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Abstract: A parity alternating permutation of the set [n] = {1, 2, . . . , n} is a permutation with even and odd
entries alternatively. We deal with parity alternating permutations having an odd entry in the first position,
PAPs. We study the numbers that count the PAPs with even as well as odd parity. We also study a subclass
of PAPs being derangements as well, parity alternating derangements (PADs). Moreover, by considering the
parity of these PADs we look into their statistical property of excedance.
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1. Introduction

A permutation π is a bijection from the set [n] = {1, 2, . . . , n} to itself and we will write it in standard
representation as π = π(1)π(2) · · · π(n), or as the product of disjoint cycles. The parity of a permutation
π is defined as the parity of the number of transpositions (cycles of length two) in any representation of π
as a product of transpositions. One way of determining the parity of π is by obtaining the sign of (−1)n−c,
where c is the number of cycles in the cycle representation of π. That is, if the sign of π is -1, then π is
called an odd permutation, and an even permutation otherwise. For example, the permutation 4 2 1 7 8 6 3 5 =
(1 4 7 3)(2)(5 8)(6), of length 8, is even since it has sign 1. All basic definitions and properties not explained
here can be found in [9] and [4].

According to [10], a parity alternating permutation over the set [n] is a permutation, in standard form, with
even and odd entries alternatively (in this general sense). The set Pn of all parity alternating permutations is
a subgroup of the symmetric group Sn, the group of all permutations over [n]. The order of the set Pn has
been studied lately in relations to other number sequences such as Eulerian numbers (see [10, 11]). Munagi [7]
has extended the study of parity alternating permutations to permutations containing a prescribed number of
parity successions.

However, in this paper we will deal only with the parity alternating permutations which in addition have an
odd entry in the first position; and we call them PAPs. It can be shown that the set Pn containing all PAPs over
[n] is a subgroup of the symmetric group Sn and also of the group Pn. We consider this kind of permutations
because for odd n there are no parity alternating permutations over [n] beginning with an even integer. Avi
Peretz determined the number sequence that count the number of PAPs (see https://oeis.org/A010551).
Unfortunately, we could not find any details of his work. In https://oeis.org/A010551, we can also find the
exponential generating function of these numbers due to Paul D. Hanna. Since there is no published proof of
this formula we prove it here, as Theorem 2.1. Moreover, the numbers that counts the PAPs with even parity
and with odd parity (which were not studied before) are determined.

By pn we denote the cardinality of the set Pn of all PAPs over [n]. Let φn denote a map from Pn to Sdn2 e×Sbn2 c
that relates a PAP σ to a pair of permutations (σ1, σ2) in the set Sdn2 e×Sbn2 c, in such a way that σ1(i) = σ(2i−1)+1

2

and σ2(i) = σ(2i)
2 . It is easy to see that this map is a bijection. For example, the PAPs 5 2 1 4 3 6 7 and

7 4 5 6 3 2 1 over [7] are mapped to the pairs (3 1 2 4, 1 2 3) and (4 3 2 1, 2 3 1), respectively. If we consider a PAP
σ in cycle representations, then each cycle consists of integers of the same parity. Thus, we immediately get
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cycle representation of σ1 and σ2. For instance, the cycle form of the two PAPs above are (1 5 3)(7)(2)(4)(6)
and (1 7)(3 5)(2 4 6) which correspond to the pairs ((1 3 2)(4), (1)(2)(3)) and ((1 4)(2 3), (1 2 3)), respectively.
(Unless stated otherwise we will always use (disjoint) cycle representation of permutations.) Another way of
looking at the mapping φn is that σ1 and σ2 correspond to the parts that contain the odd and even integers
in σ, respectively. Therefore, studying PAPs is similar to studying the two permutations that correspond to
the even and the odd integers in the PAP separately and then combining the properties. In Table 1, we give a
short summary of properties that permutations and PAPs satisfy (for detailed discussions, see Section 2). One

Permutations PAPs

Seq 1, 1, 2, 6, 24, 120, . . . . 1, 1, 1, 2, 4, 12, . . . .
https://oeis.org/A000142 https://oeis.org/A010551

EGF 1
1−x

2
√

4−x2+2 cos−1(1−x2/2)
(2−x)

√
4−x2

Even (seq) 1, 1, 1, 3, 12, 60, . . . . 1, 1, 1, 1, 2, 6, 18, 72, . . .
https://oeis.org/A001710

Odd (seq) 1, 1, 1, 3, 12, 60, . . . . 0, 0, 0, 1, 2, 6, 18, 72, . . .
https://oeis.org/A001710

Even (EGF) 2−x2

2−2x

√
4−x2+cos−1

(
1− x2

2

)
(2−x)

√
4−x2

+ x2

4 + x
2 + 1

2

Odd (EGF) x2

2−2x

√
4−x2+cos−1

(
1− x2

2

)
(2−x)

√
4−x2

− x2

4 −
x
2 −

1
2

Table 1: A comparison table of permutations and PAPs (EGF means exponential generating function).

interesting subset of Sn is the set Dn of derangements. For dn = |Dn|, we have a well known relation

dn = (n− 1)[dn−1 + dn−2], d0 = 1 and d1 = 0 (1)

for n ≥ 2. A proof of this relation may be found in any textbook on combinatorics, but we will have later use
of the following bijection due to Mantaci and Rakotondrajao ( [6]). They define ψn to be the bijection between

Dn and [n− 1]× (Dn−1 ∪Dn−2) as follows: let D
(1)
n denote the set of derangements over [n] having the integer

n in a cycle of length greater than 2, and D
(2)
n be the set of derangements over [n] having n in a transposition.

These two sets are disjoint and their union is Dn. Then for δ ∈ Dn define ψn(δ) = (i, δ′), where i = δ−1(n) and
δ′ is the derangement obtained from

• δ ∈ D(1)
n by removing n or

• δ ∈ D(2)
n by removing the transposition (i n) and then decreasing all integers greater than i by 1.

For instance, the pairs (2, (1 5 2)(3 4)) and (2, (1 2)(3 4)) correspond to the derangements (1 5 2 6)(3 4) and

(1 3)(4 5)(2 6), respectively, for n = 6. We denote the restricted bijections ψn|D(1)
n

and ψn|D(2)
n

by ψ
(1)
n and

ψ
(2)
n , respectively.

Another important, and more difficult to prove, recurrence relation that the numbers dn satisfy is

dn = ndn−1 + (−1)n, d0 = 0 (2)

for n ≥ 1. We will later make a use of the bijection τn : ([n]×Dn−1)\Fn −→ Dn\En given by the second author
( [8]) proving the recurrence. Where En is the set containing the derangement ∆n = (1 2)(3 4) · · · (n− 1 n) for
even n, and is empty for odd n. Fn is the set containing the pair (n, ∆n−1) when n is odd, and is empty when
n is even. Thus, the inverse ζn of τn relates an element of [n− 1]×Dn−1 with every derangement over [n] that
has the integer n in a cycle of length greater than 2, and an element of {n}×Dn−1\Fn with every derangement
over [n] in which n lies in a transposition.

Classifying derangements by their parity, we denote the number of even and odd derangements over [n] by
den and don, respectively. Clearly dn = den + don. Moreover, the numbers den and don satisfy the relations

den = (n− 1)[don−1 + don−2] and don = (n− 1)[den−1 + den−2], (3)

for n ≥ 2 with initial conditions de0 = 1, de1 = 0, do0 = 0, and do1 = 0 ( [6], Proposition 4.1).
We will put a major interest on parity alternating derangements (PADs) which are the derangements that

also are parity alternating permutations starting with odd integers. Let dn denote cardinality of the set of PADs
Dn = Dn ∩ Pn. The restricted bijection Φn = φn|Dn

: Dn −→ Ddn2 e ×Dbn2 c will let us consider the odd parts
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and the even parts of any given PAD regarded as ordinary derangements with smaller length than the length of
the PAD. The mapping Φn plays the central role in our investigations. In Table 2, we display the connection of
ordinary derangements and PADs (for detailed discussions, see Section 3). Finding explicit expressions for some
of the generating functions are still open questions. On the other hand, the EGF for the PADs for example
is the solution to an eighth order differential equation with polynomial coefficients, and also is expressible in
terms of Hadamard products of some known generating functions.

Derangements PADs

Seq 1, 0, 1, 2, 9, 44, . . . 1, 0, 0, 0, 1, 2, 4, 18, 81, 396, . . .
https://oeis.org/A000166

EGF e−x

1−x open

RR dn = (n− 1)[dn−1 + dn−2] relation (4)
RR dn = ndn−1 + (−1)n relation (5)

Even (seq) 1, 0, 0, 2, 3, 24, 130, . . . 1, 0, 0, 0, 1, 0, 4, 6, 45, 192, 976 . . .
https://oeis.org/A003221

Odd (seq) 0, 0, 1, 0, 6, 20, 135, . . . 0, 0, 0, 0, 0, 2, 0, 12, 36, 204, 960, . . .
https://oeis.org/A000387

Even (EGF) (2−x2)e−x

2(1−x) open

Odd (EGF) x2e−x

2(1−x) open

Even (RR) den = (n− 1)[don−1 + don−2] relation (6)
Odd (RR) don = (n− 1)[den−1 + den−2] relation (7)

Even - Odd (−1)n−1(n− 1) (−1)n−2
⌈
n−2

2

⌉⌊
n−2

2

⌋
Table 2: A comparison table of derangements and PAPs, RR represents recurrence relation.

In section 4, we study excedance distribution over PADs by means of the corresponding distributions for the
two derangements obtained by Φn.

2. Parity alternating permutations (PAPs)

As we stated in the introduction, we use splitting method by the mapping φn in the study of PAPs. One
application of this is that the number of PAPs of length n is

pn = |Sdn2 e||Sbn2 c| = dn/2e!bn/2c!.

n 0 1 2 3 4 5 6 7 8 9 10
pn 1 1 1 2 4 12 36 144 576 2880 14400

Table 3: First few terms of the sequence {pn}∞0 .

Proposition 2.1. The numbers pn satisfy the recurrence relation

pn = dn/2epn−1,

for n ≥ 1 and p0 = 1.

Proof. First let us define a mapping ωn : Sn −→ [n]× Sn−1 by

ωn(π) = (i, π′),

where π′ is obtained from π ∈ Sn by removing the integer n, and i = π−1(n). One can easily see that ωn is a
bijection.

Now let us take a PAP σ over [n]. Then φn maps σ to a pair (σ1, σ2). Define then a mapping Ω : Pn −→[⌈
n
2

⌉]
× Pn−1 as follows: for n = 2m

Ω(σ) =
(
i, φ−1

2m(σ1, σ
′
2)
)
,

ECA 1:2 (2021) Article #S2R16 3
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where (i, σ′2) = ωm(σ2), and for n = 2m+ 1

Ω(σ) =
(
i, φ−1

2m+1(σ′1, σ2)
)
,

where (i, σ′1) = ωm+1(σ1). The mapping Ω is a bijection since ωn is a bijection for every n ≥ 1. In any case,
there are

⌈
n
2

⌉
possibilities for i.

As a consequence, we get the following theorem.

Theorem 2.1. The exponential generating function P (x) =
∑
n≥0 pn

xn

n! of the sequence {pn}∞n=0 has the closed
formula

P (x) =
2

2− x
+

cos−1(1− x2

2
)

(2− x)

√
1− x2

4

.

Proof. Based on the recurrence relation in Proposition 2.1, we obtain the following relations

P0(x) =
x

2
P1(x) + 1 and P1(x) =

x

2
P0(x) +

1

2

∫ x

0

P0(t) dt,

where P0(x) =
∑
n≥0 p2n

x2n

(2n)! and P2(x) =
∑
n≥0 p2n+1

x2n+1

(2n+1)! . Clearly, P (x) = P0(x) + P1(x). Additionally,

P0(x) satisfies the differential equation(
1− x2

4

)
P ′0(x) =

x2 + 2

2x
P0(x)− 1

x
.

Thus, we obtain the formulas

P0(x) =
4

4− x2
+

4x sin−1
(
x
2

)
(4− x2)3/2

and P1(x) =
8

4x− x3
+

8x sin−1
(
x
2

)
x(4− x2)3/2

− 2

x
.

Therefore,

P (x) =
2

2− x
+

cos−1(1− x2

2
)

(2− x)

√
1− x2

4

.

For classification of PAPs in terms of their parity, we use P en and P on to denote the set of even PAPs and
odd PAPs, respectively, and pen and pon as their cardinality, respectively. Thus, pn = pen + pon.

n 0 1 2 3 4 5 6 7 8 9 10
pen 1 1 1 1 2 6 18 72 288 1440 7200
pon 0 0 0 1 2 6 18 72 288 1440 7200

Table 4: First few terms of the sequences {pen}∞0 and {pon}∞0 .

Our goal is now to study the relationships between these two sequences.

Theorem 2.2. The numbers pen and pon satisfy the recurrence relations

pen = b(n− 1)/2cpon−1 + pen−1

pon = b(n− 1)/2cpen−1 + pon−1,

for n ≥ 1, with initial conditions pe0 = 1 and po0 = 0.

Proof. Let Sen and Son be the set of even and odd permutations, respectively. Define two mappings ωen : Sen −→
[n− 1]× Son−1 ∪ Sen−1 and ωon : Son −→ [n− 1]× Sen−1 ∪ Son−1 by

ωen(π) =

{
(i, π′), if i 6= n

π′′, otherwise
and ωon(π) =

{
(j, π′), if j 6= n

π′′, otherwise,

respectively, where i = π−1(n), π′ is obtained from π by removing the integer n, and π′′ is obtained from π
by removing the cycle (n), for π ∈ Sen. Similarly for ωon. It is easy to see that both mappings ωen and ωon are
bijections.

ECA 1:2 (2021) Article #S2R16 4
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The mapping ωen changes the parity of π when it results in π′ and preserves when it results in π′′. This
is because the signs of π, π′ and π′′ are (−1)n−c, (−1)n−1−c, and (−1)n−1−c+1, respectively, where c is the
number of cycles in π. For the mapping ωon we apply similar argument.

Now consider a PAP σ in Pn. Then φn maps σ in to a pair (σ1, σ2). Following the notation in the

proof of Proposition 2.1, let us define two mappings Ωe : P en −→
[⌊

n−1
2

⌋]
× P on−1 ∪ P en−1 and Ωo : P on −→[⌊

n−1
2

⌋]
× P en−1 ∪ P on−1 as follows:

1. when n is even

Ωe(σ) =

{(
i, φ−1

n (σ1, σ
′
2)
)
, if i 6= n

2

φ−1
n (σ1, σ

′′
2 ), otherwise

and Ωo(σ) =

{(
i, φ−1

n (σ1, σ
′
2)
)
, if i 6= n

2

φ−1
n (σ1, σ

′′
2 ), otherwise,

where i = σ−1
2 (n2 ), and both σ′2, σ′′2 are obtained from σ2 by the mapping ωen

2
when σ ∈ P en and by the

mapping ωon
2

when σ ∈ P on ,

2. when n is odd

Ωe(σ) =

{(
j, φ−1

n (σ′1, σ2)
)
, if j 6= n+1

2

φ−1
n (σ′′1 , σ2), otherwise

and Ωo(σ) =

{(
j, φ−1

n (σ′1, σ2)
)
, if j 6= n+1

2

φ−1
n (σ′′1 , σ2), otherwise,

where j = σ−1
1 (n+1

2 ), and both σ′1, σ′′1 are obtained from σ1 by the mapping ωen+1
2

when σ ∈ P en and by

the mapping ωon+1
2

when σ ∈ P on .

Since ωn is bijection for n ≥ 2, both Ωe and Ωo are bijections too. Note that in both mappings there are
⌊
n−1

2

⌋
possibilities for i (i 6= n

2 ) and similarly for j (j 6= n+1
2 ).

Proposition 2.2. For any positive integer n ≥ 3, we have pen = pon.

Proof. Multiplying a PAP by a transposition (1, n) if n is odd, or by (1, n − 1) if n is even, we obtain a PAP
having opposite parity. This multiplication means swapping the first and the last odd integer of a PAP in a
standard representation. It creates a bijection between P en and P on .

By applying Proposition 2.2 and considering p(x), we get:

Corollary 2.1. The exponential generating functions of the sequences {pen}n≥0 and {pon}n≥0 have the closed
forms

P e(x) =
1

2

(
P (x) +

x2

2
+ x+ 1

)
and P o(x) =

1

2

(
P (x)− x2

2
− x− 1

)
.

3. Parity alternating derangements (PADs)

As a result of the bijection Φn in the introduction above, we can determine the number dn of PADs over [n] as
follows:

dn = ddn/2edbn/2c =

dn/2e∑
j=0

bn/2c∑
i=0

dn/2e!bn/2c! (−1)i+j

j! i!
.

n 0 1 2 3 4 5 6 7 8 9
dn 1 0 1 2 9 44 265 1854 14833 133496
dn 1 0 0 0 1 2 4 18 81 396

Table 5: First few values of dn and dn.

In the next theorem we give a formula for the number of PADs, connected to the relation (1).

Theorem 3.1. The number of PADs over [n] satisfy the recurrence relation

dn = s
(
dn−1 + (n− 2− s) (dn−3 + dn−4)

)
, (4)

where s =
⌊
n−1

2

⌋
= 2n−3−(−1)n

4 , for n ≥ 4, with initial conditions d0 = 1, d1 = 0, d2 = 0 and d3 = 0.

ECA 1:2 (2021) Article #S2R16 5
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Proof. The proof is splitted into two cases, for PADs over a set of odd and even sizes. Let (δ1, δ2) be
the corresponding pair of a PAD δ ∈ Dn under the mapping Φn. Define a mapping Ψ : Dn −→ [s] ×
(Dn−1 ∪ [n− 2− s]× (Dn−3 ∪Dn−4)) as follows:

Case I: for odd n, depending on the following two elective properties of δ, the mapping Ψ will be defined
as:

1. in the event of the largest entry n+1
2 of δ1 being in a cycle of length greater than 2, we let

Ψ(δ) =
(
i, Φ−1

n (δ′1, δ2)
)
,

where (i, δ′1) = ψ
(1)
n+1
2

(δ1);

2. in the event when n+1
2 lies in a transposition in δ1, we distinguish two cases:

• if the largest entry n−1
2 of δ2 is contained in a cycle of length greater than 2, then

Ψ(δ) =
(
i, j, Φ−1

n (δ′1, δ
′
2)
)
,

where (i, δ′1) = ψ
(2)
n+1
2

(δ1) and (j, δ′2) = ψ
(1)
n−1
2

(δ2);

• if n−1
2 is contained in a cycle of length 2 in δ2, then

Ψ(δ) =
(
i, j, Φ−1

n (δ′1, δ
′
2)
)
,

where (i, δ′1) = ψ
(2)
n+1
2

(δ1) and (j, δ′2) = ψ
(2)
n−1
2

(δ2).

Case II: for even n,

1. in the event of the largest entry n
2 of δ2 lies in a cycle of length greater than 2, we let

Ψ(δ) =
(
i, Φ−1

n (δ1, δ
′
2)
)
,

where (i, δ′2) = ψ
(1)
n
2

(δ2);

2. in the event when n
2 being in a transposition in δ2, we distinguish two cases:

• if the largest entry n
2 in δ1 contained in a cycle of length greater than 2, then

Ψ(δ) =
(
i, j, Φ−1

n (δ′1, δ
′
2)
)
,

where (i, δ′1) = ψ
(1)
n
2

(δ1) and (j, δ′2) = ψ
(2)
n
2

(δ2);

• if n
2 contained in a cycle of length 2 in δ1, then

Ψ(δ) =
(
i, j, Φ−1

2n (δ′1, δ
′
2)
)
,

where (i, δ′1) = ψ
(2)
n
2

(δ1) and (j, δ′2) = ψ
(2)
n
2

(δ2).

Since ψn is a bijection for any n ≥ 2, one can easily conclude that Ψ is a bijection too. Note that in both
cases there are

⌊
n−1

2

⌋
= s possibilities for i and

⌊
n−2

2

⌋
= n− 2− s possibilities for j. Thus, the formula in the

Theorem follows.

The next theorem is connected to the relation (2).

Theorem 3.2. The number dn of PADs also satisfies the relation

dn = sdn−1 + (−1)sdn−s, (5)

where s =
⌈
n
2

⌉
= 2n+1−(−1)n

4 , for n ≥ 1 with d1 = 0, d0 = 1 and d0 = 1.

Proof. Distinguishing by means of the parity of n, we can write the relation (5) as:

dn = ds
(
s ds−1 + (−1)s

)
when n is even, and dn =

(
s ds−1 + (−1)s

)
ds−1 when n is odd.

Now, take a PAD δ in Dn and introduce two mappings as:

ECA 1:2 (2021) Article #S2R16 6
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• Z0 :
(
Ds\Es

)
×Ds −→ [s]×

(
Ds−1\Fs

)
×Ds by

δ
Φn−−−⇀↽−−−
Φ−1

n

(δ1, δ2)
ids×ζs−−−−⇀↽−−−−
ids×τs

(
δ1, (i, δ

′
2)
) h−⇀↽−

h
(i, (δ1, δ

′
2))

id×Φ−1
n−−−−−⇀↽−−−−−

id×Φn

(
i,Φ−1

n (δ1, δ
′
2)
)
,

and

• Z1 :
(
Ds\Es

)
×Ds−1 −→ [s]×

(
Ds−1\Fs

)
×Ds−1 by

δ
Φn−−−⇀↽−−−
Φ−1

n

(δ1, δ2)
ζs×ids−1−−−−−−⇀↽−−−−−−
τs×ids−1

(
(i, δ′1), δ2

) h1−⇀↽−
h2

(
i, (δ′1, δ2)

) id×Φn−−−−−⇀↽−−−−−
id×Φ−1

n

(
i,Φ−1

n (δ′1, δ2)
)
.

Note that h, h1, and h2 are the obvious recombination maps. Since all the functions we used to define the two
mappings Z0 and Z1 are injective, both Z0 and Z1 are bijection mappings.

In order to classify PADs with respect to their parity, we let De
n and Do

n denote the set of even and odd
PADs over [n], respectively. Moreover, den = |De

n| and don = |Do
n|. Obviously, dn = den + don.

n 0 1 2 3 4 5 6 7 8 9 10
den 1 0 0 0 1 0 4 6 45 192 976
don 0 0 0 0 0 2 0 12 36 204 960

Table 6: First few values of the number of even and odd PADs.

Proposition 3.1. The numbers of even and odd PADs satisfy the relations

den = debn2 c
dedn2 e

+ dobn2 c
dodn2 e

and don = debn2 c
dodn2 e

+ dedn2 e
dobn2 c

,

for n ≥ 0, with initial conditions de0 = 1, de1 = 0, do0 = 0, and do1 = 0.

Proof. Let δ be a PAD over [n]. Then, there exist δ1 ∈ Ddn2 e and δ2 ∈ Dbn2 c such that Φn(δ) = (δ1, δ2). If
δ ∈ De

n, then δ1 and δ2 must have the same parity. Thus, den = debn2 c
dedn2 e

+ dobn2 c
dodn2 e

. If δ ∈ De
n, then δ1 and δ2

must have opposite parities. Hence, don = debn2 c
dodn2 e

+ dedn2 e
dobn2 c

.

Corollary 3.1. The number of PADs with even parity and with odd parity satisfy the recurrence relations

den = s
(
don−1 + (n− 2− s)(den−3 + den−4)

)
(6)

don = s
(
den−1 + (n− 2− s)(don−3 + don−4)

)
, (7)

where s =
⌊
n−1

2

⌋
= 2n−3−(−1)n

4 , for n ≥ 4 with initial conditions de0 = 1, do0 = 0, and dei = doi = 0 for i = 1, 2, 3.

Proof. It is enough to clarify the effect of the bijection ψn on the parity of a derangement over [n], the rest is
just applying the bijection Ψ from the proof of Theorem 3.1.

Letting δ be in Dn, δ′ has sign either (−1)n−1−c if δ ∈ D(1)
n , or (−1)n−2−(c−1) = (−1)n−1−c if δ ∈ D(2)

n . Here
δ′ is the derangement obtained from δ by applying ψn, and c is the number of cycles in the cycle representation
of δ. This means, the bijection ψn changes the parity of a derangement.

Definition 3.1. Let δ be a derangement over [n] in standard cycle representation and let C1 = (1 a2 · · · am)
be the first cycle. Following [3], an extraction point of δ is an entry e ≥ 2 if e is the smallest number in the
set {2, . . . , n}\{a2} for which C1 does not end with the numbers of {2, . . . , e}\{a2} written in decreasing order.
The (n− 1) derangements, δn,i = (1 i n n− 1 · · · i+ 2 i+ 1 i− 1 i− 2 · · · 3 2) for i ∈ [2, n], that do not have
extraction points are called the exceptional derangements and the set of exceptional derangements is denoted by
Xn. Note that the extraction point (if it exists) must belong to the first or the second cycle.

Following this approach we may introduce:

Definition 3.2. We call the PAD

Φ−1
n (δdn2 e,i, δb

n
2 c,j), for i ∈

[
2, dn/2e

]
and j ∈

[
2, bn/2c

]
an exceptional PAD and we let Xn denote the set containing them.
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Example 3.1. If n = 8, then

X8 = {Φ−1
8 (δ4,2, δ4,2), Φ−1

8 (δ4,2, δ4,3), Φ−1
8 (δ4,2, δ4,4), Φ−1

8 (δ4,3, δ4,2), Φ−1
8 (δ4,3, δ4,3),

Φ−1
8 (δ4,3, δ4,4), Φ−1

8 (δ4,4, δ4,2), Φ−1
8 (δ4,4, δ4,3), Φ−1

8 (δ4,4, δ4,4)}
= {(1 3 7 5)(2 4 8 6), (1 3 7 5)(2 6 8 4), (1 3 7 5)(2 8 6 4), (1 5 7 3)(2 4 8 6), (1 5 7 3)

(2 6 8 4), (1 5 7 3)(2 8 6 4), (1 7 5 3)(2 4 8 6), (1 7 5 3)(2 6 8 4), (1 7 5 3)(2 8 6 4)}.

Remark 3.1. Since the exceptional derangements over [n] have sign (−1)n−1, all the exceptional PADs in Xn
have the same parity, with sign (−1)n−2 = (−1)n.

Remark 3.2. As it was proved in [3], the number of the exceptional derangements in Xn is the difference of the
number of even and odd derangements, i.e., den−don = (−1)n−1(n−1). Chapman ( [5]) also provides a bijective
proof for the same formula. Below we give the idea of the proof due to Benjamin, Bennett, and Newberger ( [3]).

Let fn be the involution on Dn\Xn defined by

fn(π) = fn
(
(1 a2 X e Y Z)π′

)
= (1 a2 X Z)(e Y )π′

for π in Dn\Xn with the extraction point e in the first cycle; and vice versa for the other π in Dn\Xn with the
extraction point e in the second cycle. a2 is the second element in the first cycle of π; X, Y , and Z are ordered
subsets of [n], Y 6= ∅ and Z consist the elements of {2, 3, . . . , e− 1}\{a2} written in decreasing order, and π′ is
the rest of the derangement in π. Since the number of the cycles in π and fn(π) differ by one, they must have
opposite parity.

Labeling den−don as fn, we have the following result.

Proposition 3.2. The difference fn counts the number of exceptional PADs over [n] and its closed formula is
given by

fn = (−1)n−2
⌈n− 2

2

⌉⌊n− 2

2

⌋
. (8)

Proof. Let δ be in Dn\Xn. Then Φn map δ with the pair (δ1, δ2). Define a mapping F from Dn\Xn to itself as

F (δ) =

Φ−1
n

(
fdn2 e(δ1), δ2

)
if n is odd

Φ−1
n

(
δ1, fbn2 c(δ2)

)
otherwise.

Since fn is a bijection and changes parity, F is a bijection and also δ and F (δ) have opposite parity. The
leftovers, which are the PADs in Xn with sign (−1)n−2, are counted by dn−2

2 eb
n−2

2 c.

n 0 1 2 3 4 5 6 7 8 9 10 11 12
fn 1 0 0 0 1 -2 4 -6 9 -12 16 -20 25

Table 7: First few values the difference fn = den − don.

This sequence looks like an alternating version of https://oeis.org/A002620, to which Paul Barry con-
structed an EGF. From [2], we learned that he used Mathematica to generate the formulas by taking the Inverse
Laplace Transform of the ordinary generating function described in [1]. However, we propose the following more
direct, constructive proof.

Theorem 3.3. The exponential generating function of the difference fn has the closed form

ex

8
+
e−x

8
(2x2 + 6x+ 7).

Proof. From the closed formula of fn in Proposition 3.2, we have

(n− 1)2 = f2n = de2n − do2n and n(n− 1) = f2n+1 = −(de2n+1 − do2n+1).

Hence, ∑
n≥0

f2n
xn

(2n)!
=
∑
n≥0

(n− 1)2 x2n

(2n)!
=
x2 − 3x+ 4

8
ex +

x2 + 3x+ 4

8
e−x, and
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∑
n≥0

f2n+1
x2n+1

(2n+ 1)!
= −

∑
n≥0

n(n− 1)
xn

n!
= −x

2 − 3x+ 3

8
ex +

x2 + 3x+ 3

8
e−x

Thus, ∑
n≥0

f2n
x2n

(2n)!
+
∑
n≥0

f2n+1
x2n+1

(2n+ 1)!
=
ex

8
+
e−x

8
(2x2 + 6x+ 7)

is the desired formula.

4. Excedance distribution over PADs

In this section, we focus on excedance distribution in PADs.

Definition 4.1. We say that a permutation σ has an excedance on i ∈ [n] if σ(i) > i. In this case, i is said to
be an excedant.

We give the notation below in the study of this property:

dn,k = |{δ ∈ Dn : δ has k excedances}|,
don,k = |{δ ∈ Do(n) : δ has k excedances}|,
den,k = |{δ ∈ De(n) : δ has k excedances}|.

Mantaci and Rakotondrajao ( [6]) studied the excedance distribution in derangements, i.e., the numbers

dn,k = |{δ ∈ Dn : δ has k excedances}|,
den,k = |{δ ∈ Dn : δ is an even derangemnt and has k excedances}|,
don,k = |{δ ∈ Dn : δ is an odd derangemnt and has k excedances}|.

Remark 4.1. Since the number of excedances in a derangement over [n] is in the range [1, n− 1], the number
of excedances of a PAD over [n] is at least 2 and at most n− 2.

Proposition 4.1. The numbers dn,k, den,k, and don,k are symmetric, that is

dn,k = dn,n−k, d
e
n,k = den,n−k, and don,k = don,n−k.

Proof. The bijection from Dn to it self, defined as δ 7→ δ−1 for δ ∈ Dn, associates a PAD having k excedances
with a PAD having n− k exeedances and also preserves parity.

dn,k
n \ k 2 3 4 5 6 7

4 1
5 1 1
6 1 2 1
7 1 8 8 1
8 1 14 51 14 1
9 1 28 169 169 28 1
10 1 42 483 884 483 42 1

Table 8: First few terms of the number of PADs in terms of number of excedances

Proposition 4.2. The excedance distribution of a PAD is given by

dn,k =

{∑k−1
i=1 ddn2 e,i db

n
2 c,k−i, if 2 ≤ k ≤ bn2 c∑n−k−1

i=1 ddn2 e,i db
n
2 c,n−k+i, if bn2 c < k ≤ n−2

.

Proof. To find the number of excedances of a PAD δ over [n], we sum up the number of exeedances in δ1 and in
δ2, where (δ1, δ2) is the image of δ defined in Φn. Since there are dm,i derangements in Dm having i excedances,
for i ∈ [1, m − 1], the products dm,i dl,k−i, for m = dn2 e and l = bn2 c, determine the number of PADs over [n]
having k excedances. Summing up the products over the range i = 1, 2, . . . , k−1 will give the first formula. The
second formula follows from Proposition 4.1.
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den,k
n \ k 2 3 4 5 6 7

4 1
5 0 0
6 1 2 1
7 0 3 3 0
8 1 8 27 8 1
9 0 13 83 83 13 0
10 1 22 243 444 243 22 1

don,k
n \ k 2 3 4 5 6 7

4 0
5 1 1
6 0 0 0
7 1 5 5 1
8 0 6 24 6 0
9 1 15 86 86 15 1
10 0 20 240 440 240 20 0

Table 9: First few values of dn,k in terms of their parity

Corollary 4.1. The excedance distribution of PADs in terms of their parity is given by:

den,k =

{∑k−1
i=1 (dedn2 e,i

debn2 c,k−i
+ dodn2 e,i

dobn2 c,k−i
), if 2 ≤ k ≤ bn/2c∑n−k−1

i=1 (dedn2 e,i
debn2 c,n−k+i + dodn2 e,i

dobn2 c,n−k+i), if bn/2c < k ≤ n−2
,

don,k =

{∑k−1
i=1 (dedn2 e,i

dobn2 c,k−i
+ dodn2 e,i

debn2 c,k−i
), if 2 ≤ k ≤ bn/2c∑n−k−1

i=1 (dedn2 e,i
dobn2 c,n−k+i + dodn2 e,i

debn2 c,n−k+i), if bn/2c < k ≤ n−2
.

�

An immediate consequence of this Corollary is

Proposition 4.3. We have

fn,k = den,k − don,k = (−1)n max{k − 1, n−(k + 1)},

for n ≥ 4 and 2 ≤ k ≤ n−2.

Proof. Mantaci and Rakotondrajao (see [6]) have proved the identity don,k − den,k = (−1)n using recursive
argument. Applying this with the Corollary 4.1, we get the desired formula.

fn,k
n \ k 2 3 4 5 6 7

4 1
5 -1 -1
6 1 2 1
7 -1 -2 -2 -1
8 1 2 3 2 1
9 -1 -2 -3 -3 -2 -1
10 1 2 3 4 3 2 1

Table 10: The first few values of the difference den,k − don,k.

Theorem 4.1. The exponential generating function for the sequence {fn,k} has the closed form

1

(1− u)2

(
u2e−x + e−ux − 2u cosh

√
ux+

u+ u2

√
u

sinh
√
ux− (1− u)2

)
.

Proof. Let fn(u) =
∑n−2
k=2 fn,ku

k and f(x, u) =
∑
n≥4 fn(u)x

n

n! . From Proposition 4.3, we have

f2m,k =

{
k − 1, if 2 ≤ k ≤ m
2m− k − 1, if m < k ≤ 2m−2,

f2m+1,k =

{
−(k − 1), if 2 ≤ k ≤ m
−(2m− k), if m < k ≤ 2m−1,

for m ≥ 2. So,

f2m(u) =

m∑
k=2

(k − 1)uk +

2m−2∑
k=m+1

(2m− k − 1)uk =
u2 − 2um+1 + u2m

(1− u)2
,
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f2m+1(u) =

m∑
k=2

−(k − 1)uk +

2m−1∑
k=m+1

−(2m− k)uk =
um+2 + um+1 − u2 − u2m+1

(1− u)2
,

f(x, u) =
∑
m≥2

f2m(u)
x2m

(2m)!
+
∑
m≥2

f2m+1(u)
x2m+1

(2m+ 1)!

=
1

(1− u)2

(
u2e−x + e−ux − 2u cosh

√
ux+

u+ u2

√
u

sinh
√
ux− (1− u)2

)
.

Methodological remarks

In this paper, most of our results are obtained in a way of splitting the permutations into two subwords.
However, this method is not always applicable. One example is the number of PADs avoiding the pattern
p = 1 2. The only derangement that avoid p is (1 n )(2 n−1 ) · · · (n2

n+2
2 ), for even n, that is, the derangement

over [n] with entries in decreasing order when written in linear representation. However, it does not exist if n is
odd, since n+1

2 is a fixed point. The PAD δ created from a pair (δ1, δ2), by the mapping Φ−1
n , of two even length

derangements that both avoids the pattern p is δ = (1 n−1 )(3 n−3 ) · · ·
(
n−2

2
n+2

2

)
(2 n )(4 n−2 ) · · ·

(
n
2

n+4
2

)
,

which is n−1 n n−3 n−2 · · · 3 4 1 2 in linear form, has length n ≡ 0 (mod 4). However, each pair i i+1, where
i is an entry in odd position, is a subword with the occurrence of the pattern p in δ. This indicates that δ1 and
δ2 avoid p but δ doesn’t. Things get even more complicated with patterns of length greater than 2.

Final Remarks: As for now, we have not been successful in finding the recurrence relations and generating
functions for the sequences {dn,k}∞n=0, {den,k}∞n=0, and {don,k}∞n=0.

Acknowledgements

The first author acknowledges the financial support extended by the cooperation agreement between Interna-
tional Science Program at Uppsala University and Addis Ababa University. Special thanks go to Prof. Jörgen
Backelin, Prof. Paul Vaderlind, and Dr. Per Alexandersson of Stockholm University - Dept. of Mathematics, for
all their valuable inputs and suggestions. Many thanks to our colleagues from CoRS - Combinatorial Research
Studio, for lively discussions and comments.

References

[1] P. Barry, On a central transform of integer sequences, arXiv:2004.04577, 2020.

[2] P. Barry, Private communication to the first author, 14th, December 2020.

[3] A. T. Benjamin, C. T. Bennett, and F. Newberger, Recounting the odds of an even derangement, Math.
Mag. 78:5 (2005), 387–390.
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