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1. Introduction

Frames are a generalization of bases of (real or complex) vector spaces, where one considers spanning sets that
satisfy certain conditions. Formally, a collection of vectors {vi}i∈I in a Hilbert space H with inner product
〈−,−〉 is a frame if there exist frame constants A,B ∈ R>0 such that

A‖v‖2 ≤
∑
i∈I
|〈v, vi〉|2 ≤ B‖v‖2

where ‖ · ‖ is the norm induced by the inner product. This set of inequalities is called the frame condition and
guarantees that {vi}i∈I spans H. If the set I = {1, . . . , n} is finite, then H is finite dimensional and the frame
{vi}i=1,...,n is called a finite frame.

A frame is called tight if A = B and Parseval if A = B = 1. Frames are extensively studied in linear algebra,
functional analysis and operator theory. They find numerous applications in signal processing where they are
used to represent signals in compact form while guaranteeing certain desired robustness properties [22].

From a computational point of view, a finite frame in Rk is encoded by a k × n matrix Φ whose columns
are the coordinates of the frame vectors {vi}i=1,...,n. The corresponding frame is tight with frame constant A
if ΦΦT = A · idk and Parseval if ΦΦT = idk, where idk denotes the k× k identity matrix. This characterizes all
finite Parseval frames as the solutions of

(
k+1

2

)
quadratic equations in the entries of a k×n matrix. In particular,

it realizes the set of Parseval frames as an algebraic subvariety of the space of k × n matrices known as the
Stiefel manifold. We consider its Zariski closure St(k, n) in the space of complex k × n matrices, Matk×n(C).

Equivalently, Stiefel manifolds can be realized as collections of k orthonormal vectors in an n-dimensional
vector space, recorded by the rows of the matrix Φ. In this setting, if k < n, the variety St(k, n) is naturally
identified with the homogeneous space SO(n)/SO(n − k) where SO(n − k) is regarded as the stabilizer of k
fixed (complex) orthonormal vectors (see Section 2). This perspective allows for the use of powerful tools from
representation theory and classical invariant theory in the study of Stiefel manifolds.

Long-standing open problems in finite frame theory have been recently solved by understanding spaces of
frames as embedded algebraic varieties [8,25,29]. Nonetheless, one of the fundamental invariants of an embedded
variety, its degree, remains unknown for almost all spaces of frames. When n = k, the Stiefel manifold St(k, n)
coincides with the orthogonal group O(n), and its degree as a subvariety of the space of n × n matrices was
computed in [2]. The main purpose of this paper is to compute the degree of Stiefel manifolds in general.
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Theorem 1.1. Let n ≥ k.

• Suppose n ≤ 2k − 1 and write n = 2r or n = 2r + 1 depending on the parity. Then

deg St(k, n) = 2k · Lk,n

where Lk,n denotes the number of collections of non-intersecting lattice paths from the points

A = {(−ai, 0) : i = 1, . . . , r} to B = {(0, bj) : k = 1, . . . , r}

with

(a1, . . . , ar) = (k − 1, k − 2, , . . . , k − (n− k)︸ ︷︷ ︸
n−k

, 2k − n− 2, 2k − n− 4, . . . , n− 2r︸ ︷︷ ︸
r−(n−k)

),

(b1, . . . , br) = (n− 2, n− 4, , . . . , n− 2r).

• Suppose n ≥ 2k − 1. Then

deg St(k, n) = 2(k+1
2 ).

While this theorem gives a combinatorial interpretation to the degrees of Stiefel manifolds, a bijective proof
remains elusive. Such proof amounts to establishing a bijection between intersection points of suitable linear
sections of the Stiefel manifolds and collections of non-intersecting lattice paths. This may give a simpler and
more direct proof of Theorem 1.1. Moreover, it would bolster the use of homotopy methods for studying Stiefel
manifolds and their subvarieties. Indeed, an explicit bijection immediately gives a representation of any Stiefel
manifold via a witness set, the fundamental data type in numerical algebraic geometry [3].

2. Preliminaries

2.1 Degree, Hilbert function and Hilbert polynomial

We introduce some basic notions about the degree of algebraic varieties. The material of this section is classical
and we refer to [18, Lecture 18] and [12, Section I.1.9] for formal definitions and an exposition of the theory.
We include some basics here for the reader’s convenience and to introduce some notation and convention.

We use homogeneous coordinates x0, . . . , xN on the projective space PN = PNC . The affine space AN is
identified with the affine chart {x0 6= 0} of PN and its complement H∞ = {x0 = 0} is called the hyperplane at
infinity.

A variety is an affine or projective algebraic variety, reduced and possibly reducible. If X ⊆ AN is affine,
write X for its closure in PN . We denote by IX the defining ideal of X, which is an ideal in the polynomial ring
C[x1, . . . , xN ] or C[x0, . . . , xN ] depending on whether X is affine or projective. Write C[X] for the coordinate
ring of X, that is, the quotient of the polynomial ring over IX . When X is projective (resp. affine), the natural
grading of the polynomial ring induces a grading (resp. filtration) on C[X].

If X ⊆ AN (resp. X ⊆ PN ) is an irreducible variety of dimension n, the degree of X, denoted deg(X), is the
number of points of intersection of X ∩ L where L is a generic linear space of codimension n. If X is possibly
reducible but equidimensional, then the degree of X is the sum of the degrees of its irreducible components. If
X is possibly reducible and possibly not equidimensional, then the degree of X is the degree of the union of the
components of the largest dimension. It is immediate that deg(X) = deg(X).

Fix a projective variety X of codimension c and suppose IX is generated by c homogeneous polynomials
f1, . . . , fc of degree d1, . . . , dc respectively. Then deg(X) = d1 · · · dc and X is called a complete intersection.
More generally, for any variety X of codimension c, the ideal IX is generated by at least c homogeneous
polynomials: the product of their degrees is called the Bézout bound and always serves as an upper bound for
deg(X).

The Hilbert function of X is the function HFX : N → N, defined by HFX(t) = dim(C[X])≤t or HFX(t) =
dimC[X]t depending on whether X is affine or projective. The Hilbert function is eventually a polynomial: there
exists a univariate polynomial HPX(t), called the Hilbert polynomial of X, with the property that HFX(t) =

HPX(t) for t� 0. Moreover, the degree of HPX is dimX and its leading coefficient is
deg(X)

dim(X)!
.

Given a polynomial f ∈ C[x1, . . . , xN ], write f̂ for its homogenization via x0, i.e. the unique homogeneous

polynomial in C[x0, . . . , xN ] with deg(f) = deg(f̂) such that f̂ |x0=1 = f . If X is an affine variety and f1, . . . , f`
are generators of its ideal IX then f̂1, . . . , f̂` cut out a scheme in PN which is possibly not reduced; we call
this scheme the naive homogenization of X (with respect to the chosen generators). We have the following
elementary fact.
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Lemma 2.1. Let X ⊆ AN be an affine variety and let f1, . . . , f` be generators of IX . Let Y ⊆ PN be the
naive homogenization of X. The irreducible components of X are irreducible components of Y and every other
irreducible component of Y is supported on H∞.

Proof. Clearly X ⊆ Y . It suffices to show that Y ∩ {x0 6= 0} ⊆ X. But localizing the equations of Y at x0 6= 0,
one obtains exactly f1, . . . , f`, which are defining equations for X.

Corollary 2.1. Let X ⊆ AN be an affine variety and let f1, . . . , f` be generators of IX . Let Y ⊆ PN be the
naive homogenization of X. If all irreducible components of Y ∩H∞ have dimension strictly smaller than dimX,
then deg(X) = deg(Y ).

2.2 Orbits, algebraic groups and semistable points

We state the Algebraic Peter–Weyl Theorem [17, Thm. 4.2.7] in full generality for a complex semisimple
algebraic group and we describe the application to the special orthogonal group that will be needed in Section
4. Our references for this material are [14,17].

Let G be a complex semisimple algebraic group. Fix a maximal torus T ⊆ G and a Borel subgroup B.
Denote by Λ the weight lattice of G with respect to T and by Λ+ the cone of dominant weights with respect to
B. In other words, Λ+ = Λ ∩W where W is the principal Weyl chamber. For a dominant weight λ, denote by
Vλ the irreducible representation with highest weight λ. We point out that if G is not simply connected, then
there are dominant weights not corresponding to an irreducible representation of G. Denote by ΛG+ the set of
integral dominant weights corresponding to the representation of G.

Fix a G-representation V (not necessarily irreducible). Given w ∈ V , let Gw = {g ∈ G : g · w = w} be the
stabilizer of w in G, which is a closed subgroup of G. An element w ∈ V is called semistable (for the action of
G) if the orbit G ·w ⊆ V is Zariski closed (equivalently Euclidean closed). The set G ·w is naturally an abstract
algebraic variety G · w ' G/Gw, where G/Gw denotes the set of left cosets of Gw in G.

In this case, the affine coordinate ring of G · w can be written intrinsically in terms of the representation
theory of G and Gw, via the Algebraic Peter–Weyl Theorem:

C[G · w] =
⊕
λ∈ΛG+

Vλ ⊗ [V ∗λ ]Gw (1)

where [V ∗λ ]Gw denotes the subspace of Gw-invariants in V ∗λ .
Our goal is to apply the Algebraic Peter–Weyl Theorem to compute the leading coefficient of the Hilbert

polynomial of Stiefel manifolds. In general, it is not immediate how the grading of the polynomial ring C[V ]
descends to a filtration of C[G · w]. However, if G can be realized as a closed subgroup of the endomorphism
space of V , we have the following result.

Lemma 2.2. Let G be a semisimple algebraic group, let V be a faithful G-representation such that the image
of G in End(V ) is closed. Let w ∈ V be a semistable point. For every dominant weight λ of G, the summand
Vλ ⊗ [V ∗λ ]Gw appears in C[G · w]≤j if and only if λ ∈ jCV where CV is the convex hull of the integral weights
occurring in V .

Proof. Since V is faithful, we may regard G as a closed subvariety of End(V ). Regard End(V ) ' V ⊕ dimV as a
G-representation with respect to the left-composition by elements of G: the integral weights occurring in V are
the same as the integral weights occurring in End(V ). The statement holds for C[G] regarded as a quotient of
C[End(V )] from the Claim in the proof of [9, Theorem 9.1].

Now, consider the linear map

End(V )→ V

L 7→ Lw.

By linearity, the pullback map on coordinate rings C[V ] → C[End(V )] preserves the grading. A consequence
is that the restricted map G → G · w defined by g 7→ g · w induces a pullback map on coordinate rings
C[G · w] → C[G] which preserves the filtration given by the grading of the polynomial ring. In particular,
C[G · w]≤j is mapped to C[G]≤j . This concludes the proof.

2.3 Representation theory of SO(n) and branching rules

We briefly review some basics of the representation theory of SO(n). We refer to [14, 17] for an exposition of
the theory and to [4, LaPlanche II, IV] for the explicit numerical data.

When n = 2r + 1 is odd, then SO(n) has dimension
(
n
2

)
and rank r. Let e1, . . . , er be the simple weights.

The fundamental weights are ωi = e1 + · · ·+ ei for i = 1, . . . , r − 1 and ωr = 1
2 (e1 + · · ·+ er); in particular ωr
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does not provide a representation for SO(n). The integral cone Λ
SO(n)
+ is given by the Z+-linear combinations

of ω1, . . . , ωr−1 and 2ωr. Equivalently integral linear combinations of the fundamental weights are recorded
as partitions λ = (λ1, . . . , λr) where λj is the coefficient of ej in the linear combination. In summary, the
irreducible representations of SO(2r+ 1) are uniquely determined by a partition of length r, that is, an integer
sequence λ1 ≥ · · · ≥ λr ≥ 0.

When n = 2r is even, then SO(n) has dimension
(
n
2

)
and rank r. Let e1, . . . , er be the simple weights.

The fundamental weights are ωi = e1 + · · · + ei for i = 1, . . . , r − 2, ωr−1 = 1
2 (e1 + · · · + er−1 + er) and

ωr = 1
2 (e1+· · ·+er−1−er); in particular ωr−1 and ωr do not provide representations for SO(n). The integral cone

Λ
SO(n)
+ is given by the Z+-linear combinations of ω1, . . . , ωr−2, ωr−1 + ωr and ωr−1 − ωr. Equivalently, integral

linear combinations of the fundamental weights are recorded as non-increasing sequences λ = (λ1, . . . , λr) with
λr possibly negative. In summary, the irreducible representations of SO(2r) are uniquely determined by non-
increasing integral sequences λ1 ≥, . . . ,≥ λr−1 ≥ |λr|.

Moreover, it is immediate that for every dominant weight λ for SO(n) we have Vλ ' V ∗λ as SO(n)-
representations and the identification is simply given via contraction with the quadratic form.

We describe the branching rules for the restriction of representations from SO(n) to SO(n− 1), realized as
the subgroup stabilizing a fixed hyperplane. See [17, Section 8.3].

Lemma 2.3 (Branching Rules). Let n = 2r be even. Let λ = (λ1, . . . , λr) be a dominant integral weight for
SO(2r). Then, as an SO(n−1)-representation, Vλ reduces to Vλ =

⊕
µ∈IWµ where I ranges over all dominant

integral weights µ = (µ1, . . . , µr−1) of SO(2r − 1) such that

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λr−1 ≥ µr−1 ≥ |λr|.

Let n = 2r + 1 be odd. Let λ = (λ1, . . . , λr) be a dominant integral weight for SO(2r + 1). Then as an
SO(n − 1)-representation, Vλ reduces to Vλ =

⊕
µ∈IWµ where I ranges over all dominant integral weights

µ = (µ1, . . . , µr) of SO(2r) such that

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λr−1 ≥ µr−1 ≥ λr ≥ |µr|.

2.4 Stiefel manifolds

This section is devoted to classical results about Stiefel manifolds. For k ≤ n, define

St(k, n) = {A ∈ Matk×n(C) : AAT = idk}.

This is an affine variety whose defining equations are the
(
k+1

2

)
quadrics given by the entries of the symmetric

k× k matrix AAT − idk. The special orthogonal group SO(n) acts on St(k, n) by right multiplication: indeed if
A ∈ St(k, n) and g ∈ SO(n), we have (Ag)(Ag)T = AggTAT = AidnA

T = idk. Note that if n = k, then St(k, n)
coincides with the orthogonal group O(n): in particular St(n, n) is reducible.

If k < n, then the action of SO(n) on St(k, n) is transitive making St(k, n) the orbit of SO(n) under this
action: if A,B ∈ St(k, n) then the rows of A are orthonormal as well as the rows of B; since k < n, there exists
an element g ∈ SO(n) sending the rows of A to the rows of B. Observe that the stabilizer of A ∈ St(k, n) under
this action is the subgroup acting as the identity on the space spanned by the rows of A: this is a conjugate of
the subgroup SO(n− k).

We deduce the following classical fact.

Lemma 2.4. If k < n, then St(k, n) is irreducible and isomorphic to the homogeneous space SO(n)/SO(n−k).
In particular, St(k, n) is smooth, irreducible, reduced and

dim St(k, n) =

(
n

2

)
−
(
n− k

2

)
.

Thus, the codimension of St(k, n) in Matk×n is nk − (
(
n
2

)
−
(
n−k

2

)
) =

(
k+1

2

)
, the same as the number of

quadrics defining it. As a consequence, we obtain that St(k, n) is affinely cut out by these
(
k+1

2

)
quadrics.

2.5 Outline of the Proof of the Main Theorem

The proof of Theorem 1.1 is essentially divided into two parts.
The first part is purely geometric and pertains to the green entries in Table 1. We compute the degree

of St(k, n) when n ≥ 2k − 1. In this case, the naive homogenization of St(k, n) coincides with its closure in
projective space St(k, n), so that St(k, n) is a complete intersection and its degree equals the Bézout bound.
The proof relies on a dimension argument, showing that the naive homogenization of St(k, n) does not have
additional components at infinity in this range. This is the result of Theorem 3.1 and Theorem 3.2.
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k\n 1 2 3 4 5 6 7 8 9 10
1 2 2 2 2 2 2 2 2 2 2
2 * 4 8 8 8 8 8 8 8 8
3 * * 16 40 64 64 64 64 64 64
4 * * * 80 384 704 1024 1024 1024 1024
5 * * * * 768 4768 14848 23808 32768 32768
6 * * * * * 9536 111616 420736 1064960 1581056
7 * * * * * * 223232 3433600 22429696 66082816
8 * * * * * * * 6867200 196968448 1604859904
9 * * * * * * * * 393936896 14994641408
10 * * * * * * * * * 29989282816

Table 1: Degrees of Stiefel manifolds: (light green) Theorem 3.2, (dark blue) deg(O(n)) computed in [2], (light
blue) Theorem 4.3, (dark green) base of induction for proof of Theorem 4.3

As noticed in Section 2.4, when n = k, we have St(k, n) = O(n). The degrees of the orthogonal groups were
determined in [2] and appear in Table 1 in dark blue.

The rest of the proof is aimed at determining the degrees of St(k, n) for k + 1 ≤ n ≤ 2k − 2 which appear
in Table 1 as light blue. In this case, the degree of St(k, n) is determined by computing the leading coefficient
of its Hilbert polynomial. We apply a representation-theoretic argument, built on the Algebraic Peter–Weyl
Theorem, to the homogeneous space SO(n)/SO(n − k). Determining the dimensions of the summands of (1)
is difficult. Following the work of [6, 7, 9, 19] in the setting of spherical varieties and generic orbits, we reduce
the calculation of deg St(k, n) to an integral of certain alternating functions, arising from volumes of Gelfand–
Tsetlin polytopes associated to the representations of the orthogonal group and its invariant spaces. The proof
is performed by an inductive argument which allows us to compute volumes of Gelfand–Tsetlin polytopes as
alternating polynomials in the entries of their top row, see Theorem 4.2. The base cases for induction are given
by the entries of Table 1 in dark green and the induction step moves south-east in the table. The degree formula
for the degree of St(k, n,) in this range is given in Theorem 4.3, and its expression in terms of the combinatorics
of non-intersecting lattice paths is obtained in Corollary 4.2.

3. Degree of St(k, n) for n ≥ 2k − 1

In this section, we prove the first part of Theorem 1.1 when n ≥ 2k− 1. Regard the space Matk×n as the open
subset of P(Matk×n ⊕ C) and let z0 be a coordinate on the direct summand C, so that Matk×n is regarded as
the principal open set {z0 6= 0} and H∞ = {z0 = 0} is the hyperplane at infinity.

Let St(k, n) be the closure of St(k, n) in P(Matk×n ⊕ C) and let

Z(k, n) = {(A, z0) ∈ P(Matk×n ⊕ C) : AAT − z2
0Idk = 0}

be the naive homogenization of St(k, n). Let

Z∞(k, n) = Z(k, n) ∩H∞ = {A ∈ PMatk×n : AAT = 0}.

First, we compute dimZ∞(k, n) following a standard argument via an incidence correspondence over the Fano
scheme of the quadric hypersurface. This is similar to the classical argument for determinantal varieties as
in [1, II.2].

Given a variety X ⊆ PV , denote the Fano scheme of s-planes in X is

Fs(X) = {E ∈ G(s, V ) : PE ⊆ X},

where G(s, V ) denotes the Grassmannian of s-planes in V . Let qn = x2
1 + · · ·+x2

n and let Qn = {qn = 0} ⊆ Pn−1

be the corresponding quadric hypersurface.

Lemma 3.1. Let A ∈ Matk×n, then

AAT = 0 if and only if Im AT ⊆ Qn.

In particular, Z∞(k, n) = {A ∈ Matk×n : Im AT ∈ Frk(A)(Qn)}.

Proof. Suppose AAT = 0 and let v ∈ Im AT , with v = AT c for some c ∈ Ck. Then qn(v) = vT v = cTAAT c = 0.
Conversely, suppose qn(v) = 0 for every v ∈ Im AT , so that 0 = qn(AT c) = cTAAT c for every c ∈ Ck. This
implies that the quadratic form associated to AAT is identically 0 or equivalently AAT = 0.
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If s ≤ n/2, then the dimensions of the Fano schemes associated to the quadric are given by

dimFs(Qn) = ns− 1

2
(3s2 + s).

If s > n/2 then Fs(Qn) = ∅. We refer to [15, §6.1] for the proof and additional information on the geometry of
the Fano scheme.

Theorem 3.1. For every k, n, we have

dimZ∞(k, n) =


1
8 (n2 + 4kn− 2n− 8) if n < 2k − 1 and n is odd
1
8 (n2 + 4kn− 4k − 9) if n < 2k − 1 and n is even(
n
2

)
−
(
n−k

2

)
− 1 if n ≥ 2k − 1 and n is even

In particular, if n ≥ 2k − 1, then dimZ∞(k, n) = dim St(k, n)− 1.

Proof. Let smax = min{k, bn/2c}. For every s ≤ smax define

Ys = {(A,E) ∈ PMatk×n ×Fs(Qn) : Im AT ⊆ E}

π1

ss
π2

++
PMatk×n Fs(Qn)

where π1, π2 are the natural projections on the first and second factor. The generic fiber of π2 over E is

YsE := {A ∈ PMatk×n : Im AT ⊆ E} ⊆ PMatk×n

which is a (projective) linear space of dimension ks−1. The Theorem of the Dimension of the Fibers [27, Section
I.6.3] provides

dimYs = dimFs(Qn) + dimYsE = ns− 1

2
(3s2 + s) + ks− 1.

By Lemma 3.1, Z∞(k, n) =
⋃smax
s=1 π1(Ys) and the projection π1 is generically one-to-one. This shows that

dimZ∞(k, n) = max

{
ns− 1

2
(3s2 + s) + ks− 1 : s = 1, . . . , smax

}
.

Rewrite dimYs = s(n + k − 1
2 −

3
2s) − 1. As a function of s, dimYs is increasing between 0 and n+k−1/2

3 . In
particular, dimYs is increasing on 0 ≤ s ≤ smax whenever n > 2k or n < 2k − 1, therefore the maximum value
(on an integer) of dimYs in this range is attained at smax. For the remaining two cases of (k, 2k−1) and (k, 2k),
one can check that the same conclusion holds. We obtain

dimZ∞(k, n) = dimYsmax =


1
8 (n2 + 4kn− 2n− 8) if n < 2k − 1 and n is odd
1
8 (n2 + 4kn− 4k − 9) if n < 2k − 1 and n is even(
n
2

)
−
(
n−k

2

)
− 1 if n ≥ 2k − 1 and n is even

which concludes the proof.

A consequence of Theorem 3.1 is that when n ≥ 2k − 1, Z∞(k, n) does not contain irreducible components
of Z(k, n) of dimension as large as dim St(k, n). In fact, Z∞(k, n) does not contain irreducible components of
Z(k, n) at all. As a consequence, we obtain,

Theorem 3.2. If n ≥ 2k−1, then St(k, n) = Z(k, n) is a complete intersection of
(
k+1

2

)
quadrics. In particular,

deg St(k, n) = 2(k+1
2 ).

Proof. The equations defining Z(k, n) are the entries of AAT − z2
0Idk = 0. Since AAT − z0Idk is symmetric,

there are at most
(
k+1

2

)
linearly independent equations. Therefore, every irreducible component of Z(k, n) has

codimension at most
(
k+1

2

)
.

Since dim St(k, n) = dim SO(n) − dim SO(n − k) =
(
n
2

)
−
(
n−k

2

)
, by Theorem 3.1, we have dimZ(k, n) =(

n
2

)
−
(
n−k

2

)
as well, so that codimZ(k, n) = nk −

[(
n
2

)
−
(
n−k

2

)]
=
(
k+1

2

)
.

This shows that Z(k, n) = St(k, n) and in particular it is a complete intersection of the quadrics defined by

AAT − z0Idk. By Bézout’s theorem, we conclude degZ(k, n) = deg St(k, n) = 2(k+1
2 ).

ECA 1:3 (2021) Article #S2R20 6



Taylor Brysiewicz and Fulvio Gesmundo

4. Degree of St(k, n) when n ≤ 2k − 1

Theorem 3.1 shows that when k ≤ n < 2k − 1, the variety Z(k, n) has components at infinity of dimension at
least as large as dim St(k, n). Therefore, deg St(k, n) is not equal to the Bézout bound in these cases.

In this range, we compute the degree by computing the leading coefficient of the Hilbert polynomial of
St(k, n) via the Algebraic Peter–Weyl Theorem. More precisely, we use

deg St(k, n) = N ! lim
j→∞

dimC[St(k, n)]≤j
jN

(2)

where N = dim St(k, n) =
(
n
2

)
−
(
n−k

2

)
.

The values of dimC[St(k, n)]≤j will be computed via Lemma 2.2. Indeed, (1) provides

C[St(k, n)] =
⊕

λ∈Λ
SO(n)
+

Vλ ⊗ [V ∗λ ]SO(n−k).

The homogeneous space St(k, n) = SO(n)/SO(n− k) is embedded in Matk×n ' Ck ⊗Cn, therefore the integral
weights occurring in Matk×n are the same as the integral weights occurring in the defining SO(n)-representation
Cn. Since Cn = V(1), the integral weights occurring in Cn are all the simple weights ±e1, . . . ,±er, where n = 2r
or n = 2r+ 1 depending on the parity. Denote by C the convex hull of ±e1, . . . ,±er, that is, the cross-polytope
in the weight space ΛR = Λ⊗Z R. By Lemma 2.2, we deduce

C[St(k, n)]≤j =
⊕

λ∈jC∩Λ
SO(n)
+

Vλ ⊗ [V ∗λ ]SO(n−k). (3)

To determine the dimensions of the direct summands, we introduce the formalism of Gelfand–Tsetlin poly-
topes.

4.1 Gelfand–Tsetlin polytopes and invariants

Definition 4.1. For m ≤ n, define

B(m,n) = {λSO(i) : i = m, . . . , n, λSO(i) an integral dominant weight for SO(i)}.

The Bratteli poset is the poset structure on B(m,n) where λSO(i) � µSO(j) if and only if i ≤ j and VλSO(i)

appears in the decomposition of VµSO(j) as a SO(i)-representation.
This notion was introduced in [5]. We refer to [10] for some information on the underlying combinatorial

structure.

Lemma 4.1. Let λ be a dominant integral weight for SO(n). Let m ≤ n. Then the dimension of the space
of SO(m)-invariants dim[Vλ]SO(m) equals the number of chains from (0)SO(m) to λSO(n) in the Bratteli poset
B(m,n).

Proof. This is a direct consequence of the branching rules described in Lemma 2.3. Indeed the restriction of an
irreducible representation from SO(n) to SO(n−1) is multiplicity free, implying that every chain from (0)SO(m)

to λSO(n) gives a unique invariant and all these invariants are linearly independent.

A useful combinatorial picture for recording chains in the Bratteli poset B(m,n) is a Gelfand–Tsetlin pattern
of shape (SO(m),SO(n)). This is a diagram of boxes placed in n−m+1 rows, indexed by integers m, . . . , n. The
number of boxes in the i-th row equals the rank of SO(i) and the left border of the diagram is an overlapping
descending staircase. The boxes are labeled by the integer coefficients of a dominant weight in terms of the
simple weights and these labels interlace along each row according to the branching rules. More precisely, the
labels have to satisfy the inequalities:

· · ·

· · · · · ·

· · ·

µi,j µi+1,j

µi,j+1

µi,j ≥ µi,j+1 ≥ µi+1,j⇐⇒

(4)

· · ·

· · · µi,j

µi,j+1

µi,j ≥ µi,j+1 ≥ −µi,j⇐⇒

(5)
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· · ·

· · · µi,j µi+1,j

µi,j+1

µi,j ≥ µi,j+1 ≥ |µi+1,j |⇐⇒

(6)

These inequalities ensure that a filling of the Gelfand–Tsetlin pattern corresponds to a chain in the Bratteli
poset. Conversely, any chain in the Bratteli poset will correspond to a filling.

In Figure 1, we give an example of a Gelfand–Tsetlin pattern of shape (SO(3),SO(7)). Notice that the zero
in the row corresponding to SO(4) is forced by the third inequality in (4)–(6).

6 2 2

5 2 -1

5 1

4 0

0

SO(7)

SO(6)

SO(5)

SO(4)

SO(3)

Figure 1: A chain from λSO(7) = (6, 2, 2) to (0)SO(3) in the Bratteli poset B(3, 7) given by a Gelfand–Tsetlin
pattern of shape (SO(3),SO(7))

In general, the shape of a Gelfand–Tsetlin diagram depends on the parity of n and m because the row
corresponding to SO(i) has b i2c boxes. For reference, in Figure 2, we give the shape when n = 2r + 1 and
m = 2r′ − 1 are both odd, from the weight (0) for SO(m) to the weight λ for SO(n).

λ1 λ2 λ3 · · · · · · λr−1 λr

µ1,1 µ1,2 µ1,3 · · · · · · µ1,r−1 µ1,r

µ2,1 µ2,2 · · · · · · µ2,r−2 µ2,r−1

. . .
...

µk−2,1 µk−2,2 · · · µk−2,r′−1 µk−2,r′

µk−1,1 µk−1,2 · · · µk−1,r′−1 µk−1,r′

0 · · · 0 0

· · · · · ·

· · · · · ·

· · · · · ·

. . .
...

· · ·

· · ·

· · ·

SO(2r + 1)

SO(2r)

SO(2r − 1)

...

SO(2r′ + 1)

SO(2r′)

SO(2r′ − 1)

Figure 2: Gelfand–Tsetlin pattern of shape (SO(m),SO(n)) with n,m both odd

Definition 4.2. Let n = 2r or n = 2r + 1 depending on the parity. Let λ ∈ Rr be an r-tuple λ = (λ1, . . . , λr)
with λ1 ≥ · · · ≥ λr ≥ 0 if n is odd and λ1 ≥ · · · ≥ λr−1 ≥ |λr| if n is even. The Gelfand–Tsetlin polytope

GT
SO(n)
SO(m)(λ) is the set of all fillings of the Gelfand–Tsetlin pattern of shape (SO(m),SO(n)) with λ in the top

row, (0) in the bottom row and filled by real numbers subject to the inequalities of (4)–(6).

When λ is a dominant integral weight for SO(n), then the integral points of the Gelfand–Tsetlin polytope

GT
SO(n)
SO(m)(λ) correspond to chains in the Bratteli poset and therefore via Lemma 4.1 to SO(m)-invariants in the

SO(n)-representation Vλ.
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We establish the dimension of these polytopes in the range of interest.

Lemma 4.2. Fix n ≤ 2k − 1 with n = 2r or n = 2r + 1 depending on the parity. Let λ ∈ Rr have distinct

coefficients and let GT
SO(n)
SO(n−k)(λ) be the corresponding Gelfand–Tsetlin polytope. Then

dimGT
SO(n)
SO(n−k)(λ) =

{
r(2k − r)−

(
k+1

2

)
if n = 2r is even;

r(2k − r − 1)−
(
k
2

)
if n = 2r + 1 is odd.

Proof. The dimension of the Gelfand–Tsetlin polytope equals the number of labels of the Gelfand–Tsetlin
pattern which are not forced to be 0 by the inequalities (4)–(6). Write m = n− k. Since n ≤ 2k − 1, we have
2m+ 1 ≤ n.

Suppose m is odd, so m+ 1 is even and the row labeled m of the Gelfand–Tsetlin pattern has m+1
2 boxes.

From Figure 2, observe that all but the first label in the second row from the bottom are forced to be 0;
similarly, all but the leftmost i labels in the (i+ 1)-th row from the bottom are forced to be 0 for i = 1, . . . ,m.
This gives 1 + 2 + · · · + m =

(
m+1

2

)
nonzero labels in the bottom m + 1 rows of the Gelfand–Tsetlin pattern:

indeed, observe that the (m+ 1)-th row from the bottom corresponds to SO(2m) and all its labels are nonzero.
Now consider the rows from 2m to n: the last row is fixed and its labels do not contribute to the dimension;
the remaining n − 2m − 1 rows contribute with a total of 2

[(
r
2

)
−
(
m+1

2

)]
+ m labels if n = 2r is even and

2
[(
r
2

)
−
(
m+1

2

)]
+m+ r − 1 if n = 2r + 1 is odd. Expanding the binomial coefficients, we obtain the result. If

m is even, the calculation is similar.

We point out that a result similar to Lemma 4.2 holds in the range n ≥ 2k, that is when deg(St(k, n)) equals
the Bézout bound. However, in this case, the inequalities are more complicated and the statement is more
involved. Although in principle one can compute deg(St(k, n)) using this approach in the Bézout range, we
prefer the geometric argument of Section 3 and do not provide additional details on the representation-theoretic
approach in these cases.

We now characterize the degree of St(k, n) in terms of volumes of Gelfand–Tsetlin polytopes, where volume
means the Euclidean volume in the real dimensional space given by Lemma 4.2.

Theorem 4.1. Fix k, n with n ≤ 2k − 1. Then

deg(St(k, n)) = N !

∫
C∩W

vol
(
GT

SO(n)
SO(n−k)(λ)

)
· vol

(
GT

SO(n)
SO(1) (λ)

)
dλ,

where N = dim St(k, n) =
(
n
2

)
−
(
n−k

2

)
.

Proof. From equation (3), via Lemma 4.1,

deg(St(k, n)) = N ! · lim
j→∞

1

jN

∑
λ∈jC∩Λ

SO(n)
+

(dimVλ) ·
(

dim[Vλ]SO(n−k)
)
. (7)

Now, dim[Vλ]SO(n−k) equals the number of lattice points in GT
SO(n)
SO(n−k)(λ). Similarly, dimVλ is the number of

invariants for the trivial group SO(1) ⊆ SO(n), therefore it equals the number of lattice points in GT
SO(n)
SO(1) (λ).

Using Lemma 4.2, whenever λ has distinct coefficients, we obtain

N −
[
dimGT

SO(n)
SO(1) (λ) + dimGT

SO(n)
SO(n−k)(λ)

]
= r.

This allows us to rewrite (7) as

deg(St(k, n)) = N ! · lim
j→∞

∑
λ∈jC∩Λ

SO(n)
+

dimVλ

j
dimGT

SO(n)

SO(1)
(λ)
· dim[Vλ]SO(n−k)

j
dimGT

SO(n)

SO(n−k)(λ)

= N ! · lim
j→∞

∑
λ∈C∩ 1

jΛ
SO(n)
+

dimVjλ

j
dimGT

SO(n)

SO(1)
(λ)
· dim[Vjλ]SO(n−k)

j
dimGT

SO(n)

SO(n−k)(λ)
.

As j → ∞ this summation converges to an integral and the number of rescaled lattice points converges to the
volume of the Gelfand–Tsetlin polytope. We conclude

deg(St(k, n)) = N !

∫
C∩W

vol
(
GT

SO(n)
SO(1) (λ)

)
· vol

(
GT

SO(n)
SO(n−k)(λ)

)
dλ.
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The volumes of the Gelfand–Tsetlin polytopes can be computed via straightforward integrals, using their
definitions via the inequalities (4)–(6) which explicitly determine the range of each variable:

inequality (4)←→
∫ µi,j

µi+1,j

1dµi,j+1,

inequality (5)←→
∫ µi,j

−µi,j
1dµi,j+1,

inequality (6)←→
∫ µi,j

|µi+1,j |
1dµi,j+1.

In fact, we perform an additional reduction: for the integral associated to (5), we have
∫ µi,j
−µi,j 1dµi,j+1 =

2
∫ µi,j+1

0
1dµi,j+1. This allows us to assume that the rightmost label of every row of the Gelfand–Tsetlin pattern

is nonnegative and simplifies the integral associated to (6) as well, providing
∫ µi,j
|µi+1,j | 1dµi,j+1 =

∫ µi,j
µi+1,j

1dµi,j+1.

After this simplification, the volume of the Gelfand–Tsetlin polytope is provided by a series of nested
integrals, where one counts twice every integral whose integration variable is the label of the rightmost box of
a row corresponding to SO(i) with i even.

Example 4.1. Consider the general pattern of shape (SO(3),SO(7)):

λ1 λ2 λ3

µ1,1 µ1,2 µ1,3

µ2,1 µ2,2

µ3,1 µ3,2

0

SO(7)

SO(6)

SO(5)

SO(4)

SO(3)

Note that the inequality (6) implies that µ3,2 = 0 and so there are only 6 free variables. The volume of

GT
SO(7)
SO(3) (λ) is given by∫ λ1

λ2

∫ λ2

λ3

2

∫ λ3

0

∫ µ1,1

µ1,2

∫ µ1,2

µ1,3

∫ µ2,1

µ2,2

1dµ3,1dµ2,2dµ2,1dµ1,3dµ1,2dµ1,1

which evaluates to

vol
(
GT

SO(7)
SO(3) (λ)

)
=

1

6
(λ1 − λ2)(λ2 − λ3)(λ1 − λ3)λ1λ2λ3.

In particular, note the factor of 2 arising in the integration with respect to µ1,3 between 0 and λ3. We point out
that this volume is an alternating function in the λj’s, evident from the outermost two integrals. Moreover, it
is divisible by λ3 (and thus λ1 and λ2 by the alternating property) evident from the third outermost integral.

4.2 Alternating functions and volumes of Gelfand–Tsetlin polytopes

In this section, we use an induction argument to determine the volumes of the Gelfand–Tsetlin polytopes
relevant to the calculation of deg St(k, n).

In Example 4.1, we saw that the volume of GT
SO(7)
SO(3) (λ) is an alternating polynomial in λ. It is clear that

this is a general fact, because of the last sequence of integrals in vol
(
GT

SO(7)
SO(3) (λ)

)
.

We record some facts about alternating polynomials referring to [21, Ch. I]. Given an integer partition
µ = (µ1, . . . , µr), define the alternating polynomial

aµ(λ1, . . . , λr) = det
[
λµi+r−ij

]
.

We remark that our notation differs from the usual notation which uses the subscript µ+(r−1, . . . , 1, 0) instead
of µ for the alternating polynomial aµ.

We record two useful results on the integration of alternating functions. The first gives the result of the
integral of a product of two alternating functions on the standard simplex.
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Lemma 4.3. Let ∆r be the convex hull of the origin and the standard r−1-simplex in Rr. Let µ = (µ1, . . . , µr)
and ν = (ν1, . . . , νr) be two partitions. Then∫

∆r

aµ(λ)aν(λ)dλ =
r!

(r2 + |µ|+ |ν|)!
det
([

(νi + µj + 2r − i− j)!
]r
i,j=1

)
where |µ| =

∑
µi and |ν| =

∑
νi.

Proof. The proof is an explicit calculation obtained by expanding the determinants defining aµ(λ) and aν(λ).
Given a permutation σ, write (−1)σ for its sign.∫

∆r

aµ(λ)aν(λ)dλ =

∫
∆r

∑
σ,τ∈Sr

(−1)σ◦τ
r∏
i=1

λ
µσ(i)+ντ(i)+2r−σ(i)−τ(i)

i dλ

=
∑

σ,τ∈Sr

(−1)σ◦τ

(∫
∆r

r∏
i=1

λ
µσ(i)+ντ(i)+2r−σ(i)−τ(i)

i dλ

)
.

The integral of a monomial over a simplex is given by [23, Lemma 4.23]. Applying this to our expression gives

∑
σ,τ∈Sr

(−1)σ◦τ
∏r
i=1(µσ(i) + ντ(i) + 2r − σ(i)− τ(i))!

(r + (
∑r
i=1 2r) + µσ(i) + ντ(i) − σ(i)− τ(i))!

=
1

(r2 + |µ|+ |ν|)!
∑

σ,τ∈Sr

(−1)σ◦τ
r∏
i=1

(µσ(i) + ντ(i) + 2r − σ(i)− τ(i))!

=
r!

(r2 + |µ|+ |ν|)!
∑
τ∈Sr

(−1)τ
r∏
i=1

(µi + ντ(i) + 2r − i− τ(i))!

=
r!

(r2 + |µ|+ |ν|)!
det ([(µi + νj + 2r − i− j)!])ri,j=1 .

The second result provides a formula for the integral of alternating functions in terms of the integration
bounds.

Lemma 4.4. Let π be a partition π = (π1, . . . , πr). Then∫ λ1

λ2

· · ·
∫ λr

λr+1

aπ(µ1, . . . , µr)dµr · · · dµ1 =
1∏r

1(πj + r − j + 1)
· a(π,0)(λ1, . . . , λr+1).

Proof. Consider the determinant representation of aπ(µ) and notice that each variable appears only in a single
column of the corresponding matrix. By linearity, this implies that the integration can be performed directly
on the entries of the matrix:

∫ λ1

λ2

· · ·
∫ λr

λr+1

aπ(µ1, . . . , µr)dµr · · · dµ1

= det


∫ λ1

λ2
µπ1+r−1

1 dµ1 · · ·
∫ λ1

λ2
µπ1+r−1
r dµr

...
...∫ λ1

λ2
µπr1 dµ1 · · ·

∫ λ1

λ2
µπrr dµr


=

1∏
(πj + r − j + 1)

det

 λπ1+r
1 − λπ1+r

2 · · · λπ1+r
r − λπ1+r

r+1
...

...

λπr+1
1 − λπr+1

2 · · · λπr+1
r − λπr+1

r+1



=
1∏

(πj + r − j + 1)
det


λπ1+r

1 − λπ1+r
2 · · · λπ1+r

r − λπ1+r
r+1 λπ1+r

r+1
...

...
...

λπr+1
1 − λπr+1

2 · · · λπr+1
r − λπr+1

r+1 λπr+1
r+1

0 · · · 0 1
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=
1∏

(πj + r − j + 1)
det


λπ1+r

1 λπ1+r
2 · · · λπ1+r

r+1
...

...
...

λπr+1
1 λπr+1

2 · · · λπr+1
r+1

1 1 · · · 1


=

1∏
(πj + r − j + 1)

· a(π,0)(λ1, . . . , λr+1).

Define recursively the following partitions. Let Ωk,2k−1 = (1, . . . , 1)︸ ︷︷ ︸
k−1

and let

Ωk,n =

{
(Ωk−1,n−1, 0) if n is even
Ωk−1,n−1 + (1, . . . , 1) if n is odd.

(8)

A closed expression for Ωk,n can be obtained by induction and it is given by

Ωk,n =


(k − r, . . . , k − r︸ ︷︷ ︸

n−k

, k − r − 1, . . . , 0) if n = 2r is even

(k − r, . . . , k − r︸ ︷︷ ︸
n−k

, k − r − 1, . . . , 1) if n = 2r + 1 is odd.

Notice that the recursion reaches all pairs (k, n) with n ≤ 2k − 1. For reference, Table 2 contains the first
values of Ωk,n.

k\n 1 2 3 4 5 6 7 8 9 10
1 (0)
2 * (1)
3 * * (1,0) (1,1)
4 * * * (2,1) (1,1,0) (1,1,1)
5 * * * * (2,1,0) (2,2,1) (1,1,1,0) (1,1,1,1)
6 * * * * * (3,2,1) (2,2,1,0) (2,2,2,1) (1,1,1,1,0)
7 * * * * * * (3,2,1,0) (3,3,2,1) (2,2,2,1,0)
8 * * * * * * * (4,3,2,1) (3,3,2,1,0)
9 * * * * * * * * (4,3,2,1,0)
10 * * * * * * * * *

Table 2: Partitions Ωk,n from (8). The bases of the recursion are the dark green boxes; the recursive steps move
southeast.

Proposition 4.1. The volume of GT
SO(2k−1)
SO(k−1) (λ) is

vol
(
GT

SO(2k−1)
SO(k−1) (λ)

)
=

2∏k−1
j=1 j!

aΩk,2k−1
(λ).

Proof. Let n = 2k−1. As in the proof of Lemma 4.2, observe that only some of the labels on the Gelfand–Tsetlin
pattern can be nonzero: only the i leftmost labels in the row corresponding to SO(k − 1 + i) are nonzero, for
i = 1, . . . , 2k − 2. In particular, the row corresponding to SO(2k − 2) has no labels identically equal to 0. This
shows

vol
(
GT

SO(2k−1)
SO(k−1) (λ)

)
=

∫ λ1

λλ2

· · ·
∫ λk−2

λk−1

2

∫ λk−1

0

vol(Tk−1(µ1, . . . , µk−1))dµk−1 · · · dµ1, (9)

where T`(µ1, . . . , µ`) is the polytope defined by the same inequalities as in (4)–(6) and the triangular shape
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µ1 µ2 · · · µ`−1 µ`

. . . . .
.

Observe that dimT`(µ1, . . . , µ`) =
(
`
2

)
and its volume is an alternating polynomial in the variables µ1, . . . , µ`.

There is a unique, up to scale, alternating polynomial of degree
(
`
2

)
in ` variables and it is the Vandermonde

determinant. Therefore,
vol(T`(µ1, . . . , µ`)) = κ`a(0,...,0)(µ).

for some constant κ`. We use induction on ` to determine κ` = 1∏`−1
j=1 j!

. This holds when ` = 2.

For ` ≥ 3, notice

vol(T`(µ1, . . . , µ`)) =

∫ µ1

µ2

· · ·
∫ µ`

µ`

vol(T`−1(ν1, . . . , ν`−1))dν`−1 · · · dν1

= κ`−1

∫ µ1

µ2

· · ·
∫ µ`−1

µ`

a(0,...,0)(ν1, . . . , ν`−1)dν`−1 · · · dν1

=
1∏`−2
j=1 j!

· 1∏`−1
1 (`− j)

a(0,...,0,0)(µ1, . . . , µ`),

where in the last line we used Lemma 4.4; since
∏`−1

1 (`− j) = (`− 1)!, we obtain the desired value of κ`.
It remains to evaluate the integral in (9). From (9), we see

vol
(
GT

SO(2k−1)
SO(k−1) (λ)

)
= 2 · vol(Tk(λ1, . . . , λk−1, 0)).

This concludes the proof because

2 · vol(Tk(λ1, . . . , λk−1, 0)) = 2

(
1∏k−1

1 j!
a(0,...,0)(λ1, . . . , λk−1, 0)

)

=
2∏k−1

1 j!
λ1 · · ·λk−1a(0,...,0)(λ1, . . . , λk−1)

=
2∏k−1

1 j!
a(1,...,1)(λ1, . . . , λk−1)

=
2∏k−1

1 j!
aΩk,2k−1

(λ1, . . . , λk−1).

Proposition 4.1 provides the base of the induction for the following result.

Theorem 4.2. Let n ≤ 2k − 1 with n = 2r or n = 2r + 1 depending on its parity and let λ = (λ1, . . . , λr).
Then

vol
(
GT

SO(n)
SO(n−k)(λ)

)
=

2k−r∏r
j=1((Ωk,n)j + r − j)!

· aΩk,n(λ)

=
2k−r∏n−k

1 (k − j)! ·
∏r
n−k+1(n− 2j)!

· aΩk,n(λ).

Proof. Since n ≤ 2k − 1, there exists a nonnegative integer p such that (k, n) = (` + p, 2` − 1 + p). We use
induction on p. Notice that n − k = ` − 1 does not depend on p. When p = 0, the statement is true by
Proposition 4.1.

Notice that vol
(
GT

SO(n)
SO(n−k)(λ)

)
is obtained by integrating vol

(
GT

SO(n−1)
SO(n−k) (λ)

)
in the labels of the second

(from the top) row of the Gelfand–Tsetlin pattern, see Figure 2.
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We consider two cases depending on the parity of p.
Let p be odd. In this case, n = 2` − 1 + p is even and if SO(n) has rank r then SO(n − 1) has rank r − 1.

We have

vol
(
GT

SO(n)
SO(`−1)(λ)

)
=

∫ λ1

λ2

· · ·
∫ λr−1

λr

vol
(
GT

SO(n−1)
SO(`−1) (µ1, . . . , µr−1)

)
dµr−1 · · · dµ1

=
2k−1−(r−1)∏r−1

j=1((Ωk−1,n−1)j + r − 1− j)!

∫ λ1

λ2

· · ·
∫ λr−1

λr

aΩk−1,n−1
(µ)µr−1 · · · dµ1

where we use the inductive hypothesis for p− 1 to compute vol
(
GT

SO(n−1)
SO(`−1) (µ1, . . . , µr−1)

)
.

Applying Lemma 4.4, we obtain

vol
(
GT

SO(n)
SO(`−1)(λ)

)
=

2k−r∏r−1
j=1((Ωk−1,n−1)j ! + (r − 1)− j)

· 1∏r−1
1 ((Ωk−1,n−1)j + (r − 1)− j + 1

a(Ωk−1,n−1,0)(λ).

Since n is even, we have (Ωk−1,n−1, 0) = Ωk,n so

r−1∏
j=1

((Ωk−1,n−1)j + (r − 1)− j)! ·
r−1∏

1

((Ωk−1,n−1)j + r − j) =

r∏
1

(Ωk,n)j + r − j)!.

This concludes the proof when p is odd.
Let p be even. In this case, n = 2`− 1 + p is odd, so SO(n) and SO(n− 1) have rank r. We have

vol
(
GT

SO(n)
SO(`−1))(λ)

)
=

∫ λ1

λ2

· · ·
∫ λr−1

λr

2

∫ λr

0

vol
(
GT

SO(n−1)
SO(`−1) (µ1, . . . , µr)

)
dµr · · · dµ1

=
2k−1−r)∏r

j=1((Ωk−1,n−1)j + r − j)!

∫ λ1

λ2

· · ·
∫ λr−1

λr

2

∫ λr

0

aΩk−1,n−1
(µ)µr · · · dµ1

Similarly to the proof of Proposition 4.1, we regard the last integration bound 0 as a variable λr+1 and then
evaluate it to 0. By Lemma 4.4, we deduce

vol
(
GT

SO(n)
SO(`−1)(λ)

)
=

2k−1−r∏r
j=1((Ωk−1,n−1)j + r − j)!

· 1∏r
1((Ωk−1,n−1)j + r + 1− j)

· 2 · a(Ωk−1,n−1,0)(λ, λr+1)|λr+1=0.

From properties of alternating functions a(π,0)(λ1, . . . , λr+1)|λr+1=0 = a(π+(1,...,1))(λ1, . . . , λr) for every partition
π. Since n is odd, we have Ωk,n = Ωk−1,n−1 + (1, . . . , 1). This allows us to conclude:

vol
(
GT

SO(n)
SO(`−1)(λ)

)
=

2 · 2k−1−r∏r
1((Ωk,n)j + r − j − 1)!

· 1∏r
1((Ωk,n)j + r − j)

a(Ωk−1,n−1+(1,...,1))(λ)

=
2k−r∏r

1((Ωk,n)j + r − j)!
aΩk,n(λ).

This concludes the proof for even p.
The second equality in the statement of the theorem is obtained by writing Ωk,n explicitly in the denominator.

We record separately the instance of Theorem 4.2 when k = n − 1; by Lemma 4.1 and the discussion after
that, these are the Gelfand–Tsetlin polytopes controlling the dimension of irreducible SO(n)-representations.

Indeed, when λ is a dominant integral weight for SO(n), the volume of GT
SO(n)
SO(1) (λ) can be recovered directly

from the Weyl dimension formula, see e.g. [9].

Corollary 4.1. Let n be a positive integer. Then

vol
(
GT

SO(n)
SO(1) (λ)

)
=

{
2r−1∏r

1(2(r−j))!a(r−1,r−2,...,0)(λ) if n = 2r is even
2r∏r

1(2(r−j)+1)!a(r,r−1,...,1)(λ) if n = 2r + 1 is odd
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4.3 Degrees of Stiefel manifolds via volumes of Gelfand–Tsetlin polytopes

We have now completed all the preparatory work to determine the degree of St(k, n) when n ≤ 2k − 1.

Theorem 4.3. Let n ≤ 2k − 1. Then

deg St(k, n) = 2k det

[(
(Ωk,n)i + (Ωn−1,n)j + 2r − i− j

(Ωk,n)i + r − i

)]
1≤i,j≤r

Proof. From Theorem 4.1 we have

deg(St(k, n)) = N !

∫
C∩W

vol
(
GT

SO(n)
SO(n−k)(λ)

)
· vol

(
GT

SO(n)
SO(1) (λ)

)
dλ,

and from Theorem 4.2 we write

deg(St(k, n)) =
N !2k+n−1−2r∏r

j=1((Ωk,n)j + r − j)! · ((Ωn−1,n)j + r − j)!

∫
C∩W

aΩk,n(λ)aΩn−1,n(λ)dλ.

When n = 2r is even,
C ∩W = {(λ1, . . . , λr)|λ1 ≥ λ2 ≥ · · · ≥ λr−1 ≥ |λr|}.

Since the integrand is alternating in λ, the integral over C ∩W is equal to 2
r! times the integral over ∆r and so

we may write

deg(St(k, n)) =
N ! · 2k

r! ·
∏r
j=1((Ωk,n)j + r − j)! · ((Ωn−1,n)j + r − j)!

∫
∆r

aΩk,n(λ)aΩn−1,n
(λ)dλ.

We compute this integral using Lemma 4.3:∫
∆r

aΩk,n(λ)aΩn−1,n(λ)dλ =
r!

(r2 + |Ωk,n|+ |Ωn−1,n|)!
detM =

r!

N !
detM

where M is the r × r matrix with (i, j)-th entry Mi,j = ((Ωk,n)i + (Ωn−1,n)j + 2r − i− j)!.
This yields

deg(St(k, n)) = 2k · 1∏r
j=1((Ωk,n)j + r − j)!((Ωn−1,n)j + r − j)!

· detM.

Distributing the factor 1/((Ωk,n)j +r− j)! in the j-th column of the matrix and the factor 1/((Ωn−1,n)i+r− i)!
in the i-th row provides the desired determinant when n is even.

When n = 2r + 1 is odd, the proof is essentially the same. The only difference is that

C ∩W = {(λ1, . . . , λr)|λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0}

therefore the integral over C ∩W equals 1
r! times the integral over ∆r. Since in this case 2r+ 1 = n, the power

of 2 simplifies to 2k as was the case when n was odd.

4.4 Non-intersecting lattice path interpretation

As is the case of the formula for deg(SO(n)) in [2], the result of Theorem 4.3 can be interpreted combinatorially
in terms of non-intersecting lattice paths. We recall the Lindström–Gessel–Viennot Lemma (see e.g. [28, Thm.
2.7.1]):

Lemma 4.5 (Lindström–Gessel–Viennot [16, 20]). Let A = {a1, . . . , ar} and B = {b1, . . . , br} be sets of points
in Z2. Let Mi,j denote the number of paths from ai to bj in the lattice Z2 using unit steps in only north and
east directions. If the only way to connect all points in A to all points in B via non-intersecting paths is by
connecting ai to bi then the number of ways to do this is given by det([Mi,j ]i,j=1,...,r).

Example 4.2. Consider the point configurations A = {(−3, 0), (−2, 0), (0, 0)}, and B = {(0, 4), (0, 2), (0, 0)}.
Then the matrix M is given by

M =



(
7
3

) (
5
3

) (
3
3

)
(

6
2

) (
4
2

) (
2
2

)
(

4
0

) (
2
0

) (
0
0

)


=

 35 10 1
15 6 1
1 1 1

 .
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Figure 3: All non-intersecting lattice paths (green) from A = {(−3, 0), (−2, 0), (0, 0)} to B = {(0, 4), (0, 2), (0, 0)}

Its determinant is 44. There is only one path from A3 = (0, 0) to B3 = (0, 0) and so a collection of non-
intersecting lattice paths is uniquely determined by a pair of paths, one from A1 to B1 and another from A2 to
B2, not passing through (0, 0).

Figure 3 displays paths from A1 to B1 in the first row and paths from A2 to B2 in the first column. A green
Xindicates that the pair together with the stationary path at (0, 0) forms a collection of three non-intersecting
lattice paths. Indeed, there are 44 green X’s.

Lemma 4.6. Fix k, n with k + 1 ≤ n ≤ 2k − 1. Let

A = {(−((Ωk,n)j + r − j), 0) : j = 1, . . . , r}
B = {(0, n− 2j) : j = 1, . . . , r}.

The matrix in Theorem 4.3 is the matrix in the Lindström–Gessel–Viennot Lemma applied to A and B.

Proof. From the point (−i, 0) to (0, j) there are
(
i+j
i

)
paths. Notice that n − 2j = (Ωn−1,n)j + r − j. These

facts applied to A and B directly prove the result.

Corollary 4.2. For k + 1 ≤ n ≤ 2k − 2, let Lk,n denote the number of non-intersecting lattice paths

from A = {(−(Ωk,n)j − r + j, 0)}rj=1 to B = {(0, n− 2j)}rj=1

in Z2 consisting of unit steps in north and east directions. The degree of St(k, n) is given by

deg(St(k, n)) = 2k · Lk,n.

Proof. By Lemma 4.6, the matrix in Theorem 4.3 is the matrix appearing in Lemma 4.5. Apply Lemma 4.5 to
the sets of A and B to conclude.

Example 4.3 (Degree of St(4, 6)). Let k = 4 and n = 6. Example 4.2 calculated that N(4, 6) = 44. Applying
Corollary 4.2 computes the degree of St(4, 6) to be

deg(St(4, 6)) = 24 · 44 = 704.

5. Conclusions

The statements of Theorem 3.2 (n ≥ 2k − 1) and Corollary 4.2 (n ≤ 2k − 1) combine to produce the proof of
Theorem 1.1. We write it explicitly for completeness.

Proof of Theorem 1.1. The first half of Theorem 1.1 is given directly by Theorem 3.2. The second half is given
by writing Ωk,n in the point configuration in Corollary 4.2 according to its expression in (4.2).

Theorem 1.1 in the case k = n− 1 gives the following corollary.

Corollary 5.1. The degree of SO(n) is equal to the degree of St(n− 1, n).

We provide a geometric proof of this fact as well.
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5.1 A geometric argument for the result of Corollary 5.1

Consider the rational map
π : P(Matn×n ⊕ C) 99K P(Mat(n−1)×n ⊕ C)

sending an n × n matrix to the submatrix obtained by removing the first row. In other words, this is the
projection with center L = {(A, z) : z = 0, A(i) = 0 for i > 1}, where A(i) denotes the i-th row of the n × n
matrix A.

The restriction
ϕ : SO(n) 99K P(Mat(n−1)×n ⊕ C)

surjects onto St(n− 1, n). Since dim SO(n) = dim St(n− 1, n), ϕ is generically finite.
We show that ϕ is regular. To see this, it suffices to show that SO(n) does not intersect the center of the

projection L. Suppose (A, z) ∈ L ∩ SO(n). In particular, z = 0 and A is a matrix which is nonzero only in its
first row and such that AAT = 0 · idn = 0. Notice that if (A, z) ∈ SO(n), then AAT = ATA. This guarantees
that if A is supported on a single row and AAT = 0, then A = 0 and we conclude that SO(n) ∩ L = ∅.

Moreover, ϕ is generically one-to-one. Indeed, let B ∈ St(k, n) and consider (B, 1) ∈ St(k, n), so that
BBT = idn−1. The rows of B form a set of n− 1 orthonormal vectors in Cn; let u be the unique vector in Cn
that is orthogonal to the vectors of B, has norm equal to 1, and forms a positively oriented basis together with
the vectors of B. In particular, the matrix A obtained by placing the vector u above the matrix B is an n× n
orthogonal matrix with determinant 1, and it is the unique preimage of B via ϕ. This shows degϕ = 1.

Applying iteratively [24, Thm. 5.11(a)], we conclude

deg SO(n) = degϕ(SO(n)) = deg St(n− 1, n).

5.2 A final connection to the combinatorics of domino tilings

The case n = 2k − 1 appearing as the overlap of Sections 3 and 4 produces the following simple combinatorial
identity.

Corollary 5.2.

2(r+1
2 ) = det

[(
2i

j

)]
i,j=1,...,r

Proof. When n = 2k−1, the point configuration A,B given by Lemma 4.6 has the property that the first r−j+1
steps beginning at Aj must be vertical. Equivalently, the determinant of the path matrix associated with A and

B is the same as the determinant of the path matrix associated with Ã, B where Ã = {(−(r−j+1), (r−j+1)}rj=1.
The new path matrix is

P =

[(
2i

j

)]
i,j=1,...,r

.

We can express deg(St(k, 2k − 1)) by Theorem 3.2 as 2(k+1
2 ) and by Theorem 4.3 as 2k det(P). We conclude

det(P) = 2−k · 2(k+1
2 ) = 2(k2) = 2(r+1

2 ).

We could only find the result of Corollary 5.2 in a comment in the sequence A006125 in OEIS [26]. The
Aztec diamond theorem states that this power of two is the number of domino tilings of the Aztec diamond of
order n. It was proved by Elkies, Kuperberg, Larsen, Propp in [13]. In [11], Eu and Fu provide a proof of the
Aztec diamond theorem using non-intersecting lattice paths, but they do not seem to use the path matrix in
Corollary 5.2.
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