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Abstract: We consider various properties and manifestations of some sign-alternating univariate polynomials
borne of right-triangular integer arrays related to certain generalizations of the Fibonacci sequence. Using a
theory of the root geometry of polynomial sequences developed by J. L. Gross, T. Mansour, T. W. Tucker, and
D. G. L. Wang, we show that the roots of these ‘sign-alternating Gibonacci polynomials’ are real and distinct,
and we obtain explicit bounds on these roots. We also derive Binet-type closed expressions for the polynomials.
Some of these results are applied to resolve finiteness questions pertaining to a one-player combinatorial game
(or puzzle) modeled after a well-known puzzle we call the ‘Networked-numbers Game.’

Elsewhere, the first- and second-named authors, in collaboration with A. Nance, have found rank symmetric
‘diamond colored’ distributive lattices naturally related to certain representations of the special linear Lie
algebras. Those lattice cardinalities can be computed using sign-alternating Fibonacci polynomials, and the
lattice rank generating functions corresponding to the rows of some new and easily defined triangular integer
arrays. Here, we present Gibonaccian, and in particular Lucasian, versions of those symmetric Fibonaccian
lattices/results, but without the algebraic context of the latter.

Keywords: Distributive lattices; Fibonacci polynomials; Fibonacci sequence; Gibonacci polynomials; Lucas
sequence; Networked-numbers Game; Ranked posets; Real-rootedness; Triangular arrays
2020 Mathematics Subject Classification: 11B39; 05A15

1. Introduction

The sign-alternating polynomials we consider here naturally generalize a variation of the so-called Fibonacci
polynomials defined in Section 37 of [12] and Section 9.4 of [1]. Coefficients for the latter polynomials can be
viewed as a nicely-structured right-triangular array of positive integers – see the leftmost triangle of Figure 1.1
below or OEIS A011973 [14]. To introduce the sign-alternating Gibonacci∗ polynomials, we consider a two-
parameter generalization of the foregoing right-triangular Fibonacci array (see Figure 1.2). Throughout this
paper, these parameters are positive real numbers α and β, although, for enumerative reasons, at times we take
a special interest in those cases where α and β are integers. We note here at the outset that variations of our
sign-alternating Gibonacci polynomials occur as special cases of the so-called Horadam sequence of polynomials
defined in [10] and of the type (0, 1) polynomials of [7].

What we call the (α, β)-Gibonacci right-triangular array (or Gibonacci array, for short) is the array

G(α, β) := (gα, βk,j )k∈{0,1,2,...},j∈{0,1,...,b k2 c}

where gα, β0,0 := α, gα, β1,0 := β, and
gα, βk,j := gα, βk−1,j + gα, βk−2,j−1

for integers j and k with k ≥ 2 and with the understanding that gα, βk,j := 0 when j < 0 or j > bk2 c. The first
several rows of the array are depicted in Figure 1.2.

The right-triangular arrays G(1, 1) and G(2, 1) are partially depicted in Figure 1.1. Row sums of G(1, 1)
correspond to the Fibonacci sequence f0 = 1, f1 = 1, f2 = 2, f3 = 3, f4 = 5, etc, while row sums of G(2, 1)

∗The adjective “Gibonacci” is a portmanteau identifying certain Generalized Fibonacci sequences. In Section 7 of [12], T. Koshy
attributes this neologism to A. T. Benjamin and J. J. Quinn from their well-known book [1].
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1 5 6 1

1 6 10 4
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1 9 27 30 9

· · ·

Figure 1.1: The right-triangular Fibonacci (left) and Lucas (right) arrays

correspond to the Lucas sequence `0 = 2, `1 = 1, `2 = 3, `3 = 4, `4 = 7, etc. So G(1, 1) (respectively, G(2, 1))
is the right-triangular Fibonacci (resp. Lucas) array.

For the remainder of this section, let k and j be integers with 0 ≤ j ≤ bk/2c. Using induction and the
defining recurrence for G(α, β), it is easy to see that

gα, βk,j =

(
k − j − 1

j − 1

)
α+

(
k − j − 1

j

)
β,

with the usual convention that for integers a and b, the binomial coefficient
(
a
b

)
is 0 when we do not have

0 ≤ b ≤ a. When α and β are positive integers, the number gα, βk,j has a nice combinatorial interpretation as the
number of “(α, β)-phased k-tilings,” (see Combinatorial Theorem 13 from [1]).

The focus of this paper is on the following polynomials:

G
α, β

k (x) :=

b k2 c∑
j=0

(−1)jgα, βk,j x
b k2 c−j ,

so G
α, β

n (x) is a polynomial whose integer coefficients are signed versions of the kth row of G(α, β). (The
“\overline{G}” LaTeX notation used above is meant to be a visual reminder that the signs of the coefficients
alternate.) As an example, when α = 2 and β = 1, then G

2,1

7 (x) = x3 − 7x2 + 14x − 7. We call these
the sign-alternating (α, β)-Gibonacci array polynomials, or for brevity sign-alternating Gibonacci polynomials.

When needed, we set G
α, β

−1 (x) := 0. From the defining recurrence of the Gibonacci array we get the following
fundamental recurrence for our sign-alternating Gibonacci polynomials:

G
α, β

k (x) = x(k−1)mod 2G
α, β

k−1(x)−Gα, β

k−2(x)

for all integers k ≥ 2, where G
α, β

0 (x) = α and G
α, β

1 (x) = β. A routine application of the preceding recurrence
is the following, for all k ≥ 2:

G
α, β

k (x) = x(k−1)mod 2β G
1, 1

k−1(x)− αG 1, 1

k−2(x),

where any G
1, 1

m (x) is to be viewed as a sign-alternating Fibonacci polynomial obtained from the Fibonacci array
G(1, 1).

α

β

β α

β α+ β

β α+ 2β α

β α+ 3β 2α+ β

β α+ 4β 3α+ 3β α

β α+ 5β 4α+ 6β 3α+ β

β α+ 6β 5α+ 10β 6α+ 4β α

β α+ 7β 6α+ 15β 10α+ 10β 4α+ β

· · ·

Figure 1.2: The right-triangular Gibonacci array G(α, β)
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We have encountered certain of these polynomials on two separate occasions within the context of our work
in combinatorial representation theory: once in our study of a game of numbers related to Weyl group actions
on Weyl symmetric functions, and once in our study of distributive lattice models for semisimple Lie algebra
representations. A primary purpose of this paper is to draw attention to the titular family of sign-alternating
Gibonacci polynomials by exhibiting aspects of these disparate connections.

The first of the two aforementioned connections is to a single-player game (or puzzle) most often called the
‘Numbers Game’, see [6] or Section 4.3 of [3]. We prefer to call this puzzle the ‘Networked-numbers Game’ to
emphasize the crucial role of an underlying graph that links the numbers together. In analyzing a two-node
version of this game, we rediscovered certain numerical constraints on gameplay that were originally found by
Eriksson [6]. Our new proof of this result is obtained by directly relating said constraints to the roots of the
sign-alternating Fibonacci polynomials. This result is recovered in Section 4 here as a corollary (Corollary
4.1) of a more general result (Theorem 4.1). The latter result concerns roots of sign-alternating Gibonacci
polynomials and motivates the considerations of Sections 2 and 3 here.

The second connection is to some distributive lattices that have many manifestations in the literature
but were re-discovered by us in a Lie representation-theoretic context. Specifically, in [5] are presented some
symmetric distributive lattices related to the sequence of ‘symmetric’ Fibonacci numbers 1, 3, 8, 21, 55, etc. The
‘symmetric Fibonaccian lattices’ of that paper are shown to be models for certain representations of the special
linear Lie algebras and for the related skew Schur functions. Some new enumerative identities relating to those
lattices were also obtained in [5]. Those results motivated us to find Gibonaccian ranked poset analogs of the
symmetric Fibonaccian lattices, which we present in Section 5 here. These new families of ranked posets include
what we call symmetric Lucasian lattices, which are symmetric distributive lattices related to the sequence of
‘symmetric’ Lucas numbers 2, 3, 7, 18, 47, etc. In general, our new posets possess enumerative properties
(Theorems 5.1-5.2) that analogize results for the symmetric Fibonaccian lattices but without (as far as we can
tell) an analogous algebraic context. Our work in this section generalizes some of the results of [13] which, in
our notation, was mostly concerned with the sequence of rank sizes for the n = 3 and (α, β) ∈ {(1, 1), (2, 1)}
cases.

2. Roots of sign-alternating Gibonacci polynomials

A systematic study of the root geometry of certain recursively defined polynomial sequences is undertaken in [7]
and [8]. Here, we connect our sign-alternating Gibonacci polynomials to the environment of [7] so we can use the
framework of that paper to obtain many of the root-related results of this section. Some terminology: For sets
of real numbers X = {x1, . . . , xn} and Y = {y1, . . . , ym} each indexed from smallest to largest, say X interlaces
Y from both sides and write X Y if m = n − 1 and x1 < y1 < x2 < y2 < · · · < yn−1 < xn; say X interlaces
Y from the right and write X Y if m = n and y1 < x1 < y2 < x2 < · · · < yn < xn; and say X interlaces Y
and write X() Y if either X Y or X Y . If a sequence {xk} converges to some x strictly-increasingly (resp.
strictly-decreasingly), we write {xk} ↗ x (resp. {xk} ↘ x). Throughout this section, we set q := α/β. Since

sgn
(
G
α, β

k (x)
)

= sgn
(
G

q, 1

k (x)
)

for any real number x, then some results of this section will be developed for

G
q, 1

k (x) rather than G
α, β

k (x).
We now develop a special case of Theorem 2.6 of [7], from which we will deduce most of our root-related

results for sign-alternating Gibonacci polynomials G
q, 1

k (x). Define a sequence {Wk(x)}k≥0 of polynomials
recursively by the rule Wk(x) = Wk−1(x) + xWk−2(x) when k ≥ 2, with W0(x) := 1 and W1(x) := 1 + qx. Let
d′k be the number of real roots of Wk(x), and let Rk := {ξk,1, . . . , ξk,d′k} be the set of these roots, indexed from
smallest to largest.

Theorem 2.1. With {Wk(x)}k≥0 defined as above, then Wk(x) is a polynomial of degree d′k = b(k + 1)/2c
and has d′k distinct real roots. For any i ≥ 1, the sequence {ξk,i}k≥1 converges to −∞. Also, for any k ≥ 1,
Rk+1( ) Rk and Rk+2 Rk. If q ≤ 2, then for any i ≥ 0, {ξk,d′k−i}k≥1 ↗ −

1
4 . If q > 2, then {ξk,d′k}k≥1 ↗

−q+1
q2

and, for any i ≥ 1, {ξk,d′k−i}k≥1 ↗ −
1
4 .

Proof. This is a special case of Theorem 2.6 of [7], where we have taken a = b = 1, c = 0, r = −1/q, t = q,

x∗ = −1/4, r∗ = − 1
4 −

1
2q , and y∗ =

{ −q+1
q2 if q ≥ 1

0 if q < 1
.

Proposition 2.1. We have G
q, 1

k (x) = xbk/2cWk−1(− 1
x ) for any x 6= 0 and for any k ≥ 2.

Proof. Observe that the expression xbk/2cWk−1(− 1
x ) is defined for all x 6= 0, has a removable discontinuity at

x = 0, and simplifies to a polynomial. So we let P k(x) be the polynomial simplification of xbk/2cWk−1(− 1
x ). It

is routine to verify that the P k(x)’s satisfy the same recurrence relations as the G
q, 1

k (x)’s with the same initial
conditions.
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Theorem 2.2. For any k ≥ 2, the degree dk := bk/2c polynomial G
α, β

k (x) has dk distinct positive real roots
which we gather in the set Sk := {ζk,1, . . . , ζk,dk}, indexed from smallest to largest. For any i ≥ 1, the sequence
{ζk,i}k≥2 converges to 0. Also, for any k ≥ 2, Sk+1( ) Sk and Sk+2 Sk. If α/β ≤ 2, then for any i ≥ 0,

{ζk,dk−i}k≥2 ↗ 4. Now suppose α/β > 2. Then {ζk,dk}k≥2 ↗
(α/β)2

α/β−1 and, for any i ≥ 1, {ζk,dk−i}k≥2 ↗ 4.

Proof. All claims follow by putting Proposition 2.1 together with Theorem 2.1.

3. Binet-type formulas for sign-alternating Gibonacci
polynomials

Here we show how to use a rudimentary linear algebraic approach to derive Binet-type formulas for the sign-
alternating Gibonacci polynomials. Such methodology is standard in solving recurrences such as those that
define our sign-alternating Gibonacci polynomials (see, for example, [2], [10]). For any positive integer m, the
fundamental recurrence for these polynomials yields the matrix identities(

G
α, β

2m (x)

G
α, β

2m+1(x)

)
=

(
−1 x
−1 x− 1

)(
G
α, β

2m−2(x)

G
α, β

2m−1(x)

)

= · · ·

=
(
−1 x
−1 x− 1

)m(
G
α, β

0 (x)

G
α, β

1 (x)

)

=
(
−1 x
−1 x− 1

)m(
α
β

)
.

One can check that the transition matrix

(
−1 x
−1 x− 1

)
has eigenvalues

λ =
1

2

(
x− 2 +

√
x2 − 4x

)
and κ =

1

2

(
x− 2−

√
x2 − 4x

)
with corresponding eigenvectors

(
x− 1− λ

1

)
and

(
x− 1− κ

1

)
respectively. The eigenvalues λ and κ are

roots of the characteristic polynomial

det

(
t+ 1 −x

1 t− (x− 1)

)
= t2 − (x− 2)t+ 1

of our transition matrix, so λκ = 1 and λ + κ = x − 2. Using these quantities to diagonalize the transition
matrix yields the following expression for its mth power:(

−1 x
−1 x− 1

)m

=

1

κ− λ

(
λm(x− 1− λ)− κm(x− 1− κ) −λm(x− 1− λ)(x− 1− κ) + κm(x− 1− κ)(x− 1− λ)

λm − κm −λm(x− 1− κ) + κm(x− 1− λ)

)
.

Then

(
G
α, β

2m (x)

G
α, β

2m+1(x)

)
=

(
−1 x
−1 x− 1

)m(
α
β

)
=

1

κ− λ

(
λm(x− 1− λ)[α− (x− 1− κ)β]− κm(x− 1− κ)[α− (x− 1− λ)β]

λm[α− (x− 1− κ)β]− κm[α− (x− 1− λ)β]

)
.

We therefore obtain nonrecursive closed-form expressions for G
α, β

2m (x) and G
α, β

2m+1(x). We formally record these
results in the following slightly modified forms.

Theorem 3.1. Keep the above notation. For any nonnegative integer m, we have

G
α, β

2m (x) =
λm[(κ+ 1)α− xβ]− κm[(λ+ 1)α− xβ]

κ− λ
,

G
α, β

2m+1(x) =
λm[α− (λ+ 1)β]− κm[α− (κ+ 1)β]

κ− λ
.

ECA 1:2 (2021) Article #S2R15 4
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As an illustration of this theorem, we note that the preceding formulas nicely specialize for the α = 1, β = 1
(Fibonacci) and α = 2, β = 1 (Lucas) cases. What follows next are just variations on well-known closed-form
expressions for related Fibonacci/Lucas polynomials.

Corollary 3.1. Let m be a nonnegative integer. The sign-alternating Fibonacci polynomials can be written
thusly:

G
1, 1

2m(x) =
λ2m+1 − 1

λm(λ− 1)
and G

1, 1

2m+1(x) =
λ2m+2 − 1

λm(λ2 − 1)
.

The sign-alternating Lucas polynomials can be written thusly:

G
2, 1

2m(x) =
λ2m + 1

λm
and G

2, 1

2m+1(x) =
λ2m+1 + 1

λm(λ+ 1)
.

One can use the preceding forms to confirm, and in fact derive, explicit expressions for the roots of the sign-
alternating Fibonacci/Lucas polynomials (see Corollary 3.2). It appears that these results were first obtained
in [9]. These explicit expressions are useful for interpreting a key result of the next section (Corollary 4.1).

Corollary 3.2. The sign-alternating Fibonacci polynomials G
1, 1

0 (x) and G
1, 1

1 (x) and the sign-alternating Lucas

polynomials G
2, 1

0 (x) and G
2, 1

1 (x) are positive constants and therefore have no roots. Now let k be an integer

with k ≥ 2. The bk/2c distinct roots of the sign-alternating Fibonacci polynomial G
1, 1

k (x) comprise the set{
4 cos2

(
jπ

k + 1

)
j is an integer satisfying 1 ≤ j ≤ bk/2c

}
.

Now suppose d and r are integers with d odd and r nonnegative such that k = 2rd. The bk/2c distinct roots of

the sign-alternating Lucas polynomial G
2, 1

k (x) comprise the set{
4 cos2

(
jπ

k
− π

2r+1

)
j ∈

{
d+(2l−1)

2 l is an integer satisfying 1 ≤ l ≤ bk/2c
}}

.

When k is odd (i.e. when r = 0), the preceding set of roots can be re-expressed as{
4 sin2

(
jπ

k

)
j is an integer satisfying 1 ≤ j ≤ bk/2c

}
.

4. A Gibonacci generalization of the Networked-
numbers Game on two-node graphs

Our variation of the so-called Networked-numbers Game (NG) will be played on a simple connected graph Γ
with two nodes labelled γ1 and γ2. Real numbers are assigned to the nodes of Γ in pairs; for an ordered pair of
real numbers (u, v), we assume u is assigned to γ1 and v to γ2. Fix positive real numbers p and q, to be thought
of as multipliers when certain node-firing moves are applied. In ordinary NG-play, these moves are as follows.
The γ1-node-firing move replaces u with −u and replaces v with pu+ v, which we depict as follows:

rγ1

u

rγ2
v

- �
p q fire node γ1 rγ1

−u
rγ2

pu+ v

- �
p q

This firing move can only be applied legally in NG-play if u > 0. Similarly, the γ2-node-firing move replaces u
with u+ qv and replaces v with −v, which we depict as follows:

rγ1

u

rγ2
v

- �
p q fire node γ2 rγ1

u+ qv

rγ2
−v

- �
p q

This firing move can only be applied legally if v > 0.
The Networked-numbers Game on two-node graphs begins with a player choosing a pair (a, b) of nonnegative

numbers (at least one of which is nonzero) to assign to the nodes of our graph, then choosing γ1 or γ2 to apply
a legal firing move, and then repeating the preceding step as long as a firing move can be applied legally to the
result of the previous firing. What we call the (α, β)-seeded Gibonacci game varies the NG only by modifying
the initial firing move. If the initial move is to fire γ1, then (a, b) is replaced with (−αa− q(α− β)b , pβa+αb),
but all subsequent node-firings are unmodified and conform to the usual firing rules of NG-play.

ECA 1:2 (2021) Article #S2R15 5
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rγ1

a

rγ2
b

- �
p q modified γ1-firing

 rγ1

−αa− q(α− β) b

rγ2
pβ a+ α b

- �
p q

Similarly, the modified initial γ2 firing move replaces (a, b) with (αa+ qβb , −p(α− β)a− αb).

rγ1

a

rγ2
b

- �
p q modified γ2-firing

 rγ1

αa+ qβ b

rγ2
−p(α− β) a− α b

- �
p q

Note that each of these modified rules reduces to the usual NG rules for initial node-firings when α = β = 1;
more importantly, they “seed” certain initial values into gameplay so that we can utilize them sign-alternating
Gibonacci polynomials.

Example 4.1. In this example, we take α := 5, β := 2, p := 7
2 , and q := 8

7 . Viewing a and b as generic positive
real numbers, here, is how the Gibonacci game proceeds when we fire γ1 first:

rγ1

a

rγ2
b

- �
7/2 8/7 modified γ1-firing

 rγ1

−5a− 8
7
· 3b

rγ2
7
2
· 2a+ 5b

- �
7/2 8/7

 rγ1

3a+ 16
7
b

rγ2
−7a− 5b

- �
7/2 8/7

 rγ1

−3a− 16
7
b

rγ2
7
2
a+ 3b

- �
7/2 8/7

 rγ1

a+ 8
7
b

rγ2
− 7

2
a− 3b

- �
7/2 8/7

 rγ1

−a− 8
7
b

rγ2
b

- �
7/2 8/7

 rγ1

−a
rγ2
−b

- �
7/2 8/7

So, this game terminates in six moves independent of any specific choice for a and b. Here is how the Gibonacci
game proceeds when we fire γ2 first:

rγ1

a

rγ2
b

- �
7/2 8/7 modified γ2-firing

 rγ1

5a+ 8
7
· 2b

rγ2
− 7

2
· 3a− 5b

- �
7/2 8/7

 rγ1

−5a− 16
7
b

rγ2
7a+ 3b

- �
7/2 8/7

 rγ1

3a+ 8
7
b

rγ2
−7a− 3b

- �
7/2 8/7

 rγ1

−3a− 8
7
b

rγ2
7
2
a+ b

- �
7/2 8/7

 rγ1

a

rγ2
− 7

2
a− b

- �
7/2 8/7

 rγ1

−a
rγ2
−b

- �
7/2 8/7

As with the γ1-first game, this game terminates in six moves independent of any specific choice for a and b.
Note that both games have the same terminal numbers.

Our main questions about (α, β)-seeded Gibonacci games concern termination. We need some further
terminology to set up these questions and our answers. Since Gibonacci game play depends on the choices

ECA 1:2 (2021) Article #S2R15 6
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rγ1

a

rγ2
b

- �
p q modified γ1-firing

 rγ1

−ĝ0a− qĝ−1b

rγ2
pĝ1a+ ĝ0b

- �
p q

 rγ1

ĝ2a+ qĝ1b

rγ2
−pĝ1a− ĝ0b

- �
p q

 rγ1

−ĝ2a− qĝ1b
rγ2

pĝ3a+ ĝ2b

- �
p q

• • •

 rγ1

ĝk−2a+ qĝk−3b

rγ2
−pĝk−3a− ĝk−4b

- �
p q

 rγ1

−ĝk−2a− qĝk−3b

rγ2
pĝk−1a+ ĝk−2b

- �
p q

 rγ1

ĝka+ qĝk−1b

rγ2
−pĝk−1a− ĝk−2b

- �
p q

 rγ1

−ĝka− qĝk−1b

rγ2
pĝk+1a+ ĝkb

- �
p q

Figure 4.1: Part of a Gibonacci game with γ1 fired first. (Here, k even.)

made for α, β, p, and q, we refer to the pairing of our two-node graph Γ together with a positive-real-number
four-tuple (α, β, p, q) as a Gibonacci game graph G = G(α, β, p, q). We say a pair of real numbers (a, b) is nonzero
if at least one of a or b is not zero, dominant if both a and b are nonnegative, and strongly dominant if a and
b are both positive. If a Gibonacci game fails to terminate from some given initial choice of numbers (a, b), we
say the game diverges. Analogizing Eriksson [6], we say a Gibonacci game graph is strongly convergent if, for
any given nonzero dominant pair (a, b), any two Gibonacci games either diverge or else terminate in the same
number of moves. Here, then, are our main questions about Gibonacci games.

(1) Which Gibonacci game graphs are strongly convergent?

(2) For a strongly convergent Gibonacci game graph, what can be said about the terminal numbers for different
terminating games played from a given choice of initial numbers (a, b)?

These are answered by the following theorem. Recall the following notation from Section 2: for any k ≥ 2,
the degree dk := bk/2c polynomial G

α, β

k (x) has dk distinct positive real roots {ζk,1, . . . , ζk,dk}, indexed from

smallest to largest. Set rk := ζk,dk . In addition, let Bα,β :=

{
4 if α/β ≤ 2

(α/β)2

α/β−1 if α/β > 2
.

Theorem 4.1. We take as given some Gibonacci game graph G = G(α, β, p, q). (1) No games terminate if
pq ≥ Bα,β. If pq ∈ (0, Bα,β), then all games terminate. Moreover, the game graph G is strongly convergent if
and only if pq ∈ {rk}k≥2 ∪ [Bα,β ,∞). (2) Suppose, for some k ≥ 2, we have pq = rk. Then every game played

from a nonzero dominant pair (a, b) terminates at
(
qG

α, β

k+1(pq) b,−pGα, β

k−1(pq) a
)

=
(
−qGα, β

k−1(pq) b, pG
α, β

k+1(pq) a
)

when k is even and at
(
−Gα, β

k−1(pq) a,G
α, β

k+1(pq) b
)

=
(
G
α, β

k+1(pq) a,−Gα, β

k−1(pq) b
)

when k is odd. Moreover, game

play requires exactly k + 1 node-firings if (a, b) is strongly dominant and exactly k node-firings otherwise.

Proof. For convenience, let ĝl := G
α, β

l (pq) for any nonnegative integer l, and set ĝ−1 := α − β. It is easy
to verify by induction that, if we fire γ1 (respectively, γ2) first from a generic strongly dominant pair (a, b),
then the (α, β)-seeded two-node Gibonacci game proceeds as in Figure 4.1 (respectively, Figure 4.2). Suppose
pq ≥ Bα,β . Then by Theorem 2.2, ĝl > 0. Consult Figures 4.1 and 4.2 to see that from any nonzero dominant
initial pair (a, b), no Gibonacci game terminates.

Now suppose pq ∈ (0, Bα,β). First, consider the case 0 < pq < r2 = α/β. That is, βpq − α < 0, i.e. ĝ2 < 0.
Then, ĝ3 = βpq − α − β < 0 also. Assume for the moment that γ1 is fired first, so we know a > 0. Then, by
consultation with Figure 4.1, the Gibonacci game terminates after two firings if and only if ĝ2a+ qĝ1b ≤ 0, i.e.
b
a ≤ −ĝ2/(qĝ1) = (α − βpq)/(qβ). In the case that b

a > (α − βpq)/(qβ), then the Gibonacci game terminates
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rγ1

a

rγ2
b

- �
p q modified γ2-firing

 rγ1

ĝ0a+ qĝ1b

rγ2
−pĝ−1a− ĝ0b

- �
p q

 rγ1

−ĝ0a− qĝ1b
rγ2

pĝ1a+ ĝ2b

- �
p q

 rγ1

ĝ2a+ qĝ3b

rγ2
−pĝ1a− ĝ2b

- �
p q

• • •

 rγ1

−ĝk−4a− qĝk−3b

rγ2
pĝk−3a+ ĝk−2b

- �
p q

 rγ1

ĝk−2a+ qĝk−1b

rγ2
−pĝk−3a− ĝk−2b

- �
p q

 rγ1

−ĝk−2a− qĝk−1b

rγ2
pĝk−1a+ ĝkb

- �
p q

 rγ1

ĝka+ qĝk+1b

rγ2
−pĝk−1a− ĝkb

- �
p q

Figure 4.2: Part of a Gibonacci game with γ2 fired first. (Here, k even.)

after three firings, since pĝ3a + ĝ2b is necessarily negative. That is, γ1-first Gibonacci games terminate in two
moves if and only if b

a ≤ (α − βpq)/(qβ) and otherwise terminate in three moves. Similarly see that γ2-first
Gibonacci games terminate in two moves if and only if a

b ≤ (α − βpq)/(pβ) and otherwise terminate in three
moves.

Next, consider the case rj−1 < pq < rj for j > 2. By Theorem 2.2, we know that ĝl > 0 for l ∈ {0, 1, . . . , j−1},
ĝj < 0, and ĝj+1 < 0. Assume for the moment that γ1 is fired first, so a > 0. Supposing that j is even, we can
take k = j in Figure 4.1. Clearly pĝj−1a+ ĝj−2b > 0 and pĝj+1a+ ĝjb < 0. So our Gibonacci game terminates
in exactly j firing moves if and only if ĝja+ qĝj−1b ≤ 0, i.e. b

a ≤ −ĝj/(qĝj−1), and in exactly j + 1 firing moves
otherwise. Next assume that j is odd and take k − 1 = j in Figure 4.1. In this case, ĝj−1a + qĝj−2b > 0 and
ĝj+1a+ qĝjb < 0. Then our Gibonacci game terminates in exactly j firing moves if and only if pĝja+ ĝj−1b ≤ 0,
i.e. b

a ≤ −pĝj/ĝj−1, and in exactly j + 1 firing moves otherwise. When γ2 is fired first, similar analysis shows
that all games require j or j + 1 firing moves, with some games of each length.

Therefore, G can only be strongly convergent if pq ∈ {rk}k≥2 ∪ [Bα,β ,∞). When pq ∈ [Bα,β ,∞), then all
games diverge so G is, by definition, strongly convergent. Now suppose pq = rj for some j ≥ 2. Then ĝl > 0
for l ∈ {0, 1, . . . , j − 1}, ĝj = 0, and ĝj+1 < 0. Notice that ĝj+1 = (pq)jmod 2ĝj − ĝj−1 = −ĝj−1. Suppose for
the moment that j is even. Assuming a is positive, then in Figure 4.1, we can take k = j. if b = 0, this game
terminates in j firing moves with terminal numbers (ĝja + qĝj−1b , −pĝj−1a − ĝj−2b) = (−qĝj−1b , pĝj+1a) =
(qĝj+1b , −pĝj−1a) = (−ĝja−qĝj−1b , pĝj+1a+ĝjb). Now suppose b is positive. Then our game terminates in j+1
firing moves with terminal numbers (−ĝja− qĝj−1b , pĝj+1a+ ĝjb) = (−qĝj−1b , pĝj+1a) = (qĝj+1b , −pĝj−1a).
With a and b both positive, we can also consider Figure 4.2 with k = j. This γ2-first game will terminate in j+1
firing moves with terminal numbers (ĝja+ qĝj+1b , −pĝj−1a− ĝjb) = (qĝj+1b , −pĝj−1a) = (−qĝj−1b , pĝj+1a).
These pairs agree with the terminal numbers of the γ1-first game. In the case that b is positive and a = 0, then
from Figure 4.2 we see that the game terminates in j moves with terminal numbers (−ĝj−2a−qĝj−1b , pĝj−1a+
ĝjb) = (−qĝj−1b , pĝj+1a) = (qĝj+1b , −pĝj−1a) = (ĝja+ qĝj+1b , −pĝj−1a− ĝjb).

The preceding paragraph confirms that G is strongly convergent when pq ∈ {rk}k≥2 ∪ [Bα,β ,∞), that all
games terminate when pq ∈ {rk}k≥2, and that the terminal numbers are as claimed in the theorem statement
when pq ∈ {rk}k≥2.

The next result specializes the preceding theorem to the Fibonacci (α = 1, β = 1) and Lucas (α = 2, β = 1)

cases, with the aid of Corollary 3.2. Set S1,1 :=
{

4 cos2
(

π
k+1

)}
k≥2

and S2,1 :=
{

4 cos2
(
π
2k

)}
k≥2

.

Corollary 4.1. We take as given some Gibonacci game graph G = G(α, β, p, q). For the Fibonacci (respectively,
Lucas) case, we take α = 1, β = 1 (resp. α = 2, β = 1). Then no games terminate if pq ≥ 4. If pq ∈ (0, 4),
then all games terminate. Moreover, the game graph G is strongly convergent if and only if pq ∈ Sα,β ∪ [4,∞).
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Suppose, for some k ≥ 2, we have pq = 4 cos2
(

π
k+1

)
(resp. 4 cos2

(
π
2k

)
). Then every game played from a

nonzero dominant pair (a, b) terminates at
(
qG

α, β

k+1(pq) b,−pGα, β

k−1(pq) a
)

=
(
−qGα, β

k−1(pq) b, pG
α, β

k+1(pq) a
)

when

k is even and at
(
−Gα, β

k−1(pq) a,G
α, β

k+1(pq) b
)

=
(
G
α, β

k+1(pq) a,−Gα, β

k−1(pq) b
)

when k is odd. Moreover, game play

requires exactly k + 1 node-firings if (a, b) is strongly dominant and exactly k node-firings otherwise.

5. Symmetric Gibonaccian ranked posets

We now produce some finite ranked posets that generalize the ‘symmetric Fibonaccian lattices’ of [5]. The
symmetric Fibonaccian lattices have the following salutary properties: (1) They are enumerated by a particular
specialization of the sign-alternating Fibonacci polynomials; (2) They have rank generating functions whose
coefficients are nicely described by some (mostly) new recursively defined symmetric triangular integer arrays;
and (3) They are naturally related to certain representations of the special linear Lie algebras. Here, we
demonstrate that properties (1) and (2) generalize to the symmetric Gibonaccian ranked posets introduced
below.

We begin by fixing positive integers α, n, and k. For reasons that will be explained shortly, we require that
β = 1. Declare that

Rα-Gib(n, k) :=

T = (T1, . . . , Tk)

g1 Tj ∈ {(j − 1)n+ 1, (j − 1)n+ 2, . . . , jn} for all j ∈ {1, . . . , k},g2 Tj+1 6= Tj + 1 for all j ∈ {1, . . . , k − 1},
and g3 (T1, Tk) 6∈ {(1, nk), (2, nk − 1), . . . , (α− 1, nk − (α− 2))}

 ,

a set of positive integer k-tuples satisfying certain conditions. We refer to the objects of this collection as α-
Gibonaccian strings. The conditions (1) from the above definition are to be called the coordinate requirements,
the conditions (2) are the Fibonacci requirements, and the conditions (3) are the α-requirements. We are most
interested in a certain partial ordering of α-Gibonaccian strings. But first, we consider their enumeration as
an unordered collection via inclusion-exclusion, as the latter method makes a direct connection with the sign-
alternating Gibonacci polynomials. We state this result here as a challenge for the reader and obtain the result
later by different means.

Exercise 5.1. Use the enumerative method of inclusion-exclusion to demonstrate the following equality:∣∣∣Rα-Gib(n, k)
∣∣∣ = nkmod 2G

α,1

k (n2).

Now order the α-Gibonaccian strings of Rα-Gib(n, k) by reverse component-wise comparison, i.e. we have
S ≤ T in Rα-Gib(n, k) for S = (S1, . . . , Sk) and T = (T1, . . . , Tk) if and only if Sj ≥ Tj for any j ∈ {1, . . . , k}.
Observe that T covers S in the resulting order diagram if and only if there exists some l ∈ {1, . . . , k} such that
Sl = Tl + 1 while Sj = Tj for all j 6= l. One can see that Rα-Gib(n, k) is a connected and self-dual ranked poset.
We call Rα-Gib(n, k) a symmetric α-Gibonaccian (ranked) poset (or SGP for short). Of course, Rα-Gib(n, 1) is an
n-element chain. For convenience later on, we regard Rα-Gib(n, 0) to be an α-element anti-chain. In Figure 5.1,
we depict R3-Gib(4, 3).

The next result says that for fixed α, SGPs are distributive lattices for all k only when α is 1 or 2, which
we refer to respectively as the symmetric Fibonaccian lattices (α = 1) and symmetric Lucasian lattices (α = 2).

Proposition 5.1. Assume n > α. Then the connected and self-dual ranked poset Rα-Gib(n, k) is a distributive
lattice for some k > 1 if and only if α ∈ {1, 2} if and only if Rα-Gib(n, k) has a unique maximal element for some
k > 1 if and only if Rα-Gib(n, k) is a distributive lattice for all k > 1.

Proof. Throughout, we assume k ≥ 2. When α > 2, the string (2, n + 1, 2n + 1, . . . , n(k − 1) + 1, nk) is in
Rα-Gib(n, k) but neither (1, n + 1, 2n + 1, . . . , n(k − 1) + 1, nk) nor (2, n + 1, 2n + 1, . . . , n(k − 1) + 1, nk − 1)
is. So, Rα-Gib(n, k) has at least two maximal elements, namely (1, n + 1, . . . , n(k − 1) + 1) and (2, n + 1, 2n +
1, . . . , n(k − 1) + 1, nk), and cannot be a distributive lattice.

It remains to argue that for any α ∈ {1, 2} and any k ≥ 2, the poset Rα-Gib(n, k) is a distributive lattice (in
which case Rα-Gib(n, k) will have a unique maximal element). By Proposition 10.2 of [4], it suffices to show that
Rα-Gib(n, k) is closed under reverse-componentwise joins and meets. Say S = (S1, . . . , Sk) and T = (T1, . . . , Tk)

are strings in Rα-Gib(n, k). First, we argue that
(
min(Si, Ti)

)
i∈{1,...,k}

is also in Rα-Gib(n, k). As each of S

and T meet all coordinate requirements for membership in Rα-Gib(n, k), then so does
(

min(Si, Ti)
)
i∈{1,...,k}

.

Now we check the Fibonacci requirements. Well, if min(Si, Ti) + 1 = min(Si+1, Ti+1), then min(Si, Ti) = ni
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s(4, 7, 9)

s(4, 6, 9) s(3, 7, 9)

s(3, 6, 9)

s(3, 5, 9)

s(2, 7, 9)

s(2, 6, 9)

s(2, 5, 9)

s(1, 7, 9)
s(1, 6, 9)
s(1, 5, 9)

s
(4, 6, 10)

s
(4, 7, 10)

s(4, 8, 10)

s
(3, 5, 10)

s
(3, 6, 10)

s (3, 7, 10)

s (3, 8, 10)

s
(2, 5, 10)

s
(2, 6, 10)

s
(2, 7, 10)

s
(2, 8, 10)

s(1, 5, 10)
s(1, 6, 10)
s(1, 7, 10)
s (1, 8, 10)

���

s
(4, 6, 11)

s
(4, 7, 11)

s
(4, 8, 11)

s(3, 5, 11)
s(3, 6, 11)
s(3, 7, 11)
s(3, 8, 11)

s(1, 5, 11)
s(1, 6, 11)
s(1, 7, 11)
s

(1, 8, 11)

s
(4, 6, 12)

s
(4, 7, 12)

s
(4, 8, 12)

s(3, 5, 12)
s(3, 6, 12)
s(3, 7, 12)
s(3, 8, 12)

s(2, 5, 12)
s(2, 6, 12)
s(2, 7, 12)
s(2, 8, 12)

Figure 5.1: The 48-element symmetric 3-Gibonaccian poset R3-Gib(4, 3).
RGF(R3-Gib(4, 3); q) = 1 + 3q + 6q2 + 6q3 + 8q4 + 8q5 + 6q6 + 6q7 + 3q8 + q9.

and min(Si+1, Ti+1) = ni + 1. Since ni is the largest number allowed in the ith coordinate of any ele-
ment of Rα-Gib(n, k), then the only way we get min(Si, Ti) = ni is if Si = ni = Ti. Since one of Si+1

or Ti+1 must be ni + 1, then one of S or T is not in Rα-Gib(n, k), contrary to our hypothesis. That is,(
min(Si, Ti)

)
i∈{1,...,k}

meets all Fibonacci requirements. Last, we check that
(
min(Si, Ti)

)
i∈{1,...,k}

meets all

α-requirements. When α = 1, these requirements are empty. So, consider α = 2. We must show that if
min(S1, T1) = 1, then min(Sk, Tk) < nk. Well, if S1 = 1, then Sk < nk, and therefore min(Sk, Tk) < nk,

and similarly if T1 = 1. That is,
(
min(Si, Ti)

)
i∈{1,...,k}

meets all α-requirements. Second, we must argue that(
max(Si, Ti)

)
i∈{1,...,k}

meets all coordinate, Fibonacci, and α-requirements. This follows by reasoning entirely

similar to the
(
min(Si, Ti)

)
i∈{1,...,k}

case.

We remark that when n = 3 and α = 1, the sequence of symmetric Fibonaccian lattice sizes, starting with
k = 0, is 1, 3, 8, 21, 55, 144, . . ., coinciding with the Fibonacci subsequence {f2m+1}m≥0 (see OEIS A001906 [14]).
We call the numbers of this latter subsequence the symmetric Fibonacci numbers. When n = 3 and α = 2,
it follows from Theorems 5.1-5.2 below that the analogous sequence of symmetric Lucasian lattice sizes is
2, 3, 7, 18, 47, 123, . . ., coinciding with the Lucas subsequence {`2m}m≥0 (see OEIS A005248 [14]). We call the
numbers of this latter subsequence the symmetric Lucas numbers.

Next, we consider a family of triangular arrays indexed by pairs of integers (α;n). Our interest was inspired

by the “(1; 3)” array presented and investigated in [11]. The nth symmetric (α;n)-Gibonacci triangle A(α;n) =

(a(α;n)
k,r ) is defined recursively as follows. For each nonnegative integer k, set In,k := {−k(n − 1),−k(n − 1) +

2, . . . , k(n− 1)− 2, k(n− 1)}, which is to be thought of as an indexing set for row k, and for integers r 6∈ In,k,

set a(α;n)
k,r := 0. For initial array values, take a(α;n)

0,0 := α with a(α;n)
1,r := 1 for each r ∈ In,1. Then for k ≥ 2 and

r ∈ Z, let a(α;n)
k,r :=

 ∑
s∈In,1

a(α;n)
k−1,r+s

 − a(α;n)
k−2,r. When r ∈ In,k for a nonnegative integer k, we say the array
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entry a(α;n)
k,r is regular. Here, for example, is part of A(3;4):

3
1 1 1 1

1 2 3 1 3 2 1
1 3 6 6 8 8 6 6 3 1

...

We define a polynomial A
(α;n)
k (x) by A

(α;n)
k (x) :=

∑
r∈In,k

a(α;n)
k,r x

1
2 (k(n−1)−r), and set A

(α;n)
−1 (x) := 0. So, A

(α;n)
k (1)

is the sum of the regular entries of the kth row of A(α;n).
We now explain why we take β = 1. For k ≥ 2 the first (resp. last) regular entry on the kth row of A(α;n)

agrees with the first (resp. last) regular entry of the preceding row. Since we declare each regular entry of the
1st row to be unity, then the first and last regular entries of all subsequent rows are also unity. The obvious
way to modify A(α;n) in order to account for a β value larger than one is to replace all 1st row regular entries
with β. Then, all subsequent rows would begin and end with β. However, our aim is to generalize symmetric
Fibonaccian distributive lattices, which have exactly one element of maximal and one of minimal rank. So, here
we will require that β = 1.

The following proposition further helps justify some of our language and conventions.

Proposition 5.2. For each k ≥ 0 and r ∈ In,k, we have a(α;n)
k,r = a(α;n)

k,−r , so the symmetric (α;n)-Gibonacci

triangle A(α;n) indeed has symmetric rows. Moreover, all regular entries of A(α;n) are positive integers if and
only if n > α.

Proof. The first claim of the proposition statement follows easily by induction on the row numbers k. For the
second claim, that n > α is necessary for positivity of all regular entries of A(α;n) follows from the simple

observation that a(α;n)
2,0 = n− α.

Next, we show by induction on row numbers k that n > α is also sufficient. Of course, all n of the regular
entries on row 1 are unity and therefore positive. All regular entries on row 2 are equal to n except that

a(α;n)
2,0 = n − α, so all of these entries are positive under the hypothesis that n > α. Now suppose that for

some k > 2, we know that all regular entries on row k′ are positive, if 1 ≤ k′ < k. Our aim is to show that

a generic kth row regular entry a(α;n)
k,r is positive. By symmetry of the array A(α;n), we can, without loss of

generality, assume r ≥ 0. In the formula a(α;n)
k,r :=

 ∑
s∈In,1

a(α;n)
k−1,r+s

 − a(α;n)
k−2,r, all of the summands of the

form a(α;n)
k−1,r+s are nonnegative (by our inductive hypothesis) and at least one of them is positive. Now, either

a(α;n)
k−2,r = 0 or a(α;n)

k−2,r > 0. If a(α;n)
k−2,r = 0, we can conclude that the kth row regular entry a(α;n)

k,r is positive,

completing the induction argument. Now consider the case that a(α;n)
k−2,r > 0. It is easy to see that a(α;n)

k−2,r > 0

if and only if r ∈ In,k−2 if and only if r + (n− 1) ∈ In,k−1 if and only if a(α;n)
k−1,r+(n−1) > 0. The appearance of

“+a(α;n)
k−2,r” in the formula for a(α;n)

k−1,r+(n−1) cancels the “−a(α;n)
k−2,r” appearing in the formula for a(α;n)

k,r , but at the

expense of introducing another (potentially) negative term, namely “a(α;n)
k−3,r+(n−1).” Either a(α;n)

k−3,r+(n−1) = 0

or −a(α;n)
k−3,r+(n−1) > 0. If a(α;n)

k−3,r+(n−1) = 0, then, as before, we can conclude that a(α;n)
k,r > 0, completing the

induction argument. So, suppose a(α;n)
k−3,r+(n−1) > 0. Well, again observe that a(α;n)

k−3,r+(n−1) > 0 if and only if

r + (n − 1) ∈ In,k−3 if and only if r + 2(n − 1) ∈ In,k−2 if and only if a(α;n)
k−2,r+2(n−1) > 0. The appearance of

“+a(α;n)
k−3,r+(n−1)” in the formula for a(α;n)

k−2,r+2(n−1) cancels the “−a(α;n)
k−3,r+(n−1)” now appearing in the formula

for a(α;n)
k,r , but at the expense of introducing another (potentially) negative term, namely “a(α;n)

k−4,r+2(n−1).” To

complete the induction argument, repeat this process until some a(α;n)
k−2i,r+i(n−1) = 0.

In view of the preceding result, from here on, we make the simplifying hypothesis that n > α. The
main results of this section are expressed in Theorems 5.1-5.2 and relate the cardinality and rank sizes of

Rα-Gib(n, k) respectively to the sign-alternating Gibonacci polynomial G
α,1

k (x) and to the symmetric (α;n)-

Gibonacci triangle A(α;n). These results are stated as enumerative identities and as equalities of certain
polynomials in the variable q. We will use the notation [m] := (qm − 1)/(q − 1) and call [m] a q-integer.

The ranked poset Rα-Gib(n, k) has M = (1, n + 1, . . . , (k − 1)n + 1) as its unique element of maximal rank,
N = (n, 2n, . . . , kn) as its unique element of minimal rank, and length k(n − 1). Then, one can see that the
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rank function ρ : Rα-Gib(n, k) −→ {0, . . . , k(n− 1)} is given by

ρ(T ) = k(n− 1)−
k∑
i=1

(Ti − (i− 1)n− 1) =
1

2
k(k + 1)n−

k∑
i=1

Ti.

Theorem 5.1. Let n and k be integers, both larger than 1. Let H
(α;n)
k (q) denote the rank generating function

RGF(Rα-Gib(n, k); q). By convention, A
(α;n)
0 (q) = α = H

(α;n)
0 (q) and A

(α;n)
1 (q) = [n] = H

(α;n)
1 (q). We have (1)

A
(α;n)
k (q) = [n]A

(α;n)
k−1 (q) − qn−1A(α;n)

k−2 (q). When α = 1, we have (2) H
(1;n)
k (q) = A

(1;n)
k (q). For general α, (3)

H
(α;n)
k (q) = [n]H

(1;n)
k−1 (q) −

(
[n]− [n− α]

)
H

(1;n)
k−2 (q). Consequently, we obtain (4) H

(α;n)
k (q) = [n]H

(α;n)
k−1 (q) −

qn−1H
(α;n)
k−2 (q) and (5) H

(α;n)
k (q) = A

(α;n)
k (q).

Proof. The identity of (1) is routine and follows by applying the defining recurrence for the symmetric Gibonacci

triangle A(α;n) to the definition of A
(α;n)
k (q). The identity H

(1;n)
k (q) = A

(1;n)
k (q) of (2) follows from Theorem

5.1 of [5]. For (3), consider that an α-Gibonacci string S = (S1, . . . , Sk) in Rα-Gib(n, k) has S1 ∈ {1, 2, . . . , n}.
If we fix S1 = 1 (and assume Sk 6= nk if α > 1), then we can identify S with a string of the form
S′ = (S2−n, S3−n, . . . , Sk−n) in Rα-Gib(n, k−1), and the rank of S is qn−1 times the rank of S′. So if α = 1, then∑
S withS1=1

qρ(S) = qn−1H
(1;n)
k−1 (q). But, if α > 1, then we must throw out of said sum all strings with Sk = nk,

hence
∑

S withS1=1

qρ(S) = qn−1H
(1;n)
k−1 (q)−qn−1H(1;n)

k−2 (q). Now fix S1 = 2 (and assume Sk 6= nk−1 if α > 2), then

we can identify S with a string of the form S′ = (S2−n, S3−n, . . . , Sk−n) in Rα-Gib(n, k−1), and the rank of S is

qn−2 times the rank of S′. So if α ≤ 2, then
∑

S withS1=2

qρ(S) = qn−2H
(1;n)
k−1 (q). But, if α > 2, then we must throw

out of said sum all strings with Sk = nk − 1, hence
∑

S withS1=2

qρ(S) = qn−2H
(1;n)
k−1 (q) − qn−2H(1;n)

k−2 (q). Contin-

uing in this way, we see that H
(α;n)
k (q) =

(
qn−1 + qn−2 + · · ·+ 1

)
H

(1;n)
k−1 (q)−

(
qn−1 + · · ·+ qn−α

)
H

(1;n)
k−2 (q) =

[n]H
(1;n)
k−1 (q)−

(
[n]− [n− α]

)
H

(1;n)
k−2 (q). Identity (4) is easily obtained by combining the identities (1), (2), and

(3). Since each of H
(α;n)
k (q) and A

(α;n)
k (q) satisfy the same recurrence with the same initial conditions by parts

(1) and (4), we get H
(α;n)
k (q) = A

(α;n)
k (q).

Theorem 5.2. Continuing, set H α
n,k :=

∣∣∣Rα-Gib(n, k)
∣∣∣ = H

(α;n)
k (1), G α

n,k := nkmod 2G
α,1

k (n2), and A α
n,k :=

A
(α;n)
k (1). Then for each X ∈ {A ,G ,H } we have X α

n,k = nX α
n,k−1 −X α

n,k−2, with X α
n,0 = α and X α

n,1 = n.

When n = 2, then, under our simplifying hypothesis, necessarily α = 1, and we have X 1
2,k = k+ 1; when n > 2,

we have X α
n,k =

rk2(n− αr1)− rk1(n− αr2)

r2 − r1
, where r2 is the largest and r1 is the smallest of the two distinct

real roots of x2 − nx+ 1.

Proof. It is routine to verify that the G α
n,k’s satisfy the claimed recurrence. That A α

n,k = nA α
n,k−1−A α

n,k−2 follows
by taking q = 1 in part (1) of the Theorem 5.1. See that H α

n,k = nH α
n,k−1 −H α

n,k−2 by taking q = 1 in part
(4) of Theorem 5.1. For n > 2, the formula expressing each of A α

n,k, G α
n,k, and H α

n,k in terms of the roots of the

polynomial x2−nx+1 can be obtained by solving the recurrence established in this theorem using, say, standard
generating function techniques. When n = 2 and α = 1, g(x) :=

∑
k≥0 X α

n,kx
k = 1/(x − 1)2 = d

dx (1/(1 − x)),
from which the claimed sequence values can be immediately obtained.

6. Further discussion

The objects and results of this discourse are accessible to undergraduate and beginning graduate students.
Questions naturally related to this discourse might be useful for student projects. Here are some possible
examples.

• Many interpretations of the Fibonacci and Lucas array numbers can be found in their respective OEIS
entries. It could be interesting to see how some of these interpretations might naturally extend to the
Gibonacci array numbers and/or interact with the order-theoretic aspects of Section 5 above.

• Outside of the general theory of root geometry as developed in [7], we can demonstrate the following
results about the outputs of signed-alternating Gibonacci polynomials at the specific input value x = 4.
To wit, let q := α/β, and let m be any nonnegative integer. We can show that G

q, 1

2m (4) = −(2m−1)q+4m

ECA 1:2 (2021) Article #S2R15 12



Robert G. Donnelly, Molly W. Dunkum, Murray L. Huber and Lee Knupp

and G
q, 1

2m+1(4) = −(m)q + 2m+ 1. It might be interesting to see if there are other specific inputs whose
outputs can be as explicitly understood.

• One can view the Gibonaccian Networked-numbers Game on two nodes as requiring one of two initial
steps before proceeding with the usual firing moves of the Networked-numbers Game. Can this idea be
extended to a Gibonaccian game on more than two nodes?

• All roots of the sign-alternating Fibonacci polynomial G
1, 1

2n−1(x) are expressible as certain combinations
of the symbols ‘

√
’, ‘2’, and ‘±’. For example, the roots of

G
1, 1

15 (x) = x7 − 14x6 + 78x5 − 220x4 + 330x3 − 252x2 + 84x− 8

are, in increasing order,{
2−

√
2 +
√

2 , 2−
√

2 , 2−
√

2−
√

2 , 2 , 2 +

√
2−
√

2 , 2 +
√

2 , 2 +

√
2 +
√

2

}
.

Are there any other sub-families of sign-alternating Gibonacci polynomials where something similar can
be said?

• The reader who is interested in developing some proficiency with the objects of this paper might consider
solving the inclusion-exclusion exercise of Section 5. Another potentially helpful exercise might be to re-
derive the expressions of Corollary 3.2 for the roots of the sign-alternating Fibonacci and sign-alternating
Lucas polynomials from the Binet-type formulas of Theorem 3.1.

References

[1] A. T. Benjamin and J. J. Quinn, Proofs That Count: The Art of Combinatorial Proof, Mathematical
Association of America, Washington, DC, 2003.

[2] M. Benoumhani, A sequence of binomial coefficients related to Lucas and Fibonacci numbers, J. Integer
Seq. 6 (2003), Article 03.2.1.

[3] A. Björner and F. Brenti, Combinatorics of Coxeter Groups, Springer, New York, 2005.

[4] R. G. Donnelly, Diamond-colored modular and distributive lattices, arXiv:1812.04434, 2018.

[5] R. G. Donnelly, M. W. Dunkum, S. V. Malone and A. Nance, Symmetric Fibonaccian lattices and repre-
sentations of the special linear Lie algebras, arXiv:2012.14991, 2020.

[6] K. Eriksson, The numbers game and Coxeter groups, Discrete Math. 139 (1995), 155–166.

[7] J. L. Gross, T. Mansour, T. W. Tucker and D. G. L. Wang, Root geometry of polynomial sequences I: Type
(0, 1), J. Math. Anal. Appl. 433 (2016), 1261–1289.

[8] J. L. Gross, T. Mansour, T. W. Tucker and D. G. L. Wang, Root geometry of polynomial sequences I: Type
(1, 0), J. Math. Anal. Appl. 441 (2016), 499–528.

[9] V. E. Hoggatt Jr. and M. Bicknell, Roots of Fibonacci polynomials, Fibonacci Quart. 11 (1973), 271–274.

[10] T. Horzum and E. G. Kocer, On some properties of Horadam polynomials, Int. Math. Forum 4 (2009),
1243–1252

[11] A. Khrabrov and A. Khokas, Points on a line, shoelaces and dominoes, arXiv:1505.06309, 2015.

[12] T. Koshy, Fibonacci and Lucas Numbers with Applications, Vol. 1, 2nd ed., John Wiley & Sons, Hoboken,
New Jersey, 2018.

[13] E. Munarini and N. Z. Salvi, On the rank polynomial of the lattice of order ideals of fences and crowns,
Discrete Math. 259 (2002), 163–177.

[14] OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences founded in 1964 by N. J. A. Sloane,
2020, http://oeis.org.

ECA 1:2 (2021) Article #S2R15 13


