = σπ(r) = r < i = σπ(i) and this contributes to the

value of leftk (π(i);σ).

Subcase 3b: If leftk (π(i);σ) < π(i)−1, then there exists an empty spot before π(i). In fact, this empty

spot has to be before αi − k. Otherwise, by the k-Naples parking rule, ci may be able to

back up into a parking spot before αi, which would yield a contradiction. Therefore, there

are max(leftk (i;σ)− k, 0) spots available since leftk (i;σ)− k can be negative.

In Cases 1-3, either σt < σπ(i), for all t satisfying αi ≤ t < π(i), or σt ≤ σπ(i), for all t satisfying

π(i) ≤ t ≤ αi ≤ π(i) + k. These give necessary conditions for αi in order for ci to park in spot π(i), proving

our claim.

As in the proof of Proposition 3.1, it is clear that any index of the subsequence corresponding to `k(π(i);σ)

is a parking preference αi which will cause ci to park at the spot π(i), providing the sufficient condition, and

thus completing the proof of the theorem.

As a consequence of Theorem 3.1, we give a new expression for the number of k-Naples parking functions.

Theorem 3.2. For all n ≥ 1 and 0 ≤ k ≤ n− 1,

|PFn,k| =
∑
σ∈Sn

(n∏
i=1

`k (i;σ)

)
.

This result provides a new formula enumerating the k-Naples parking functions. Compared to Theorem 2.5,

this formula is not recursive and is presented in terms of a familiar set of combinatorial objects, that is,

permutations.

4. A logarithmic generating function on the fibers of ϕ

Next we give a recurrence relation for the fibers of ϕ. That is, we present a formula for counting the number of

permutations whose fiber under ϕ has a given size.

Let us denote by Fn(q) the generating function of the fiber of ϕ for each n ≥ 0.

Fn(q) =
∑
i≥1

cn,iq
i,

where the coefficient cn,i counts the number of permutations in Sn whose fiber under ϕ has size i. Note that

F0(q) = q since there is trivially one permutation of length 0 and one parking function of length 0 mapping to

that permutation. The first five polynomials are given in [15]:

F1(q) = q,

F2(q) = q + q2,

F3(q) = q + 3q2 + q3 + q6,

F4(q) = q + 6q2 + 4q3 + 4q4 + 4q6 + 3q8 + q12 + q24,

F5(q) = q + 10q2 + 10q3 + 20q4 + q5 + 20q6 + 15q8 + 6q10 + 15q12

+4q15 + 4q20 + 5q24 + 4q30 + 3q40 + q60 + q120.

Defining cn,i = 0 if n < 0, we next show how the coefficients cn,i can be computed recursively.

Proposition 4.1. For 1 ≤ i ≤ n!,

cn,i =
∑
d|i

(n− 1

d− 1

)∑
j| id

cd−1,jcn−d, i
dj


 ,

ECA 1:2 (2021) Article #S2R11 9

Laura Colmenarejo et al.

and cn,i = 0, otherwise.

Proof. Given i, we want the number of elements σ ∈ Sn whose fiber has size i, i.e., |ϕ−1(σ)| = i. Let

σ = σ1 . . . σn ∈ Sn be one of those permutations, and let d be the index such that σd = n. We split σ

into three pieces (allowing for the case where some may be empty)

σ = σ1 · · ·σd−1︸ ︷︷ ︸
s′

σd σd+1 · · ·σn︸ ︷︷ ︸
s′′

.

Assuming neither s′ nor s′′ are empty, we look at s′ and s′′ as permutations of d− 1 := `(s′) and n−d := `(s′′),

by reducing the values to 1, . . . , d − 1 for s′ and 1, . . . , n − d for s′′ while preserving the relative order of the

entries. Let us denote by σ′ and σ′′ those permutations (respectively). Therefore, we have that

i = |ϕ−1(σ)| = |ϕ−1(σ′)| · d · |ϕ−1(σ′′)|.

On the other hand, if s′ or s′′ is empty, then they are the empty permutation in which case either |ϕ−1(σ′)| = 1

or |ϕ−1(σ′′)| = 1.

Since |ϕ−1(σ′)| and |ϕ−1(σ′′)| are integers, d must be a factor of i. In fact, for each possible d, there are(
n− 1

d− 1

)
ways to choose the first d cars (unordered). The ordering of these d − 1 cars is uniquely determined

by σ′. Thus,

cn,i =
∑
d|i

(n− 1

d− 1

)∑
j| id

cd−1,jcn−d, i
dj


 .

Consider now the logarithmic generating function defined for n ≥ 1 by

Gn(q) =

n!∑
i=1

cn,iq
ln i.

This generating function allows us to manipulate exponents easily, obtaining the following recursive formula.

Proposition 4.2. For n ≥ 1,

Gn(q) =

n−1∑
i=0

(
n− 1

i

)
qln(i+1)Gi(q)Gn−1−i(q).

Proof. By Proposition 4.1, we have that

Gn(q) =

n!∑
i=1

cn,iq
ln i =

∑
i|n!

cn,iq
ln i =

∑
i|n!

∑
d|i

qln d
(
n− 1

d− 1

)∑
j| id

cd−1,jq
ln jcn−d, i

dj
qln

i
dj


=
∑
i|n!

∑
d|i

qln d
(
n− 1

d− 1

) ∑
r s.t.
d|r,r|i

cd−1, rd q
ln r

d cn−d, ir q
ln i

r

 .

Now, since

(
n− 1

d− 1

)
= 0 for d > n, we can restrict the summation over d and also change the order of the

summations over d and over i. Thus, we have that

Gn(q) =
∑
i|n!

∑
d|i
d≤n

qln d
(
n− 1

d− 1

) ∑
r s.t.
d|r,r|i

cd−1, rd q
ln r

d cn−d, ir q
ln i

r



=

n∑
d=1

qln d
(
n− 1

d− 1

) ∑
i s.t.
d|i,i|n!

∑
r s.t.
d|r,r|i

cd−1, rd q
ln r

d cn−d, ir q
ln i

r



ECA 1:2 (2021) Article #S2R11 10

Laura Colmenarejo et al.

=

n∑
d=1

qln d
(
n− 1

d− 1

)∑
i′|n!

d

∑
r′|i′

cd−1,r′q
ln r′cn−d, i′

r′
qln

i′
r′

 ,

where in the last equality we rewrite the summation with a new index. Again, we have that cd−1,r = 0 if

r′ - (d− 1)!, and similarly for
i′

r′
. Therefore,

Gn(q) =

n∑
d=1

qln d
(
n− 1

d− 1

)(∑
r′

∑
i′

cd−1,r′q
ln r′cn−d, i′

r′
qln

i′
r′

)
,

where the second summation is over the r′ such that r′
∣∣∣∣n!

d
and r′|(d− 1)!, and the third summation is over i′

such that
i′

r′

∣∣∣∣ n!

r′d
and

i′

r′

∣∣∣∣ (n− d)!, that is,

Gn(q) =

n∑
d=1

qln d
(
n− 1

d− 1

) ∑
r′|(d−1)!

cd−1,r′q
ln r′

∑
i′
r′ |(n−d)!

cn−d, i′
r′
qln

i′
r′

 .

(Note that r′|(d − 1)! ⇒ r′|(d − 1)!n(n−1)...dd = n!
d so the first condition on r′ is unnecessary. For i′, i′

r′ |(n −
d)! ⇒ i′ divides r′(n − d)!, which in turn divides r′(n − d)!

(
n
d

)
= r′(n − d)!n(n−1)...(n−d+1)

d(d−1)! , which divides

(n−d)!n(n−1)...(n−d+1)
d = n!

d since r′|(d−1)!, so the first condition on i′ is also redundant). Now, the summation

over i′ is exactly the definition of Gn−d(q) and the summation over r′ is the definition of Gd−1(q). Therefore,

Gn(q) =

n∑
d=1

(
n− 1

d− 1

)
qln(d)Gd−1(q)Gn−d(q).

Writing i = d− 1, we have that

Gn(q) =

n−1∑
i=0

(
n− 1

i

)
qln(i+1)Gi(q)Gn−1−i(q).

5. Finding q-analogues

Given a non-negative integer n, we denote its q-analog by

[n]q =
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1.

With this q-analog, one may define q-analogs of almost any formula. For instance, the q-factorial or the q-

binomial coefficients. In general, we denote by [?]q the q-analog of the formula ? by substituting any number

appearing in ? by its q-analog as defined above. This allows us to turn almost anything into a polynomial.

Together with q-analogs, we also have q-statistics, which allow us to understand combinatorially the expo-

nents of q appearing in the q-analog formulas, mostly polynomials in q, once they are expressed as summations

over the exponents of q. FindStat [15] is a great source to find many statistics as well as good references.

The q-analog appears naturally in several contexts in algebraic combinatorics, and in particular, in the the

framework of parking functions and diagonal harmonics. In [12], Loehr presents several identities involving

q-analogs in the framework of diagonal harmonics. We refer to [12] for more details on the diagonal harmonics.

One of the q-statistics that appears in our setting is the area of a parking function, which we now define.

Definition 5.1. Given a parking function α ∈ PFn, let P be the labeled Dyck path associated to it. We define

area(α) as the number of complete lattice squares between P and the line y = x. Equivalently, the area of the

parking function α can be computed using the more explicit formula

area(α) =

n∑
i=1

(n− i− αi + 1) .

ECA 1:2 (2021) Article #S2R11 11

Laura Colmenarejo et al.

Our first result provides the distribution of the area statistic over the fiber ϕ−1(σ), for any permutation σ,

by looking at the q-analog of Corollary 3.1.

Proposition 5.1. For any permutation σ ∈ Sn,

∑
p∈ϕ−1(σ)

qarea(p) =

n∏
i=1

[` (i;σ)]q. (2)

We present two proofs of this result: one bijective and one inductive. The bijective proof is generalized for

k-Naples parking functions in Section 5.1.

Bijective proof. Using notation from [12, Fermionic formula], the right-hand side of (2) gives a generating

function for objects (u1, u2, . . . , un) with ui < ` (i;σ), where qm corresponds to such an object with
∑
ui = m.

Call the set of these objects I and define stat((ui)) =
∑
ui. Immediately

n∏
i=1

[` (i;σ)]q =
∑

(ui)∈I

qstat((ui)),

so it remains to find a bijection f : I → PFn with stat = area ◦ f . Consider arbitrary (ui) ∈ I and choose π

based on σ as in the proof of Proposition 3.1. Now we define the map

f : I −→ PFn
(ui) 7−→ (π1 − u1, π2 − u2, . . . , πn − un).

We claim that f is a bijection. It is well-defined because π is a parking function, and weakly reducing all terms

of a parking function gives a parking function. Injectivity follows since π can be recovered as the outcome of the

image, and then ui = πi −αi. The function is surjective by the casework from Proposition 3.1. Since swapping

columns preserves area, the permutation π can be rearranged to the permutation n n − 1 · · · 21 which has no

area. Now reducing each πi by ui adds ui to the area, so area ◦ f =
∑
ui as desired.

Inductive proof. For n = 1, there is only one permutation σ = (1), for which ϕ−1(σ) = PF1 = {(1)}. Therefore,

∑
p∈ϕ−1(σ)

qarea(p) = qarea(1) = q0 = 1 = [` (1; 1)]q =

n∏
i=1

[` (i;σ)]q.

Now, suppose that the statement is true for 1, . . . , n − 1. Let σ = σ1 · · ·σn ∈ Sn. Let d be the index such

that σd = n. As in the proof of Proposition 4.2, we split σ into three pieces

σ = σ1 · · ·σd−1︸ ︷︷ ︸
s′

σd σd+1 · · ·σn︸ ︷︷ ︸
s′′

,

and we consider the permutations σ′ ∈ Sd−1 and σ′′ ∈ Sn−d.
Since the value of ` (i;σ) only depends on the relative order of the numbers, ` (i;σ) = ` (i;σ′) for all

1 ≤ i ≤ d− 1, ` (i;σ) = ` (i− d;σ′′) for all d+ 1 ≤ i ≤ n, and ` (d;σ) = d. Thus by induction hypothesis,

n∏
i=1

[` (i;σ)]q =

(
d−1∏
i=1

[` (i;σ′)]q

)
[d]q

(
n−d∏
i=1

[` (i;σ′′)]q

)

= [d]q

 ∑
p′∈ϕ−1(σ′)

qarea(p
′)

 ∑
p′′∈ϕ−1(σ′′)

qarea(p
′′)

 .

Let t1, . . . , td−1 and td+1, . . . , tn be the increasing rearrangements of σ1, . . . , σd−1 and σd+1, . . . , σn, respec-

tively. For the RHS in the formula of Proposition 5.1, since the nth car cn parks at spot d, the parking

functions (α1, . . . , αn) which map to σ = σ1 · · ·σn are precisely those such that (αt1 , . . . , αtd−1
) ∈ ϕ−1(σ′),

(αtd+1
, . . . , αtn) ∈ ϕ−1(σ′′), and αn ∈ {1, . . . , d}. Moreover, the area of a parking function is the area of its

decreasing rearrangement, and so

area(α1, . . . , αn) = area(αt1 , . . . , αtd−1
) + area(αtd+1

, . . . , αtn) + d− αn.

ECA 1:2 (2021) Article #S2R11 12

Laura Colmenarejo et al.

Therefore, we can say that

∑
p∈ϕ−1(σ)

qarea(p) =

d∑
r=1

∑
p′∈ϕ−1(σ′)

∑
p′′∈ϕ−1(σ′′)

qarea(p
′)qarea(p

′′)qd−r

=

(
1 + q + · · ·+ qd−1

)(∑
p′∈ϕ−1(σ′)

qarea(p
′)

)(∑
p′′∈ϕ−1(σ′′)

qarea(p
′′)

)

= [d]q

(∑
p′∈ϕ−1(σ′)

qarea(p
′)

)(∑
p′′∈ϕ−1(σ′′)

qarea(p
′′)

)
=

n∏
i=1

[` (i;σ)]q,

which completes the inductive step.

Corollary 5.1. For each n, we have

∑
p∈PFn

qarea(p) =
∑
σ∈Sn

n∏
i=1

[` (i;σ)]q.

Proof. By Proposition 5.1, summing over all fibers, we have that

∑
σ∈Sn

n∏
i=1

[` (i;σ)]q =
∑
σ∈Sn

∑
p∈ϕ−1(σ)

qarea(p) =
∑

p∈PFn

qarea(p).

By [12, Univariate symmetry], we have the following chain of identities.

Corollary 5.2. The following chain of identities holds:

∑
σ∈Sn

(
n∏
i=1

[` (i;σ)]q

)
=

∑
p∈PFn

qarea(p) =
∑

p∈PFn

qdinv(p) =
∑

p∈PFn

qpmaj(p),

where dinv and pmaj are other well-known statistics on parking functions (see [12]).

In fact, following the q, t-statistics presented in [12], we arrive at the following result.

Corollary 5.3. For any statistic stat on permutations,

∑
σ∈Sn

tstat(σ)

(
n∏
i=1

[` (i;σ)]q

)
=

∑
p∈PFn

qarea(p)tstat(ϕ(p)).

5.1 The k-Naples area statistics

Next, we generalize Proposition 5.1 to k-Naples parking functions. We begin by introducing an area statistic for

the k-Naples parking functions. For parking functions, the area statistic counts the distance between the Dyck

path and the main diagonal, see Definition 5.1. Alternatively, one can think about the area as distance between

the lattice path and the highest point among lattice paths in the same fiber of ϕ. Therefore, our definition for

the k-Naples area counts the distance between the lattice path given by the αi’s and the highest that path can

be while the corresponding parking function still remains in the fiber of ϕk.

Definition 5.2. Given a parking function α = (α1, α2, . . . , αn), we define the k-Naples area by

areak(α) =

n∑
i=1

[n− i+ rightk (i;ϕk(α))− αi] .

Note that for k = 0, rightk (i;σ) = 1 and we recover the definition of area for parking functions. Bear in

mind, however, that rightk (i;σ) also depends on k.

Example 5.1. Consider α = (3, 2, 2) as a 1-Naples parking function, for which ϕ1(α) = 321. Now

right1 (1; 321) = right1 (2; 321) = 2 and right1 (3; 321) = 1. Therefore,

area1(α) = (3− 1 + 2− 3) + (3− 2 + 2− 2) + (3− 3 + 1− 2) = 1.

ECA 1:2 (2021) Article #S2R11 13

Laura Colmenarejo et al.

Now, we study the distribution of the areak statistic over the fiber ϕ−1k (σ), where σ is a permutation. We

find that it is the q-analog of the formula in Theorem 3.1.

Proposition 5.2. For any permutation σ ∈ Sn,∑
p∈ϕ−1

k (σ)

qareak(p) =

n∏
i=1

[`k (i;σ)]q.

Proof. As in the proof of Proposition 5.1, consider the q-analogue as a generating function for objects (ui), this

time with ui < `k (i;σ). Again, let I be the set of these objects, and define a statistic stat((ui)) =
∑
ui. Now

the q-analogue is a generating function satisfying

n∏
i=1

[`k (i;σ)]q =
∑

(ui)∈I

qstat((ui)).

It remains to find a bijection f : I → ϕ−1k (σ) with stat = areak ◦ f . We define the map f as

f((ui)) = (π1 + rightk (1;σ)− u1 − 1, π2 + rightk (2;σ)− u2 − 1, . . . , πn + rightk (n;σ)− un − 1),

for (ui) ∈ I, where π is defined in the proof of Theorem 3.1. We claim that f is a bijection. To see that

f is well-defined, we start with the permutation π = π1 · · ·πn, which is a parking function. Then, adding

rightk (i;σ) − 1 to πi leads to the highest point that the path could be, which is still a k-Naples parking

function. Finally, weakly reducing each entry by ui gives a k-Naples parking function in the same fiber of ϕk.

Moreover, given α ∈ ϕ−1k (σ), we have that f−1(α) is defined by ui = αi − πi − rightk (i;σ) + 1. This formula

is obtained directly from the definition of f by taking αi as the ith entry of f((ui)) and writing ui in terms of

αi, πi and rightk (i;σ), using that the values of πi and rightk (i;σ) are given by σ.

Finally, the fact that f is surjective follows from the casework in the proof of Theorem 3.1.

Now the k-Naples area is

areak ◦ f =
∑

[n− i+ rightk (i;σ)− (πi + rightk (i;σ)− ui − 1)]

=
∑

[n− i− πi + ui + 1] =
∑

ui = stat((ui)).

Taking the q-analogues of the `k (i;σ) in Theorem 3.2 gives the distribution of the areak statistic over PFn,k.

Proposition 5.3. For n ≥ 1, ∑
p∈PFn,k

qareak(p) =
∑
σ∈Sn

n∏
i=1

[`k (i;σ)]q.

Proof. By Proposition 5.2, summing over all fibers gives∑
p∈PFn,k

qarea(p) =
∑
σ∈Sn

∑
p∈ϕ−1

k (σ)

qareak(p) =
∑
σ∈Sn

n∏
i=1

[`k (i;σ)]q.

We conclude with Table 1, where we list values of the k-Naples area for some small values of k and n.

Acknowledgements

Part of this research was performed with support from the Institute for Pure and Applied Mathematics (IPAM),

which is supported by the National Science Foundation (Grant No. DMS-1440415), from the EDGE Foundation,

and from private donations of Joan Barksdale and Nancy Sinclair. LC was partially supported by MTM2016-

75024-P. PEH was partially supported by The Karen Uhlenbeck EDGE Fellowship. ARVM was partially

supported by NSF Graduate Research Fellowship DGE-1247392 and the NSF KY-WV LSAMP Bridge to

Doctorate Fellowship HRD-2004710. The authors want to thank Raman Sanyal for sharing his work with

Elias Drohla in private communication, and for pointing out the reference to Exercise 5.49(d,e) in [21], and

Ayo Adeniran for his helpful insights throughout the project. ES would also like to thank Ralph Morrison for

connecting her to PEH and Bernd Sturmfels for funding through his BEAR fund at UC Berkeley.

ECA 1:2 (2021) Article #S2R11 14

Laura Colmenarejo et al.

n k Distribution of areak over PFn,k
1 0 1

2 0 q + 2
1 2q + 2

3 0 q3 + 3q2 + 6q + 6
1 2q3 + 7q2 + 9q + 6
2 3q3 + 9q2 + 9q + 6

4 0 q6 + 4q5 + 10q4 + 20q3 + 30q2 + 36q + 24
1 2q6 + 9q5 + 24q4 + 41q3 + 53q2 + 50q + 24
2 3q6 + 13q5 + 34q4 + 58q3 + 60q2 + 48q + 24
3 4q6 + 16q5 + 40q4 + 64q3 + 60q2 + 48q + 24

5 0 q10 + 5q9 + 15q8 + 35q7 + 70q6 + 120q5 + 180q4 + 240q3 + 270q2 + 240q + 120
1 2q10 + 11q9 + 35q8 + 84q7 + 165q6 + 263q5 + 361q4 + 429q3 + 435q2 + 320q + 120
2 3q10 + 16q9 + 50q8 + 121q7 + 238q6 + 384q5 + 502q4 + 529q3 + 462q2 + 306q + 120
3 4q10 + 21q9 + 65q8 + 155q7 + 295q6 + 464q5 + 576q4 + 550q3 + 450q2 + 300q + 120
4 5q10 + 25q9 + 75q8 + 175q7 + 325q6 + 500q5 + 600q4 + 550q3 + 450q2 + 300q + 120

Table 1: Distribution of the k-Naples area for first values of k < n computed with [18].

References

[1] A. Adeniran, S. Butler, G. Dorpalen-Barry, P. E. Harris, C. Hettle, Q. Liang, J. L. Martin and H. Nam,

Enumerating parking completions using join and split, Electron. J. Combin. 27(2) (2020), #P2.44.

[2] A. Adeniran, Gončarov polynomials, partition lattices and parking sequences, Doctoral dissertation, Texas

A&M University, 2020. Available electronically from http://hdl.handle.net.

[3] A. Adeniran and C. Yan, Gončarov polynomials in partition lattices and exponential families, Adv. in Appl.

Math., 2020.

[4] A. Adeniran and C. Yan, On increasing and invariant parking sequences, 2020,

https://arxiv.org/pdf/2005.04759.pdf.

[5] A. Baumgardner, The Naples parking function, Honors Contract-Graph Theory, Florida Gulf Coast Uni-

versity, 2019.

[6] B. Benson, D. Chakrabarty, and P. Tetali, G-parking functions, acyclic orientations and spanning trees,

Discrete Math. 310(8) (2010), 1340–1353.

[7] M. Bóna, Handbook of enumerative combinatorics, Discrete Mathematics and Its Applications, CRC Press,

Hoboken, NJ, 2015.

[8] J. Carlson, A. Christensen, P.E. Harris, Z. Jones, and A. Ramos Rodŕıguez, Parking functions: Choose

your own adventure, 2020.

[9] E. Colaric, R. DeMuse, J. Martin, and M. Yin, Interval parking functions, 2020,

https://arxiv.org/pdf/2006.09321.pdf.

[10] A. Christensen, P. E. Harris, Z. Jones, M. Loving, A. Ramos Rodŕıguez, J. Rennie, and G. Rojas Kirby,

A generalization of parking functions allowing backward movement, Electron. J. Combin. 27(1) (2020),

#P1.33.

[11] A. Konheim and B. Weiss, An occupancy discipline and applications, SIAM J. Appl. Math. 14(6) (1966),

1266–1274.

[12] N. Loehr, Combinatorics of q, t-parking functions, Adv. in Appl. Math. 34(2) (2005), 408–425.

[13] J. Pitman and R. P. Stanley, A polytope related to empirical distributions, plane trees, parking functions,

and the associahedron, Discrete Comput. Geom. 27(4) (2002), 603–634.

[14] R. Pyke, The supremum and infimum of the Poisson process, Ann. Math. Statist. 30 (1959), 568–576.

ECA 1:2 (2021) Article #S2R11 15

Laura Colmenarejo et al.

[15] M. Rubey, C. Stump, et al., FindStat - The combinatorial statistics database, Accessed July 2020.

[16] M. Schützenberger, On an enumeration problem, J. Combinatorial Theory, 4 (1968), 219–221.

[17] R. Sanyal and E. Drohla, Parking-functions, schattenvektoren und Catalan-zahlen, Bachelor thesis, 2020.

[18] W. Stein et al., Sage Mathematics Software (Version 9.0), The Sage Development Team, 2020.

[19] R. Stanley, Hyperplane arrangements, interval orders, and trees, Proc. Nat. Acad. Sci. U.S.A. 93(6) (1996),

2620–2625.

[20] R. Stanley, Parking functions and noncrossing partitions, volume 4(2), The Wilf Festschrift (Philadelphia,

PA, 1996), 1997.

[21] R. Stanley, Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics,

Cambridge University Press, Cambridge, 1999.

ECA 1:2 (2021) Article #S2R11 16

