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Abstract: The objective of this paper is, mainly, twofold: Firstly, to develop an algebraic setting for dealing

with Bell polynomials and related extensions. Secondly, based on the author’s previous work on multivariate

Stirling polynomials (2015), to present a number of new results related to different types of inverse relation-

ships, among these (1) the use of multivariable Lah polynomials for characterizing self-orthogonal families of

polynomials that can be represented by Bell polynomials, (2) the introduction of ‘generalized Lagrange inver-

sion polynomials’ that invert functions characterized in a specific way by sequences of constants, (3) a general

reciprocity theorem according to which, in particular, the partial Bell polynomials Bn,k and their orthogonal

companions An,k belong to one single class of Stirling polynomials: An,k = (−1)n−kB−k,−n. Moreover, of some

numerical statements (such as Stirling inversion, Schlömilch-Schläfli formulas) generalized polynomial versions

are established. A number of well-known theorems (Jabotinsky, Mullin-Rota, Melzak, Comtet) are given new

proofs.

Mathematics Subject Classifications: 05A19; 05E99; 11B73; 11B83, 13F25; 13N15; 46E25
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1. Introduction

The history of Bell polynomials essentially originates with the problem of expanding a composite function f ◦ϕ
into a Taylor series. Faà di Bruno’s famous formula [12,21] for the higher derivatives of f ◦ϕ provides a solution

that takes on an elegant form using the (partial) Bell polynomials Bn,k:

(f ◦ ϕ)(n) =

n∑
k=0

(f (k) ◦ ϕ) ·Bn,k(ϕ′, ϕ′′, . . . , ϕ(n−k+1)). (1.1)

A wider scope of interesting properties and applications has been opened up, among other things, through

the investigations of Bell [4], Riordan [42, 43], and Comtet [11]. And even in the past two decades, research

on Bell polynomials has still received considerable attention, as evidenced by a wealth of relevant literature,

e. g. [1, 5, 9, 14,15,29,30,35,37,44,52].

In the present paper, a unifying framework is developed for dealing with Bell polynomials and related

extensions on an exclusively algebraic basis, which makes it easier to bring general concepts into play and to

avoid ad-hoc calculations as far as possible.

Above all, the polynomial substitution introduced in this context proves to be an effective tool. It can

already be roughly read from the Faà di Bruno formula that there is a correspondence between functions

and polynomials. This basic observation is reflected in rules, according to which the composition of functions

corresponds to a specific form of substituting a family of polynomials into a multivariable polynomial.
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Another key concept that is directly related to this is inversion. The following variant was a starting point for

the author’s previous study [44]. If we replace ϕ in (1.1) by its compositional inverse ϕ, the question naturally

arises whether Bn,k(ϕ′, ϕ′′, . . . , ϕ(n−k+1)) can be represented by a polynomial expression in ϕ′, ϕ′′, . . . , ϕ(n−k+1).

This problem actually has a solution in the form of a Laurent polynomial An,k such that

Bn,k(ϕ′, ϕ′′, . . . , ϕ(n−k+1)) = An,k(ϕ′, ϕ′′, . . . , ϕ(n−k+1)) ◦ ϕ. (1.2)

Todorov [49] presumably was the first to establish at least a semi-explicit (determinantal) expression for

the polynomials An,k. A few years earlier Comtet [11] had represented the subfamily An,1 by means of

Bn−1+k,k(0, X2, . . . , Xn), 0 ≤ k ≤ n− 1 (see (7.2) below). In [44], the Comtet formula was extended to the

entire family An,k, which eventually also enabled an explicit representation in the form of a partition polyno-

mial (cf. Theorem 2.1 and (2.13) below). A number of fundamental properties have also been proven, among

which the orthogonality relation deserves special emphasis:

n∑
j=k

An,jBj,k = δnk (1 ≤ k ≤ n). (1.3)

Equation (1.3) is the perfect analogue of the corresponding relation between the Stirling numbers, for in addition

to the well-known fact that Bn,k(1, . . . , 1) is equal to the Stirling number of the second kind s2(n, k), it indeed

turns out that An,k(1, . . . , 1) is equal to the signed Stirling number of the first kind s1(n, k). In other interesting

cases, too, identities that are satisfied by the Stirling numbers can be raised to the level of the associated poly-

nomials. To name just a few examples, we mention a theorem by Khelifa and Cherruault [24] (Section 5.4), the

introduction of multivariate Lah polynomials (Section 5.5), and the reciprocity theorem An,k = (−1)n−kB−k,−n

(Section 8). The latter shows that the partial Bell polynomials and their orthogonal companions ultimately

belong to one kind of multivariate Stirling polynomials.

The present paper is organized as follows:

Section 2 : In [44] it was sufficient to axiomatically describe the required algebra of functions. However, in

order to continue and deepen these investigations, using a suitable standard model proves advantageous, here

the algebra of formal power series over a field of characteristic zero. Section 2 summarizes the notations used

and some of the results required from [44].

Section 3 : For any function ϕ with Taylor coefficients ϕ0, ϕ1, ϕ2, . . ., a higher-order derivative operator

Ωn(· |ϕ) is introduced that assigns to every function term f (whether containing ϕ or not) a polynomial Ωn(f |ϕ)

by replacing in f (n)(0) each occurence of ϕj with Xj (j = 0, 1, 2, . . .). Based on rules for evaluating Ωn(f |ϕ)

for composite function terms, we obtain several instances and classes of polynomials that are closely related to

the Bn,k and will play a crucial role in subsequent sections.

Section 4 : The effect is studied the composition of functions has on polynomials, which depend in a specific

way on those functions. Two composition rules will be proved in this context. The first one establishes the

polynomial counterpart of a functional identity h = f ◦g. The second rule reformulates a theorem by Jabotinsky

and is given here a new proof. It appears as an indispensable tool in many of the proofs to follow.

Section 5 : B-representable polynomials are introduced that can be written in the form Qn,k =

Bn,k(H1, . . . ,Hn−k+1) for all n ≥ k ≥ 1. Section 5.1 contains some criteria (necessary, sufficient) and the

simple fact that a regular B-representable family of polynomials Qn,k has a unique orthogonal companion Q⊥n,k.

In Section 5.2 it is shown that well-known identities which are valid for Stirling numbers — such as the Stir-

ling inversion or the Schlömilch-Schläfli formulas — can be extended to regular B-representable polynomials.

In the remaining subsections, special B-representable polynomial families and their orthogonal companions are

examined.

Section 6 : As it is well-known, there is a close connection between the complete Bell polynomials and

binomial sequences. Therefore it appears reasonable to apply to this area the results on Bell polynomials

obtained up to then. Most identities known from the literature are direct consequences from our previously

established statements. Special interest deserves the binomial sequence related to trees that has been studied

by Knuth and Pittel [27] and is given here a new explicit representation. Contributions are also made to
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the theorem of Mullin and Rota: We give a new proof, supplemented by a ‘both-or-none statement’, which

generalizes a lemma from Yang [55].

Section 7 : Lagrange’s classical formula for the inversion of a power series has been generalized in numerous

forms (see e. g. Gessel [16, Theorem 2.1.1]). In this section we are, loosely speaking, concerned with the

problem of constructing multivariate polynomials, which convert a sequence of constants that characterizes

a given function f into the corresponding sequence of constants that characterizes the inverse function f .

Theorem 7.2 explicitly describes the intricate form of these ‘generalized Lagrange inversion polynomials’. Some

special cases are discussed in detail, in particular a corollary (= Theorem 7.1) that proves to be equivalent to

Comtet’s Theorem F [11, p. 151].

Section 8 : This final section is about certain laws of reciprocity. The formulation of such laws requires that

the domain of the indices of the polynomials involved can be extended to the integers. In order to achieve this,

a new and straightforward procedure is proposed (based on the results from Section 3). The above-mentioned

reciprocity law can thus be generalized to any regular B-representable families of polynomials Qn,k. The main

result (Theorem 8.1) then states that Q⊥n,k = (−1)n−kQ−k,−n for all n, k ∈ Z. Finally, two reciprocities for the

potential polynomials are derived. The first implies the well-known Schur-Jabotinsky theorem (cited in [16]);

the second extends Comtet’s Theorem C [11, p. 142] and is shown to be essentially a general version of a binomial

transformation attributed to Melzak.

2. Basic notions and preliminaries

2.1 Algebra of functions

Throughout this paper K is supposed to be a fixed commutative field of characteristic zero (so that Q ⊆ K). We

denote by F := K[[x]] the algebra of formal power series in x with coefficients in K. As customary, addition and

scalar multiplication is defined coordinatewise, and product is defined by the Cauchy convolution. The elements

f ∈ F will be called functions. Besides their variable-free notation, we equally write f(x) if the ‘argument’ x is

to be referred in any way. So, the coefficient of xn in f(x) =
∑
n≥0 cnx

n is written cn = [xn]f(x). We denote by

F0 the set of all f ∈ F whose leading coefficient, [x0]f(x), is zero; furthermore we write F1 for the complement

of F0 in F . Then, F1 is the subring of the units of F , that is, its elements are precisely those functions f ∈ F
having a multiplicative inverse, from now on denoted by f−1 or by 1

f and called reciprocal of f .

We also consider the polynomial rings P := K[x] and P̂ := K[x−1, x], the elements of which will be regarded

as functions, too.

Next we introduce, as a third binary operation, the composition ◦ of functions by the following rule of

substitution:

(f ◦ g)(x) := f(g(x)) =
∑
n≥0

([xn]f(x))g(x)n. (2.1)

This, however, defines but a partial operation. For almost all∗ of our purposes, two cases will suffice, in which

(2.1) makes good sense:

f ∈ F and g ∈ F0 (called 0-case),

f ∈ P̂ and g ∈ F1 (called 1-case).

In either case we get a well-defined composite function f ◦ g. The identity element is ι = ι(x) := x, satisfying

f ◦ι = ι◦f = f . Moreover, we have f ◦(g◦h) = (f ◦g)◦h, (f+g)◦h = (f ◦h)+(g◦h), and (f ·g)◦h = (f ◦h)·(g◦h),

whenever the terms involved are meaningful. By G we denote the set of g ∈ F0, for which a compositional inverse

f ∈ F0 exists satisfying f ◦g = g ◦f = ι. We write g for the (unique) inverse of g. The set of invertible functions

in F forms a non-abelian group with composition. Recall that G = {g ∈ F0 | [x]g(x) 6= 0}.

Remark 2.1. We note the following simple, but useful statement: The product of two functions in F is invertible

if and only if either is invertible while the other is a unit. From this follows immediately

f ∈ G ⇐⇒ ι−1 · f ∈ F1. (2.2)
∗The few times (cf. Remark 4.2) that we shall have to treat Laurent polynomials as composite functions f ◦ g, we will limit

ourselves to the case f ∈ P, g ∈ P̂.
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Among the few special functions we shall be concerned with further on, consider the exponential function

in F defined as usual by exp(x) := 1 + x+ x2/2! + x3/3! + · · · (occasionally written in traditional notation ex).

Since exp belongs to F1, it has no compositional inverse, and log cannot be represented in F . Alternatively, we

define ε := exp−1, which has Mercator’s series for log(1 + x) as its inverse λ := ε in G.

Finally, we need our algebra of functions to be endowed with a derivation, that is, an additive operator D

satisfying the Leibniz product rule D(fg) = fD(g) +D(f)g. A normalized derivation D on P (that takes x to

1) agrees with the ordinary derivation known from calculus: D(a0 +a1x+a2x
2 + · · ·+anx

n) = a1 +2a2x+ · · ·+
nanx

n−1. Recall that D can be extended in a unique way to a derivation on the rational functions (quotient

field of P) as well as to a derivation on F . We still denote these extensions by D (only some few times writing

f ′ instead of D(f)). As a consequence, the chain rule D(f ◦ g) = (D(f) ◦ g) ·D(g) is satisfied in both the 0-case

and the 1-case as well.

Iterating D leads, in the usual way, to derivatives of higher order Dn(f), n ≥ 0. Every f ∈ F can be written

in form of a Taylor series f(x) =
∑
n≥0D

n(f)(0)xn/n!.

We conclude this subsection with some remarks concerning the operator θD, which is a derivation whenever

θ ∈ F . Comtet [10] called θD Lie derivation (with respect to the function θ) and defined it by θD(f)(x) :=

θ(x)f ′(x) (see also [38]). Since long the special case θ = ι as well as the nice expansions resulting from repeatedly

applying xD to a function had been studied in the literature (see e. g. [6,23,51]). However, leaving θ unspecified,

one obtains far less satisfactory results (an issue we shall come back to in Section 5.6). As is shown in [44], the

situation takes a happy turn when, following Todorov [49], one chooses θ to be of the form D(ϕ)−1. Therefore,

given any function ϕ with D(ϕ)(0) 6= 0, we define Dϕ by

Dϕ(f) := D(ϕ)−1D(f). (2.3)

The operator Dϕ may be called derivation with respect to ϕ, because it acts on a function as if ϕ were its

independent variable, for instance: Dϕ(1 + 3ϕ− ϕ5) = 3− 5ϕ4, or Dϕ(eϕ) = eϕ.

For an arbitrary ϕ ∈ G and n ≥ 0 it can easily be shown [44, Proposition 2.2: Pourchet’s formula] that

Dn
ϕ(f) = Dn(f ◦ ϕ) ◦ ϕ. (2.4)

Specializing f = ι in (2.4), we get the nth Taylor coefficient of the inverse function ϕ by just interchanging ι

and ϕ in Dn
ι (ϕ)(0) (= the nth Taylor coefficient of ϕ), i. e., we have Dn(ϕ)(0) = Dn

ϕ(ι)(0). Compared to the

classical term Dn−1((ι/ϕ)n)(0), which Lagrange proposed to obtain the inverse of a power series, the iterative

expression Dn
ϕ(ι)(0) proves simpler and, in most cases, requires significantly less computational amount.

The next subsection will exhibit the important part the operator Dϕ plays in setting up a suitable framework

for dealing with multivariate Bell polynomials and their related extensions.

2.2 Multivariate polynomials

We consider polynomials over the field K as well as some kinds of special Laurent polynomials from

K[X−1
0 , X−1

1 , X0, X1, . . . , Xn] which, for brevity, will be referred as polynomials, too.

Given a polynomial P in X1, X2, . . . and any sequence of polynomials (Qn), we denote by P ◦Q] the result

obtained by replacing in P each indeterminate Xj by Qj (the ]-sign marks the indexed place, which corresponds

to the indeterminate’s index). Besides P ◦ Q], we also use the traditional notation P (Q1, Q2, . . .). When the

sequence Q1, Q2, . . . is constant, the substitution will be called unification, and ] be dropped. In the (default)

case Q1 = Q2 = · · · = 1 we plainly write P ◦ 1, which gives the sum of the coefficients of P .

A reasonable sense can also be attached to expressions of the form Q] ◦R]. Suppose Qn ∈ K[X1, . . . , Xq(n)],

with an integer q(n) ≥ 1. We then take Q] ◦R] as an abbreviation for Q](R1, . . . , Rq(])). The composition of

polynomials obeys the associative law :

(P ◦Q]) ◦R] = P ◦ (Q] ◦R]). (2.5)

Given any function ϕ, consider the mapping P 7→ Pϕ := P ◦ D](ϕ), which assigns to each polynomial P the

function obtained from P by replacing Xj by Dj(ϕ) for each j. The following substitution rule is obvious:

P (Q1, . . . , Qn)ϕ = P (Qϕ1 , . . . , Q
ϕ
n). (2.6)
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Remark 2.2. Let P,Q be polynomials in X1, X2, . . . satisfying Pϕ(0) = Qϕ(0) for every ϕ ∈ F . We then have

P = Q. — Since the constants in any given sequence c1, c2, . . . ∈ K may be regarded as Taylor coefficients

cj = Dj(ϕ)(0) of some function ϕ, one merely has to recall that distinct polynomials over an infinite integral

domain cannot give rise to the same polynomial function.

In the present paper double-indexed families of polynomials play a major role. We use the notation (Un,k)

with n, k ≥ 0 to mean the infinite family, and moreover (Ui,j)0≤i,j≤n to denote its initial part in form of a

quadratic matrix. The family (and the matrix as well) is called (lower) triangular if Un,k = 0 for n < k. We

say that polynomial families (Un,k), (Vn,k) are orthogonal companions (of each other) when they satisfy the

orthogonality relation
n∑
j=0

Un,jVj,k = δnk (2.7)

for all n, k ≥ 0 (δnk Kronecker’s symbol). In this case we equally write Un,k = V ⊥n,k or Vn,k = U⊥n,k. The families

involved will be called regular inasmuch they necessarily have non-singular matrices.

Next, we summarize without proofs some relevant material from the author’s paper on multivariate Stirling

polynomials the following sections are based upon. For details we refer the reader to [44].

Unless otherwise stated we assume ϕ to be an arbitrary function from G, and i, j, k, n, . . . to be non-negative

integers.

Proposition 2.1. There exist polynomials An,k ∈ K[X−1
1 , X2, . . . , Xn−k+1] such that

Dn
ϕ =

n∑
k=0

Aϕn,k ·D
k.

The family (An,k) is triangular, regular, and uniquely determined by the differential recurrence

An+1,k =
1

X1

An,k−1 +

n−k+1∑
j=1

Xj+1
∂An,k
∂Xj

 , An,0 = δn0.

The expansion of Dn
ϕ into a linear combination of the D0, D1, . . . , Dn can also be done in the reverse

direction.

Proposition 2.2. There exist polynomials Bn,k ∈ K[X1, X2, . . . , Xn−k+1] such that

Dn =

n∑
k=0

Bϕn,k ·D
k
ϕ.

The family (Bn,k) is triangular, regular, and uniquely determined by the differential recurrence

Bn+1,k = X1

Bn,k−1 +

n−k+1∑
j=1

Xj+1
∂Bn,k
∂Xj

 , Bn,0 = δn0.

Both polynomial families are closely connected, as becomes evident by the identity

Aϕn,k = Bϕn,k ◦ ϕ. (2.8)

Taking ϕ for ϕ, this can be equivalently expressed in the form Bϕn,k = Aϕn,k ◦ ϕ.

To start with Proposition 2.2: (Bn,k) are the (partial) Bell polynomials Riordan [42] named in honor of

E. T. Bell, whose paper [4] is an extensive study of what Bell himself called ‘exponential polynomials’, obviously

motivated by the eigenvalue identity Dn(eϕ) = (Bn,0 +Bn,1 + · · ·+Bn,n)ϕ · eϕ. The latter results as the special

case f = exp of the famed Faà di Bruno (FdB) formula (see [12,21])

Dn(f ◦ ϕ) =

n∑
k=0

(Dk(f) ◦ ϕ) ·Bϕn,k, (2.9)
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which appears as a byproduct in the proof of Proposition 2.2. Also well-known is the following ‘diophantine’

representation

Bn,k =
∑

P(n,k)

n!

r1!r2! · · · (1!)r1(2!)r2 · · ·
Xr1

1 Xr2
2 · · ·X

rn−k+1

n−k+1 , (2.10)

the sum to be taken over all elements (r1, . . . , rn−k+1) of the set P(n, k) of (n, k)-partition types, i. e., sequences

of non-negative integers r1, r2, r3, . . . such that r1 + r2 + r3 + · · · = k and r1 + 2r2 + 3r3 + · · · = n. It follows

that Bn,k is homogeneous of degree k and isobaric of degree n.

Let us now turn to Proposition 2.1 and to the most fundamental properties of the family (An,k). The

first thing to notice here is the fact that (An,k) is the orthogonal companion of the (partial) Bell polynomials:

B⊥n,k = An,k.

Remark 2.3. Let ϕ(x) = c1x + c2x
2/2! + c3x

3/3! + · · · , c1 6= 0. Since Bn,1 = Xn, we obtain from (2.8)

Aϕn,1(0) = (Aϕn,1 ◦ ϕ)(0) = Bϕn,1(0) = Dn(ϕ)(0), that is, An,1(c1, . . . , cn) is the nth Taylor coefficient of the

inverse function ϕ.

Thus we are led to the following compositional identities, which can be viewed as polynomial counterparts

of (2.8):

An,k = Bn,k ◦A],1 = Bn,k(A1,1, . . . , An−k+1,1) (2.11)

Bn,k = An,k ◦A],1 = An,k(A1,1, . . . , An−k+1,1). (2.12)

Let B̃n,k := Bn,k(0, X2, . . . , Xn−k+1), called associate (partial) Bell polynomials (the coefficients of which count

only partitions with no singleton blocks). Then the main result† of [44] is as follows:

Theorem 2.1. Let k, n be any integers with 1 ≤ k ≤ n. We have

An,k =

n−1∑
j=k−1

(−1)n−1−j
(

2n− 2− j
k − 1

)
Xj−2n+1

1 B̃2n−1−k−j,n−1−j .

This identity strongly generalizes Comtet’s famous formula for the coefficients of an inverted power series [11,

Theorem E, p. 150/151], here obtained by taking k = 1. Theorem 2.1 can be used to derive some general

polynomial identities of Schlömilch-Schläfli type (see Section 5.2) as well as the following explicit representation,

which corresponds to that of Bn,k in (2.10):

An,k = X
−(2n−1)
1

∑
P(2n−1−k,n−1)

(−1)n−1−r1(2n− 2− r1)!

(k − 1)!r2!r3! · · · (2!)r2(3!)r3 · · ·
Xr1

1 Xr2
2 · · ·X

rn−k+1

n−k+1 . (2.13)

As a consequence, An,k is homogeneous of degree n− 1 and isobaric of degree 2n− 1− k. — Unification with

both An,k and Bn,k yields

An,k ◦ 1 = s1(n, k) (signed Stirling numbers of the first kind), (2.14)

Bn,k ◦ 1 = s2(n, k) (Stirling numbers of the second kind). (2.15)

This may justify An,k and Bn,k to be called multivariate Stirling polynomials (MSP) of the first and second

kind, respectively. While (2.15) has been well-known since long, (2.14) does add a new facet to what is already

known about how the unsigned Stirling numbers c(n, k) := |s1(n, k)| could be obtained by unification from

certain polynomials (see Sections 5.2 and 5.5). — In [44] a juxtaposition of the MSPs is to be found (up to the

6th generation).

Finally, we state a property of the Bell polynomials that will be needed later.

Lemma 2.1 (Identity Lemma). Let ϕ,ψ ∈ G be any invertible functions such that Bϕn,k(0) = Bψn,k(0) holds for

all n, k with 1 ≤ k ≤ n. Then ϕ = ψ.

†In [44] this statement was proved by an inductive argument. It has turned out later that an independent proof can be provided
with the help of the reciprocity law (cf. (8.4) and Remark 8.2 below).
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Proof. Since this statement does not occur in [44], we will at least sketch a proof (by induction). Let ϕ1, ϕ2, ϕ3, . . .

and ψ1, ψ2, ψ3, . . . be the Taylor coefficients of ϕ and ψ, respectively, and let n ≥ 1 be an arbitrary integer.

It suffices to show that Bn,n−k(ϕ1, . . . , ϕk+1) = Bn,n−k(ψ1, . . . , ψk+1) implies ϕj = ψj (j = 1, . . . , k + 1) for

k = 0, 1, . . . , n − 1. — For k = 0 we have ϕn1 = Bϕn,n(0) = Bψn,n(0) = ψn1 . Taking into account that ϕ1, ψ1 6= 0

and that the equation must hold for an arbitrary n, this implies ϕ1 = ψ1. Now the induction step k → k + 1

can be carried out using the formula

Bn,n−k =

k∑
i=1

Xi+1 ·
n−k−1∑
j=0

(
n− j − 1

i

)
Xj

1Bn−j−i−1,n−j−k−1. (2.16)

This may be left to the reader. One derives (2.16) from the recurrence in Proposition 2.2 with the help of the

identity
∂Bn,k
∂Xj

=

(
n

j

)
Bn−j,k−1 (1 ≤ j ≤ n− k + 1). (2.17)

See [44, Corollary 4.4] (while [4, Equation (5.1), p. 266] is a version of (2.17) for the complete Bell polynomials

Bn). — It should be noticed here that the Taylor coefficients with index ≥ 2 occur only in linear form. We

illustrate this for the induction step in the case k = 1: Assuming Bn,n−1(ϕ1, ϕ2) = Bn,n−1(ψ1, ψ2) we would

have by (2.16)
(
n
2

)
ϕn−2

1 ϕ2 =
(
n
2

)
ψn−2

1 ψ2, which yields ϕ2 = ψ2.

3. Polynomials from Taylor coefficients

3.1 A higher-order derivative operator on function terms

Throughout this section ϕ takes on the role of a fixed unspecified placeholder for an arbitrary function. The

mapping P 7→ Pϕ considered above that makes every polynomial into a function, could easily be reversed by

replacing each Dj(ϕ) in Pϕ by Xj . This can be done in a slightly modified way for any function terms, which

designate a function in F . To achieve this, we introduce a derivative operator Ωn(· |ϕ) of order n assigning to

each such term f a polynomial Ωn(f |ϕ) with the property

Ωn(f |ϕ)ϕ(0) = Dn(f)(0). (3.1)

Definition 3.1. Let f be any function term and ϕ0, ϕ1, ϕ2, . . . the Taylor coefficients of ϕ. Then Ωn(f |ϕ)

is obtained by replacing for each j ≥ 0 the occurences of ϕj in Dn(f)(0) by Xj. (Thus Ωn(f |ϕ) results as a

polynomial over K which satisfies (3.1)).

Some simple cases are immediate:

Ωn(f |ϕ) = Dn(f)(0), whenever ϕ does not occur in f . (3.2)

For example, one has Ωn(c |ϕ) = δn0 · c (c ∈ K), Ωn(ιk |ϕ) = δnk · k!, Ωn(ε |ϕ) = 1− δn0, Ωn(λ |ϕ) = s1(n, 1).

It is also obvious that

Ωn(ϕ |ϕ) = Xn. (3.3)

Since Dn is additive and satisfies the Leibniz rule for higher-order derivatives, we have

Ωn(f + g |ϕ) = Ωn(f |ϕ) + Ωn(g |ϕ), (3.4)

Ωn(f · g |ϕ) =

n∑
k=0

(
n

k

)
Ωn−k(f |ϕ)Ωk(g |ϕ). (3.5)

In particular, Ωn(c · f |ϕ) = c · Ωn(f |ϕ) holds for every c ∈ K. Thus Ωn(· |ϕ) operates K-linearly on F .

For the composite term f ◦ g we have to treat the 0-case separately from the 1-case. In the former case we

have f ∈ F and g ∈ F0. According to the FdB formula (2.9) and observing that g(0) = 0, we obtain

Ωn(f ◦ g |ϕ) =

n∑
k=0

Ωk(f |ϕ) · (Bn,k ◦ Ω](g |ϕ)). (3.6)
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In the 1-case we assume g to be a function in F1, that is, we have g(0) 6= 0 and f ∈ P̂. Consequently, f cannot
contain ϕ and (3.6) has to be modified as follows:

Ωn(f ◦ g |ϕ) =

n∑
k=0

Dk(f)(Ω0(g |ϕ))) · (Bn,k ◦ Ω](g |ϕ)). (3.7)

Next we turn to the unary operations taking f to f−1 (reciprocation) and to f (inversion). Either cases turn

out to be derivable from the properties of Ωn so far established, inasmuch both f−1 and f can to a sufficient

degree be explicitly expressed as functions in F .

Reciprocation. — For each f ∈ F1 we have f(0) 6= 0, hence

Ωn(f−1 |ϕ) = Ωn(ι−1 ◦ f |ϕ)

=

n∑
k=0

Dk(ι−1)(Ω0(f |ϕ)) · (Bn,k ◦ Ω](f |ϕ)) (ι−1 ∈ P̂, (3.7))

=

n∑
k=0

(−1)kk! Ω0(f |ϕ)−(k+1)Bn,k(Ω1(f |ϕ), . . . ,Ωn−k+1(f |ϕ))

This gives rise to

Definition 3.2. Let R̂n ∈ K[X−1
0 , X1, . . . , Xn], n ≥ 0, be the (Laurent) polynomials

R̂n :=

n∑
k=0

(−1)kk!X
−(k+1)
0 Bn,k,

henceforth called reciprocal polynomials. We shall also use the special case Rn := R̂n(1, X1, . . . , Xn).

Together with the foregoing, we thus have obtained

Proposition 3.1. Ωn(f−1 |ϕ) = R̂n(Ω0(f |ϕ), . . . ,Ωn(f |ϕ)) for all f ∈ F1 and n ≥ 0.

Inversion. — The inverse f of a function f ∈ G is given by its Taylor coefficients Dn(f)(0), n ≥ 1. We will use

two options to represent these coefficients somewhat more explicitly. First, according to Remark 2.3 we have

Dn(f)(0) = An,1(D(f)(0), D2(f)(0), . . . , Dn(f)(0)), which immediately yields

Proposition 3.2. Ωn(f |ϕ) = An,1(Ω1(f |ϕ), . . . ,Ωn(f |ϕ)) for all f ∈ G and n ≥ 1.

Our second option is to make use of the Lagrange formula Dn(f)(0) = Dn−1((ι/f)n)(0). It follows from

(2.2) that ι/f = (ι−1 · f)−1 ∈ F1, whence Ω0(ι/f |ϕ) = (ι/f)(0) 6= 0. Therefore, when passing over from

Dn(f)(0) to Ωn(f |ϕ) we again have to apply (3.7):

Ωn(f |ϕ) = Ωn−1(ιn ◦ ι
f |ϕ)

=

n−1∑
k=0

Dk(ιn)(Ω0( ιf |ϕ)) · (Bn−1,k ◦ Ω](
ι
f ) |ϕ)

=

n−1∑
k=0

(n)kΩ0( ιf |ϕ)n−k Bn−1,k(Ω1( ιf |ϕ), . . . ,Ωn−k( ιf |ϕ)),

where (n)k means the falling power n(n − 1) . . . (n − k + 1), k ≥ 1, and (n)0 = 1. — This shows that Ωn(f |ϕ)

can be represented by another class of polynomials.

Proposition 3.3 (and Definition). We have Ωn(f |ϕ) = T̂n(Ω0( ιf |ϕ), . . . ,Ωn−1( ιf |ϕ)) for every n ≥ 1, where

T̂n ∈ K[X0, . . . , Xn−1] is defined by

T̂n :=

n−1∑
k=0

(n)kX
n−k
0 Bn−1,k

and called nth tree polynomial (cf. part (iii) of Remark 3.1). For later use we set Tn := T̂n(1, X1, . . . , Xn−1).
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Corollary 3.1 (Proposition 3.2 and 3.3). For every n ≥ 1

(i) An,1 = T̂n(R̂0(X1

1 ), R̂1(X1

1 ,
X2

2 ), . . . , R̂n−1(X1

1 ,
X2

2 , . . . ,
Xn

n ))

(ii) An,1(X0, 2X1, 3X2, . . .) = T̂n(R̂0, R̂1 . . . , R̂n−1)

(iii) An,1(1, 2X1, 3X2, . . .) = Tn(R1, R2, . . . , Rn−1)

Proof. (i). We assume f(x) =
∑
n≥1 fnx

n/n! to be any invertible function, in which ϕ does not occur. Thus

we have Ωn(f |ϕ) = fn and (ι−1 · f)(x) =
∑
n≥0

fn+1

n+1
xn

n! , whence by Proposition 3.1

Ωn( ιf |ϕ) = R̂n( f11 ,
f2
2 , . . . ,

fn+1

n+1 ). (3.8)

Let Hn(X1, . . . , Xn) temporarily stand for the polynomial on the right-hand side of (i). Then, combining

Proposition 3.2 with 3.3 and (3.8) we get

Afn,1(0) = An,1(f1, . . . , fn) = Hn(f1, . . . , fn) = Hf
n(0).

The argument from Remark 2.2 now yields the assertion (i): An,1 = Hn.

(ii) and (iii) are immediate consequences of (i).

Later on, part (i) of Corollary 3.1 will be extended to the entire family (An,k) (see Corollary 3.2 below).

3.2 Faà di Bruno polynomials

Let f ∈ F be any function, which does not contain ϕ. For each n ≥ 0 we define the nth FdB polynomial of f

(for short, f -polynomial) by

Φn(f) := Ωn(f ◦ ϕ |ϕ) =

n∑
k=0

Dk(f)(0)Bn,k. (3.9)

The sum on the right-hand side results from (3.6), where ϕ ∈ F0 is assumed. This definition makes sense also

in the case f ∈ P̂, ϕ ∈ F1. It is clear then by (3.7) that the Taylor coefficient Dk(f)(0) in (3.9) has to be

replaced with the Laurent polynomial Dk(f)(X0).

This definition is still ambiguous for f ∈ P, insofar f ◦ϕ can be evaluated with both ϕ ∈ F0 and ϕ ∈ F1. To

distinguish the two cases, we shall indicate the choice ϕ ∈ F1 by writing Φ̂n(f) instead of Φn(f), if necessary.

We check at once that Φn is a K-linear operator obeying the product rule (3.5). The case of a composite

function will be treated in Section 4.

Example 3.1. Well-known examples of FdB polynomials are

(i): the exponential polynomials Bn := Φn(exp) =
∑n
k=0D

k(exp)(0)Bn,k =
∑n
k=0Bn,k, n ≥ 0. We also

have Φn(ε) = Bn for n ≥ 1, however Φ0(ε) = 0.

(ii): the logarithmic polynomials Ln := Φn(λ) =
∑n
k=1D

k(λ)(0)Bn,k =
∑n
k=1(−1)k−1(k − 1)!Bn,k (cf.

Comtet [11, p. 140]).

(iii): the potential polynomials P̂n,k := Φ̂n(ιk) [11, p. 141]. Expanding Ωn(ιk ◦ ϕ |ϕ) according to (3.7) gives

P̂n,k =

n∑
j=0

(k)jX
k−j
0 Bn,j . (3.10)

The reciprocal and the tree polynomials form subfamilies of (P̂n,k), since R̂n = P̂n,−1 and T̂n = P̂n−1,n.

(iv): The fact that powers and falling powers are connected by (x)k =
∑k
j=0 s1(k, j)xj suggests introducing

factorial polynomials by a definition analogous to that of (iii) above: F̂n,k := Φ̂n((ι)k). For more details

cf. [45, p. 18].

Though perhaps not apparent at first glance, the potential polynomials are indeed closely related to the Bell

polynomials; so it is worth examining them in more detail. We start with restricting k to non-negative values

(thereby choosing ϕ ∈ F0). This leads to a special instance of P̂n,k:

Φn(ιk) =

n∑
j=1

Ωj(ι
k |ϕ)Bn,j =

n∑
j=1

δjk · k!Bn,j = k!Bn,k = P̂n,k(0, X1, . . . , Xn). (3.11)
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Let f ∈ F be any function and fk := Dk(f)(0), k ≥ 0; then, according to what is customary with the

exponential (Bell) polynomials, we shall call Φn( fkk! ι
k) partial f -polynomials. In just this manner we immediately

obtain from (3.11) Bn,k as partial exp-polynomials: Bn,k = Φn(εk), where εk := ιk/k!. The partial Bell

polynomials itself thus prove to be FdB polynomials.

Another instance of P̂n,k is of interest, too. Taking (1 + ι)k in place of ιk we obtain

Φn((1 + ι)k) =

n∑
j=0

j!

(
k

j

)
Bn,j = P̂n,k(1, X1, . . . , Xn) =: Pn,k. (3.12)

From this follows by virtue of binomial inversion (cf. [3, Chapter III]) the well-known formula

Bn,k =
1

k!

k∑
j=0

(−1)k−j
(
k

j

)
Pn,j (3.13)

(see [11, p. 156] and [49], where (3.13) is ascribed to J. Bertrand (1864)).

Remark 3.1 (Unifications).

(i) Observing (2.15) one has P̂n,k ◦ 1 = Pn,k ◦ 1 =
∑n
j=0(k)j(Bn,j ◦ 1) =

∑n
j=0(k)js2(n, j) = kn.

(ii) Unification on both sides of (3.13) yields the well-known formula s2(n, k) = 1
k!

∑k
j=1(−1)k−j

(
k
j

)
jn (see [44,

Remark 4.1], and from a historical perspective [6, Theorem 1]).

(iii) We have T̂n ◦ 1 = Tn ◦ 1 = nn−1 = the number of labeled, rooted trees on the vertex set {1, . . . , n}.

Proposition 3.4 (Convolution identities). Let n, r, s be any integers, n ≥ 0.

(i) P̂n,r+s =

n∑
k=0

(
n

k

)
P̂n−k,rP̂k,s (also valid for P in place of P̂ ),

(ii)

(
r + s

r

)
Bn,r+s =

n∑
k=0

(
n

k

)
Bn−k,rBk,s (r, s ≥ 0).

Proof. (i). Evaluate P̂n,r+s = Φ̂n(ιr · ιs) by means of the Leibniz rule (3.5). The same identity for Pn,r+s is

then obtained for X0 = 1. — (ii) Replace X0 by 0 in (i) and apply (3.11).

Remark 3.2. According to Birmajer, Gil and Weiner [5] the convolution formula (ii) seems to be established

for the first time by Cvijović [13].

Proposition 3.5. Ln =
∑n
j=1(−1)j−1 1

j

(
n
j

)
Pn,j (n ≥ 1).

Proof. In the linear combination representing Ln (see Examples 3.1, (ii)) we replace Bn,k by the right-hand side

of (3.13). This gives

Ln =

n∑
k=1

k∑
j=0

(−1)j−1 1

k

(
k

j

)
Pn,j =

n∑
j=1

(
(−1)j−1Pn,j

n∑
k=j

1

k

(
k

j

)
︸ ︷︷ ︸

(∗)

)
.

It may be left to the reader to readily verify that (∗) is equal to 1
j

(
n
j

)
.

Remark 3.3. The statement of Proposition 3.5 is to be found in Comtet [11, p. 156], however flawed by missing

the binomial factor.

Now we will give a more general version of the statements in Propositions 3.2 and 3.3.

Theorem 3.1. Let f ∈ G and n, k ∈ Z with 1 ≤ k ≤ n. Then we have

(i) Ωn(f
k |ϕ) = k!An,k(Ω1(f |ϕ), . . . ,Ωn−k+1(f |ϕ)),

(ii) Ωn(f
k |ϕ) = k!

(
n− 1

k − 1

)
P̂n−k,n ◦ R̂](Ω1(f |ϕ)

1 , Ω2(f |ϕ)
2 , . . .).
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Proof. (i). Observing f(0) = 0 and applying (3.6) to f
k

= ιk ◦ f we see that the left hand-side of (i) becomes∑n
j=0 Ωj(ι

k |ϕ) · (Bn,j ◦ Ω](f |ϕ)). Clearly Ωj(ι
k |ϕ) = Dj(ιk)(0) = δjkk!. We use Proposition 3.2 to evaluate

Ω](f |ϕ) and get the asserted by (2.11).

(ii). We proceed in a way similar to that in the argument leading to Proposition 3.3. Let g denote the function

ι/f ∈ F1. We start from the general Lagrange inversion formula n[xn]f(x)k = k[xn−k]g(x)n [48, Theorem 5.4.2],

which may also be written as 1
n!D

n(f
k
)(0) = k

n(n−k)!D
n−k(gn)(0). Transforming now the Taylor coefficients

herein into Ωn-terms according to Definition 3.1, we obtain by (3.7) (1-case) and by (3.10)

Ωn(f
k |ϕ) = k(n−1)!

(n−k)! Ωn−k(ιn ◦ g |ϕ)

= k!

(
n− 1

k − 1

) n−k∑
j=0

Dj(ιn)(Ω0(g |ϕ)) · (Bn,j ◦ Ω](g |ϕ))

= k!

(
n− 1

k − 1

)
P̂n−k,n(Ω0(g |ϕ), . . . ,Ωn−k(g |ϕ)).

By Proposition 3.1 we have Ωj(g |ϕ) = R̂j(Ω0( fι |ϕ), . . . ,Ωj(
f
ι |ϕ)). Now observe (as in the proof of Corol-

lary 3.1) that f/ι has Taylor coefficients Dr+1(f)(0)/(r+1), whence Ωr(
f
ι |ϕ) = 1

r+1Ωr+1(f |ϕ) for r ≥ 0. This

completes the proof.

Corollary 3.2. For all integers n, k, 1 ≤ k ≤ n,

An,k =

(
n− 1

k − 1

)
P̂n−k,n(R̂0(X1

1 ), R̂1(X1

1 ,
X2

2 ), . . . , R̂n−1(X1

1 ,
X2

2 , . . . ,
Xn

n )).

Proof. Take f = ϕ and recall that Ωj(ϕ |ϕ) = Xj .

We complete the picture by also establishing statements for Ωn(fk |ϕ) and Bn,k that correspond to those of

Theorem 3.1 and Corollary 3.2, respectively.

Theorem 3.2. Let f ∈ G and n, k ∈ Z with 1 ≤ k ≤ n. Then we have

(i) Ωn(fk |ϕ) = k!Bn,k(Ω1(f |ϕ), . . . ,Ωn−k+1(f |ϕ)),

(ii) Ωn(fk |ϕ) = k!

(
n

k

)
P̂n−k,k(Ω1(f |ϕ)

1 , Ω2(f |ϕ)
2 , . . .).

Proof. The proof runs in much the same way as it does for Theorem 3.1. (i) Apply (3.6) to Ωn(ιk ◦ f |ϕ). —

(ii) Choose g ∈ F1 such that f = ι · g; thus fk = ιk · gk and obviously Ωn(f |ϕ) = nΩn−1(g |ϕ). Then, the

Leibniz rule (3.5) and a straightforward calculation give Ωn(fk |ϕ) = k!
(
n
k

)
P̂n−k,k ◦ Ω](g |ϕ). From this the

assertion follows.

Corollary 3.3. For all integers n, k, 1 ≤ k ≤ n,

Bn,k =

(
n

k

)
P̂n−k,k(X1

1 , . . . ,
Xn−k+1

n−k+1 ).

Proof. Take f = ϕ and recall that Ωj(ϕ |ϕ) = Xj .

4. Composition rules

In this section we are going to investigate the effect the composition of functions has on polynomials, which

depend in a specific way on those functions. The two main results (Theorems 4.1 and 4.2) will prove to be

efficient tools for dealing with the polynomial families of interest here.

Let f, g be any functions such that h = f ◦g is well-defined as a function. We write Fn = Φn(f), Gn = Φn(g),

Hn = Φn(h) for the corresponding FdB polynomials according to (3.9).

Proposition 4.1. Φn(f ◦ g) = Φn(f) ◦ Φ](g).
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Proof. Recall that ϕ ∈ F0 does not occur in f or in g. In the 0-case (f ∈ F , g ∈ F0) we obtain by (3.6)

Φn(f ◦ g) = Ωn(f ◦ (g ◦ ϕ) |ϕ)

=

n∑
k=0

Ωk(f |ϕ) · (Bn,k ◦ Ω](g ◦ ϕ |ϕ)) (*)

=

( n∑
k=0

Dk(f)(0)Bn,k

)
◦ Φ](g)) = Φn(f) ◦ Φ](g).

In the 1-case (f ∈ P̂, g ∈ F1) we have to apply (3.7) so that Ωk(f |ϕ) in line (*) turns into
Dk(f)(Ω0(g ◦ ϕ |ϕ)) = Dk(f)(Φ0(g)), and hence

Φn(f ◦ g) =

( n∑
k=0

Dk(f)(X0)Bn,k

)
◦ Φ](g) = Φn(f) ◦ Φ](g).

Remark 4.1. The statement of Proposition 4.1 may alternatively be written as Hn = Fn(G1, . . . , Gn) (0-case)

or as Hn = Fn(G0, G1, . . . , Gn) (1-case). Note that the 0-case includes H0 = F0 = f(0), whereas in the 1-case

we have H0 = F0(G0) with G0 = g(0) 6= 0.

Remark 4.2. Suppose f ∈ P and g ∈ P̂. Then we have for every n ≥ 0: Φ̂n(f ◦g) = Φ̂n(f)◦Φ̂](g) (by applying

the same argument as in the 1-case in the proof of Proposition 4.1).

From Remark 4.2 we obtain useful multiplication rules for the potential polynomials and the partial Bell

polynomials.

Corollary 4.1 (Remark 4.2). For all n ≥ 0 and r, s ∈ Z we have

(i) P̂n,rs = P̂n,r ◦ P̂],s = P̂n,r(P̂0,s, . . . , P̂n,s),

(ii) P̂n,−r = P̂n,r ◦ R̂] = P̂n,r(R̂0, . . . , R̂n),

(iii) R̂n ◦ R̂] = R̂n(R̂0, . . . , R̂n) = Xn,

(iv) Bn,rs =
r!(s!)r

(rs)!
Bn,r(B1,s, . . . , Bn−r+1,s) (r, s ≥ 0).

Proof. (i) P̂n,rs = Φ̂n(ιr·s) = Φ̂n(ιr ◦ ιs) = Φ̂n(ιr) ◦ Φ̂](ι
s) = P̂n,r ◦ P̂],s. — (ii) In (i) set s = −1. — (iii) Take

r = −1 in (ii) and recall P̂n,−1 = R̂n, P̂n,1 = Xn. — (iv) Put X0 = 0 in (i); then apply (3.11) and the

homogeneity of the Bn,r.

Example 4.1. Given f ∈ G and g = f , Proposition 4.1 immediately provides a quite simple infinite scheme

of inverse relations. We have Fn ◦ G] = Gn ◦ F] = Φn(ι) = Xn. For instance, Bn ◦ L] = Ln ◦ B] = Xn,

where Bn = Φn(ε) and Ln = Φn(λ) (see Examples 3.1). Chou, Hsu and Shiue [9] discuss this and some more

examples, which fit into this scheme.

Remark 4.3. For any n ≥ 1, let Φn[G] denote the set of Φn(g), g ∈ G. This set forms (together with ◦)
a non-abelian group. According to Proposition 4.1 we have: Φn[G] is closed under ◦, and its identity is Xn,

since Gn ◦X] = Xn ◦ G] = Gn. The inverse of Gn = Φn(g) is Gn := Φn(g), which by Remark 2.3, (3.9) and

(2.8) can be written somewhat more explicitly as Gn =
∑n
k=1A

g
k,1(0)Bn,k. — It may be noticed here that the

mapping, which assigns to each g ∈ G the infinite sequence (Φ1(g),Φ2(g),Φ3(g), . . .), is an isomorphism from

the group (G, ◦) to the direct product
∏
n≥1 Φn[G] (in essence, the group of formal diffeomorphisms leaving 0

fixed; it figures as a non-commutative Hopf algebra in [8]).

Lemma 4.1 (Substitution Lemma). If f ∈ F and g ∈ F0, then

(i) Bn,k ◦G] = Bn,k(G1, . . . , Gn−k+1) =

n∑
j=k

Bgj,k(0)Bn,j ,

(ii) Fn ◦G] = Fn(G1, . . . , Gn) =

n∑
j=0

F gj (0)Bn,j .
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Proof. (i). By Proposition 4.1 we have Bn,k ◦G] = Φn(εk) ◦Φ](g) = Φn(εk ◦ g) =
∑n
j=0D

j(εk ◦ g)(0)Bn,j . The

FdB formula (2.9) yields

Dj(εk ◦ g)(0) =

j∑
i=0

Di(εk)(g(0))Bgj,i(0) =

j∑
i=0

δikB
g
j,i(0) = Bgj,k(0).

Since Bgj,k(0) = 0 for j < k, this proves (i).

(ii). By (3.9) Fn =
∑n
k=0D

k(f)(0)Bn,k, hence

Fn(G1, . . . , Gn) =

n∑
k=0

Dk(f)(0)Bn,k(G1, . . . , Gn−k+1)

=
(i)

n∑
k=0

Dk(f)(0)

n∑
j=k

Bgj,k(0)Bn,j ,

=

n∑
j=0

( j∑
k=0

Dk(f)(0)Bgj,k(0)

)
Bn,j .

The inner sum is equal to F gj (0).

Corollary 4.2.

(i) Bn,k(B1, . . . , Bn−k+1) =

n∑
j=k

s2(j, k)Bn,j ,

(ii) Bn,k(L1, . . . , Ln−k+1) =

n∑
j=k

s1(j, k)Bn,j .

Proof. (i). Put g = ε in part (i) of Lemma 4.1; it follows Bεj,k(0) = Bj,k ◦ 1 = s2(j, k). — (ii). Substitute λ for

g; hence by (2.8) Bλj,k(0) = Aεj,k(0) = Aj,k ◦ 1 = s1(j, k).

Remark 4.4. Let b(n) denote the nth Bell number (total number of partitions of an n-set). We then have

b(n) = Bn ◦ 1 and by part (i) of Corollary 4.2 the following identity established by Yang [55, Equation (31)]:

Bn,k(b(1), . . . , b(n− k + 1)) =
∑n
j=k s2(n, j)s2(j, k).

The right-hand side of (i) in Corollary 4.2 can assume yet another form by substituting for s2(j, k) the

explicit expression from part (ii) in Remark 3.1. By the homogeneity of the Bell polynomials one easily obtains

after a short calculation

Bn,k(B1, . . . , Bn−k+1) =
1

k!

k∑
j=1

(−1)k−j
(
k

j

)
Bn(jX1, . . . , jXn). (4.1)

Proposition 4.2. Pn,k(B1, . . . , Bn) = Bn(kX1, . . . , kXn).

Proof. Again using part (i) of Corollary 4.2 yields

Pn,k(B1, . . . , Bn) =

n∑
j=0

(k)jBn,j(B1, . . . , Bn) =

n∑
j=0

(k)j

n∑
r=j

s2(r, j)Bn,r

=

n∑
r=0

( r∑
j=0

(k)js2(r, j)

)
Bn,r =

n∑
r=0

krBn,r.

=

n∑
r=0

Bn,r(kX1, kX2, . . .) = Bn(kX1, . . . , kXn).

Let us return to Proposition 4.1, since we are now in a position to prove that also the converse statement

holds. We give it a slightly different form.
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Theorem 4.1 (First Composition Rule). Let f and g be any functions such that f ◦ g ∈ F . Then, for all

h ∈ F : h = f ◦ g ⇐⇒ Hn = Fn ◦G].

Proof. ‘⇒’: By Proposition 4.1. — ‘⇐’: First assume the 0-case, that is, f, h ∈ F and g ∈ F0. Let n be any

non-negative integer and suppose Hn = Fn ◦G]. Part (ii) of Lemma 4.1 then yields

n∑
k=0

Dk(h)(0)Bn,k =

n∑
k=0

F gk (0)Bn,k.

If n = 0, then Remark 4.1 gives h(0) = f(0) = (f ◦ g)(0). Otherwise, recall from Proposition 2.2 that the

sequence Bn,1, Bn,2, . . . , Bn,n is linearly independent in K[X1, . . . , Xn]. Hence for every k, 1 ≤ k ≤ n, by the

FdB formula (2.9)

Dk(h)(0) = F gk (0) =

k∑
j=0

Dj(f)(0)Bgk,j(0) = Dk(f ◦ g)(0). (4.2)

Since n was assumed to be arbitrary, the Taylor coefficients of h agree with those of f ◦g. — The same reasoning

works for the 1-case (f ∈ P̂, g ∈ F1, h ∈ F), however with Dk(h)(X0) = Dk(f ◦ g)(X0) for k = 0, 1, 2, . . .

instead of (4.2) at the end. Here already k = 0 yields the desired result.

Our second main result concerns the mapping P 7→ Pϕ in its effect on the Stirling polynomials.

Theorem 4.2 (Second Composition Rule).

(i) Bf ◦ gn,k (0) =

n∑
j=k

Bgn,j(0)Bfj,k(0) (f, g ∈ F0),

(ii) Af ◦ gn,k (0) =

n∑
j=k

Afn,j(0)Agj,k(0) (f, g ∈ G).

Remark 4.5. Part (i) of the theorem is essentially due to Jabotinsky [19,20]. Note that the right-hand side of

(i) is represented as the contravariant product of two instances of the matrix (Bn,k). Comtet used this idea in

order to generalize Faà di Bruno’s formula so as to apply to fractionary iterates of formal series [11, p. 144].

Proof. (i). The result can be obtained by direct computation:

Bf ◦ gn,k (0) = Bn,k(D1(f ◦ g)(0), . . . , Dn−k+1(f ◦ g)(0))

= Bn,k(Φ1(f)g(0), . . . ,Φn−k+1(f)g(0)) ((2.9) and (3.9))

= Bn,k(Φ1(f), . . . ,Φn−k+1(f))g(0). ((2.6))

Applying Lemma 4.1 (i) to Bn,k(Φ1(f), . . . ,Φn−k+1(f)) yields the assertion.

(ii). We use part (i) and (2.8). Note the covariant behavior of the family (An,k):

Af ◦ gn,k (0) = (Bf ◦ gn,k ◦ (f ◦ g))(0) = Bg ◦ fn,k (f(g(0)))

= Bg ◦ fn,k (0) =

n∑
j=k

Bfn,j(0)Bgj,k(0)

=

n∑
j=k

Afn,j(f(0))Agj,k(g(0)).

Since f(0) = g(0) = 0, the result follows.

Corollary 4.3. If Hn = Φn(h), h ∈ F , then Hf ◦ g
n (0) =

∑n
k=0B

g
n,k(0)Hf

k (0).

Proof. By a short calculation using (3.9) and Theorem 4.2 (i).

The following statement was originally published in [44, Theorem 5.1] under the title ‘Inversion Law’ and

was proven there by induction. The new proof presented below is much more natural.
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Corollary 4.4. (An,k) and (Bn,k) are orthogonal companions of each other: An,k = B⊥n,k and Bn,k = A⊥n,k.

Proof. Let ϕ be any function from G. Then

Bϕ ◦ϕn,k (0) = Bιn,k(0) = Bn,k(1, 0, . . . , 0) = δnk. (*)

On the other hand, by part (i) of Theorem 4.2 and by (2.6) we have

Bϕ ◦ϕn,k (0) =

n∑
j=k

Aϕn,j(ϕ(0))Bϕj,k(0) =

( n∑
j=k

An,jBj,k

)ϕ
(0). (**)

Now equate the right-hand sides of (*) and (**). Then, finally applying the argument from Remark 2.2 shows

that the orthogonality relation (2.7) is satisfied by An,k and Bn,k.

5. Representation by Bell polynomials

As we have seen in Section 4, composing FdB polynomials again yields FdB polynomials. In this section we will

go beyond by dealing with polynomial families (not necessarily FdB) that can be represented as instances of

the partial Bell polynomials. A well-known example is the cycle indicator. In addition, several new polynomial

families will be introduced and examined in more detail, including ‘forest polynomials’ (generated by tree

polynomials) as well as multivariate Lah polynomials, which form a self-orthogonal family. Since a (regular)

family represented in this way always has an orthogonal companion, we can establish a corresponding inverse

relation in each case.

5.1 B-representability

A polynomial family (Qn,k) is said to be B-representable, if there is an infinite sequence of polynomials

H1, H2, H3, . . . such that for all integers n, k with 1 ≤ k ≤ n

Qn,k = Bn,k ◦H] = Bn,k(H1, . . . ,Hn−k+1). (5.1)

The Bell polynomials itself are, of course, B-representable (since Bn,k = Bn,k ◦ B],1 with Bn,1 = Xn). The

same holds for the associate Bell polynomials B̃n,k [44, Corollary 4.5] with B̃j,1 = Xj for j ≥ 2, but B̃1,1 = 0

(implying that this family is not regular). Non-trivial examples of B-representable families provide (An,k) (see

(2.11)), or the Stirling numbers s2(n, k) (see (2.15)).

First, we gather some basic properties.

Proposition 5.1. Let (Qn,k) be any B-representable family of polynomials. Then we have

(i) (Qn,k) is lower triangular.

(ii) Qn,k = Bn,k(Q1,1, . . . , Qn−k+1,1) (1 ≤ k ≤ n)

(iii) Qn,n = (Q1,1)n

(iv) If (Qn,k) is regular, then Q⊥n,k = An,k(Q1,1, . . . , Qn−k+1,1) exists

and is B-representable.

Proof. (i) Clear by definition. — (ii) Taking k = 1 in (5.1) gives Qn,1 = Bn,1(H1, . . . ,Hn) = Hn. — (iii) A special

case of (ii) is Q1,1 = H1; thus, taking k = n in (5.1) we get Qn,n = Bn,n(H1) = (H1)n = (Q1,1)n. — (iv) It

follows from regularity and triangularity Qj,j 6= 0 for all j (diagonal entries), in particular Q1,1 6= 0. Therefore,

An,k(Q1,1, . . . , Qn−k+1,1) is well-defined (see (2.13)) and by Corollary 4.4 equal to Q⊥n,k. From this we finally

obtain by (2.11)

Bn,k(Q⊥1,1, . . . , Q
⊥
n−k+1,1) = Bn,k(A1,1(Q1,1), . . . , An−k+1,1(Q1,1, . . . , Qn−k+1,1))

= An,k(Q1,1, . . . , Qn−k+1,1) = Q⊥n,k.

Part (iii) of Proposition 5.1 may serve as a necessary condition for B-representability. Since, for example,

P1,1 = X1 and P2,2 = 2X2
1 + 2X2 6= (P1,1)2, the potential polynomials are not B-representable.
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Remark 5.1. As a precaution, it should be emphasized that criterion (iii) is not sufficient. The crucial point

here is that (5.1) comprises an infinite number of equations and unknowns H1, H2, H3, . . .. On the other hand:

Given any fixed n ≥ 1, the system consisting of the first n equations from (5.1) is indeed solvable if and

only if there exists H1 such that (H1)n = Qn,n. To see this, recall Hn = Qn,1 and observe that the remaining

H2, . . . ,Hn−1 appear only linearly, since (2.17) yields ∂Bn,k(H1, . . . ,Hn−k+1)/∂Hn−k+1 =
(
n
k−1

)
Hk−1

1 for every

k with 2 ≤ k ≤ n− 1. — As an example, put n = 3 and consider the equation system Bn,k(H1, . . . ,Hn−k+1) =

Qn,k = 1, 1 ≤ k ≤ n. If we choose H1 = 1, then necessarily H2 = 1
3 and H3 = 1. But this solution cannot be

extended to n = 4, for choosing in this case H1 = 1 implies H2 = 1
6 , H3 = − 11

48 , and H4 = 1 so that there is no

infinite sequence H1, H2, H3, . . . satisfying Bn,k(H1, . . . ,Hn−k+1) = 1 for all n, k with 1 ≤ k ≤ n.

We now are going to characterize the B-representable polynomial families. As to FdB polynomials, the

following can be easily inferred from the First Composition Rule (FCR).

Proposition 5.2. Let (Qn,k) be any family of FdB polynomials. Then we have: (Qn,k) is B-representable ⇐⇒
Qn,k = Φn(h

k

k! ) for some h ∈ F0.

Proof. ‘⇒’: Let fk be functions such that Φn(fk) = Qn,k = Bn,k ◦Q],1. According to the FCR (Theorem 4.1,

‘⇐’) the equation fk = εk ◦ f1 = fk1 /k! holds, where f1 ∈ F0. — ‘⇐’: Immediately, by the FCR (‘⇒’) Qn,k =

Φn(h
k

k! ) = Φn(εk ◦ h) = Φn(εk) ◦ Φ](h) = Bn,k ◦Q],1.

In the case of an arbitrary polynomial family (Qn,k), the statement to follow provides a necessary and

sufficient condition for B-representability.

Proposition 5.3. (Qn,k) is B-representable if and only if

Qn,k =

n−k+1∑
j=1

(
n− 1

j − 1

)
Qj,1Qn−j,k−1. (*)

Proof. Necessity: Immediate by the fact that Bn,k satisfies (*); see, e. g., [25] and [44, Proposition 5.5, Remark

5.6]. — Sufficiency (by induction): Suppose (*); then, observing Qj,1 = Bj,1(Q1,1, . . . , Qj,1) and applying the

induction hypothesis Qn−j,k−1 = Bn−j,k−1(Q1,1, . . . , Qn−k−j+2,1) (1 ≤ j ≤ n− k + 1) one gets

Qn,k =

n−k+1∑
j=1

(
n− 1

j − 1

)
Bj,1(Q1,1, . . . , Qj,1)Bn−j,k−1(Q1,1, . . . , Qn−k−j+2,1)

= Bn,k(Q1,1, . . . , Qn−k+1,1) (since Bn,k satisfies (*)).

5.2 Generalized Stirling inversion

The ordinary Stirling inversion [47, Proposition 1.4.1b] is based on the well-known orthogonality relation satisfied

by the Stirling numbers of the first and second kind:
∑n
j=k s1(n, j)s2(j, k) = δnk for all n ≥ 0 and 0 ≤ k ≤

n. This type of inversion can be generalized considerably by taking advantage of the fact that according to

Proposition 5.1 (iv), every regular B-representable family of polynomials Qn,k has an orthogonal companion

Q⊥n,k, which is also B-representable.

Proposition 5.4 (Generalized Stirling inversion). Let U0, U1, U2, . . . and V0, V1, V2, . . . be two sequences (of

polynomials from an arbitrary overring of K[X−1
1 , X1, X2, . . .], say) and let (Qn,k) be any regular B-representable

family of polynomials. Then the following statements are equivalent:

(i) Un =

n∑
k=0

Qn,kVk for all n ≥ 0,

(ii) Vn =

n∑
k=0

Q⊥n,kUk for all n ≥ 0.

Proof. By Corollary 4.4 B⊥n,k = An,k; hence (i) and (ii) are equivalent when Qn,k is substituted with Bn,k,

and consequently Q⊥n,k with An,k; see [44, Corollary 5.2]. On the other hand, we have by assumption Qn,k =

Bn,k ◦Q],1 and by Proposition 5.1 Q⊥n,k = An,k ◦Q],1. This completes the proof.
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While the matrix entries Qn,k in the orthogonality relation generally only determine each other implicitly,

in the case of B-representable polynomials we immediately have the explicit expression Q⊥n,k = An,k ◦Q],1. We

can go a step further here and resolve An,k into lower-order expressions, for example according to Corollary 3.2,

to Theorem 2.1, or to the general polynomial version of the famous Schlömilch formula for the Stirling numbers

s1(n, k) in terms of s2(n, k). This generalization has been presumably for the first time established and proven

in [44, Theorem 6.4]. After some few index shifts and applying elementary properties of the binomial coefficients,

the latter result can be rewritten in the form of an identity of the following Schlömilch-Schläfli type:

An,n−k = (−1)k
k∑
j=0

(
k + n

k − j

)(
k − n
k + j

)
X
−(n+j)
1 Bk+j,j . (5.2)

Finally, applying Proposition 5.1 to this we are readily led to the corresponding generalizations concerning

B-representable polynomials.

Theorem 5.1. For every regular B-representable family of polynomials (Qn,k) the following holds for all n ≥
k ≥ 0:

(i) Q⊥n,n−k = (−1)k
k∑
j=0

(
k + n

k − j

)(
k − n
k + j

)
(Q⊥1,1)n+jQk+j,j,

(ii) Qn,n−k = (−1)k
k∑
j=0

(
k + n

k − j

)(
k − n
k + j

)
(Q1,1)n+jQ⊥k+j,j .

Remark 5.2. Note that Q⊥1,1 = A1,1(Q1,1) = Q−1
1,1.

Remark 5.3. Unification on both sides of (5.2) immediately yields Schläfli’s formula for s1(n, n− k) in terms

of Stirling numbers of the second kind (see Quaintance and Gould [41, Eq. (13.31)]). Conversely, if we take

Bn,n−k for Qn,n−k and apply unification to part (ii) of Theorem 5.1, we get Gould’s formula for s2(n, n− k) in

terms of Stirling numbers of the first kind (see [17] and [41, Eq. (13.42)]).

5.3 Cycle indicator polynomials

Let P be the union of all sets of partition types. We define the mapping ζ : P −→ N by

ζ(r1, r2, r3, . . .) :=
(r1 + 2r2 + 3r3 + · · · )!
r1!r2!r3! · · · 1r12r23r3 · · ·

. (5.3)

The right-hand side of (5.3) is Cauchy’s famous expression that counts the permutations having exactly rj

cycles of size j (j = 1, 2, 3, . . .). The corresponding partition polynomial

Zn,k :=
∑

P(n,k)

ζ(r1, r2, r3, . . .)X
r1
1 Xr2

2 Xr3
3 · · ·

could rightly be called partial cycle indicator, inasmuch the term cycle indicator [42, p. 68] (sometimes also

augmented cycle index [48, p. 19]) is reserved for Zn := Zn,1 + Zn,2 + · · ·+ Zn,n.

It is easy to check that (Zn,k) is B-representable. We have Zn,n = Xn
1 = Zn1,1 (the necessary condition (iii)

from Proposition 5.1) and Zn,1 = (n − 1)!Xn. With this, some few lines of direct calculation (cf. [11, p. 247])

yield

Bn,k ◦ Z],1 = Bn,k(0!X1, 1!X2, 2!X3, . . .) = Zn,k. (5.4)

By part (iv) of Proposition 5.1 we obtain as orthogonal companion Z⊥n,k = An,k(0!X1, 1!X2, 2!X3, . . .). As

is well known, unification of (5.4) gives the signless Stirling numbers of the first kind Zn,k ◦ 1 = c(n, k) =

Bn,k(0!, 1!, 2!, . . .) [11, p. 135]. Hence Z⊥n,k ◦ 1 = An,k(0!, 1!, 2!, . . .) = (−1)n−ks2(n, k), which might be called

signed Stirling numbers of the second kind.

Remark 5.4. From (5.4) it is only a small step to the so-called exponential formula that is based on the

idea of interpreting the coefficients of ef(x) combinatorially. Here f is assumed to be any function in F0 and
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tn := Dn(f)(0)/(n−1)! for n ≥ 1. Then, the nth Taylor coefficient of ef(x) is Bfn(0) = Bn(0!t1, . . . , (n−1)!tn) =

Zn(t1, . . . , tn), and we immediately obtain

exp

(∑
n≥1

tn
xn

n

)
=
∑
n≥0

Zn(t1, . . . , tn)
xn

n!
.

For a detailed treatment, various combinatorial applications and historical notes on this topic, the reader is

referred to Stanley [48, Section 5.1].

5.4 Idempotency polynomials. Forest polynomials

While the potential polynomials itself are not B-representable, this is actually yet the case with certain closely

related families to be investigated in the sequel.

A simple example of this kind follows directly from Corollary 3.3:

Bn,k(X0, 2X1, 3X2, . . .) =

(
n

k

)
P̂n−k,k. (5.5)

This identity has been established by Comtet in a slightly modified form (whith X0 = 1) [11, Suppl. no. 4,

p. 156/7]. Observing part (i) of Remark 3.1 we immediately obtain by unification

Bn,k(1, 2, 3, . . .) =

(
n

k

)
kn−k, (5.6)

which equals the number of idempotent maps from an n-set into itself having exactly k cycles (see e. g. [18]).

Comtet’s argument is based on considering Bψn,k(0) with ψ(x) := xex [11, p. 135].

Given this combinatorial meaning, it seems justified calling the expressions on the right-hand side of (5.5)

(partial) idempotency polynomials. The following theorem exhibits them (slightly modified) in the role of an

orthogonal companion.

Theorem 5.2. For all n, k ∈ Z with 1 ≤ k ≤ n we have

(i) Bn,k(T̂1, . . . , T̂n−k+1) =

(
n− 1

k − 1

)
P̂n−k,n,

(ii) An,k(T̂1, . . . , T̂n−k+1) =

(
n

k

)
P̂n−k,−k.

Ahead of the proof three remarks are in order.

Remark 5.5. By unification we immediately get from part (i) of Theorem 5.2

Bn,k(10, 21, 32, . . .) =

(
n− 1

k − 1

)
nn−k.

This numerical identity has been formulated and given a lengthy proof by Khelifa and Cherruault [24]. Abbas

and Bouroubi [1, Theorems 3 and 6] provided a significantly shorter argument together with an extension to

binomial sequences.

Remark 5.6. One might say, somewhat jokingly, that the Bell polynomials return forests on receiving trees.

Recall that there are T̂n◦1 = nn−1 rooted (labeled) trees on n vertices. On the other hand, Bn,k(T̂1, . . . , T̂n−k+1)◦
1 =

(
n−1
k−1

)
nn−k counts the planted forests with k components on n vertices (see e. g. [48, Proposition 5.3.2]).

Motivated by this, we shall refer to the expressions on the right-hand side of (i) as forest polynomials, denoted

by Wn,k. Of course we have Wj,1 = T̂j.

Remark 5.7. The forest polynomials form a regular family; so, according to Proposition 5.1 (iv) its orthogonal

companion W⊥n,k is the polynomials which appear in Theorem 5.2 (ii). It differs from the idempotency polynomials

only in that the second index is negated. By unification, the orthogonal relationship is immediately passed on to

the corresponding number sequences (the orthogonality of which has been observed by Wang and Wang [53]).

We now turn to the proof of Theorem 5.2.
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Proof. The proof can be carried out exclusively using polynomial identities. The key idea is here to express the

tree polynomials as

T̂n = An,1(R̂0, 2R̂1, 3R̂2, . . .), (*)

which follows from Corollary 3.1 (ii) and Corollary 4.2 (iii). We then have

Bn,k(T̂1, T̂2, T̂3, . . .) = Bn,k(A1,1(R̂0), A2,1(R̂0, 2R̂1), . . .)) (by (*))

= An,k(R̂0, 2R̂1, 3R̂2, . . .) (by (2.11))

=

(
n− 1

k − 1

)
P̂n−k,n, (by Corollary 3.2, Corollary 4.2 (iii))

which proves (i). In the same manner, (ii) can be proved by applying (*), (2.12), (5.5), and Corollary 4.2 (ii):

An,k(T̂1, T̂2, T̂3, . . .) = Bn,k(R̂0, 2R̂1, 3R̂2, . . .) =

(
n

k

)
P̂n−k,−k.

The following polynomials are the orthogonal companions of the idempotency polynomials (5.5).

Proposition 5.5. An,k(X0, 2X1, 3X2, . . .) =
(
n−1
k−1

)
P̂n−k,−n.

Proof. To evaluate the left-hand-side, use Corollary 3.2, and then apply Corollary 4.1 (ii).

5.5 Lah polynomials. Involution

Analogous to the considerations in Section 5.3 we define the mapping ω : P −→ N by

ω(r1, r2, r3, . . .) :=
(r1 + 2r2 + 3r3 + · · · )!

r1!r2!r3! · · ·
. (5.7)

(5.7) counts the number of ways a set of n = r1 + 2r2 + · · · objects can be partitioned into linearly ordered

subsets, rj denoting the number of subsets with j elements (j = 1, 2, 3, . . .). The corresponding partition

polynomials‡

L+
n,k :=

∑
P(n,k)

ω(r1, r2, r3, . . .)X
r1
1 Xr2

2 Xr3
3 · · ·

will be called unsigned Lah polynomials. A simple computation shows that they form a B-representable family.

We have L+
n,1 = n!Xn and

Bn,k ◦ L+
],1 = Bn,k(1!X1, 2!X2, 3!X3, . . .) = L+

n,k. (5.8)

From this it can easily be derived that L+
n,k ◦ 1 are the unsigned Lah numbers l+(n, k) := n!

k!

(
n−1
k−1

)
[11, p. 135].

Let us now consider the signed Lah numbers l(n, k) := (−1)nl+(n, k), which are known to be self-orthogonal in

the sense that
∑n
j=k l(n, j)l(j, k) = δnk; see e. g. [42, p. 44] and [44, Examples 5.2 (ii)]. It is therefore natural

to look for self-orthogonal polynomials Ln,k such that the signed Lah numbers can be obtained by unification:

Ln,k ◦ 1 = l(n, k).

At first glance, Bn,k(−1!X1, 2!X2,−3!X3, . . .) = (−1)nL+
n,k might be supposed to be a suitable candidate;

but this fails because these polynomials are not orthogonal companions of their own. It is however a promising

(and eventually working) idea to raise to the level of multivariate polynomials the well-known identity expressing

the signed Lah numbers by the Stirling numbers of the first and second kind [42, p. 44], which is mirrored in

the following

Definition 5.1 (Signed Lah polynomials). Ln,k :=
∑n
j=k(−1)jAn,jBj,k.

Using this definition we immediately regain by unification (and observing (2.14), (2.15)) the numerical

identity

Ln,k ◦ 1 =
∑n
j=k(−1)js1(n, j)s2(j, k) = l(n, k),

‡The notation Ln,k used in [44, p. 2473] is reserved here for the signed version of the L+
n,k that will be introduced soon.
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which just has been alluded to. We also have Ln,k ∈ K[X−1
1 , X2, . . . , Xn] and the homogeneity

Ln,k(tX1, tX2, . . .) = t−(n−k)Ln,k. The instances of L5,k, 1 ≤ k ≤ 5, may serve as an illustration:

L5,1 = − 210X4
2

X8
1

+
120X3X

2
2

X7
1
− 30X4X2

X6
1

, L5,2 = − 270X3
2

X6
1

+ 40X3X2

X5
1
− 10X4

X4
1
,

L5,3 = − 120X2
2

X4
1
, L5,4 = − 20X2

X2
1
, L5,5 = −1.

Indeed also the remarkable orthogonality relation L⊥n,k = Ln,k holds.

Proposition 5.6.
∑n
j=k Ln,jLj,k = δnk (1 ≤ k ≤ n).

Proof. The assertion follows from Definition 5.1 by a direct straightforward computation and applying twice

Corollary 4.4.

The main result concerning Lah polynomials provides a characterization of all B-representable polynomial

families, which are orthogonal companions of their own.

Theorem 5.3. Let (Qn,k) be any regular B-representable family of polynomials. Then, Q⊥n,k = Qn,k holds if

and only if there exists a family of FdB polynomials (H1, H2, H3, . . .) ∈
∏
n≥1 Φn[G] such that Qn,k = Ln,k ◦H].

Proof. Sufficiency: Immediately from Proposition 5.6 by substituting Hj for Xj (j = 1, 2, 3, . . .).

Necessity: Let f ∈ G be arbitrarily given. We then define the function ϕ(x) :=
∑
n≥1Q

f
n,1(0)x

n

n! , which is

invertible, as Qn,k is regular. With this we obtain

Bϕn,k(0) = Bn,k(Qf1,1(0), . . . , Qfn−k+1,1(0))

= Qfn,k(0) ((2.6), Qn,k B-representable)

= (Q⊥n,k)f (0) (by assumption)

= An,k(Qf1,1(0), . . . , Qfn−k+1,1(0)) ((2.6), Proposition 5.1 (iv))

= Aϕn,k(0) = Bϕn,k(0) ((2.8), ϕ(0) = 0).

By the Identity Lemma 2.1 we have ϕ = ϕ. As an involutory function, ϕ can be written in the form ϕ = g̃ ◦ g,
where g is an appropriate function from G, and g̃(x) = g(−x) (see e. g. [32]). It follows now

Qfn,k(0) = Bϕn,k(0) = Bg̃ ◦ gn,k (0)

=

n∑
j=k

Bgn,j(0)Bg̃j,k(0) (by Jabotinsky’s Theorem 4.2 (i))

=

n∑
j=k

(−1)jAgn,j(0)Bgj,k(0) ((2.8), g(0) = 0)

= Lgn,k(0) (Definition 5.1).

Hence, putting h := g ◦ f ∈ G and Hm := Φm(h) we get

Qfn,k(0) = Lh ◦ fn,k (0) = Ln,k ◦D](h ◦ f)(0)

= Ln,k ◦
]∑

j=0

Dj(h)(0)Bf],j(0) ((2.9))

= Ln,k ◦ Φ](h)f (0)

= Ln,k(H1, H2, H3, . . .)
f (0) ((2.6)).

Applying the argument from Remark 2.2 completes the proof.

Corollary 5.1. The signed Lah polynomials (Ln,k) are B-representable.
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Proof. Let h be the function from the proof of Theorem 5.3. Then, for j = 1, 2, 3, . . . set Hj := Φj(h). By the

FCR we have Hj ◦ H] = Xj . The assertion now readily follows by replacing each Xj in Ln,k(H1, H2, . . .) =

Bn,k(Q1,1, Q2,1, . . .) with Hj .

The Lah polynomials allow us to characterize involutory functions.

Proposition 5.7. A function f ∈ G is involutory if and only if there exists g ∈ G such that f(x) =∑
n≥1 L

g
n,1(0)x

n

n! .

Proof. Necessity: As in the proof of Theorem 5.3 we can write f = g̃ ◦ g for some g ∈ G. Again it follows that

Dn(f)(0) = Lgn,1(0). — Sufficiency: By the assumption and by Corollary 5.1

Bfn,k(0) = Bn,k(Lg1,1(0), . . . , Lgn−k+1,1(0)) = Lgn,k(0).

Now, applying the FdB formula (2.9) and Proposition 5.6 we obtain for every n ≥ 1

Dn(f ◦ f)(0) =

n∑
k=1

Dk(f)(0)Bfn,k(0) =

n∑
k=1

Lgn,k(0)Lgk,1(0) = δn1,

that is, we have f ◦ f = ι.

From the above reasonings it can be seen immediately that, given any involution f = g̃ ◦ g, g ∈ G, the

corresponding f -polynomial Φn(f) takes the form

Jg,n :=

n∑
k=1

Lgk,1(0)Bn,k. (5.9)

According to the FCR, the involution polynomials (5.9) are self-inverse: Jg,n ◦ Jg,] = Xn.

5.6 Comtet’s polynomials

Now we return to Comtet’s attempt [10] (already mentioned in Section 2.1), to determine the class of polynomials

associated with the higher-order Lie operator (θD)n, θ ∈ F . A statement concerning expansion and recurrence,

analogous to Propositions 2.1 and 2.2, serves as the starting point.

Proposition 5.8. There exist polynomials Cn,k ∈ K[X0, . . . , Xn−k] such that

(θD)n =

n∑
k=0

C θ
n,k ·Dk.

The family (Cn,k) is triangular, regular, and uniquely determined by the differential recurrence

Cn+1,k = X0

Cn,k−1 +

n−k∑
j=0

Xj+1
∂Cn,k
∂Xj

 , Cn,0 = δn0.

Proof. By a straightforward inductive argument as applied in the proof of Proposition 2.1; cf. [44, Propositions

3.1 and 3.5].

From this the following representation can be inferred:

Cn,k =
∑

P(2n−k,n)

γn,k(r0, . . . , rn−k)Xr0
0 · · ·X

rn−k

n−k , (5.10)

the sum ranging over all non-negative integral values of r0 to rn−k such that r0 + · · · + rn−k = n and r0 +

2r1 + 3r2 + · · · = 2n − k. The coefficients γn,k(r0, . . . , rn−k) turn out to be positive integers. In [10, Section

5] Comtet has tabulated (Cn,k)1≤k≤n up to n = 7 and claimed (without proof) that Cn,k ◦ 1 = c(n, k) and

Cn,k(1, 1, 0, . . . , 0) = s2(n, k). His main result [ibid., Equation (8), p. 166)] provides the following expression in

diophantine form:

Cn,k =
X0

k!
·
∑

ρ(n,1)=n−k

k ·
n−1∏
j=1

k + ρ(n, j)− j
rj !

Xrj , (5.11)
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where ρ(n, j) denotes the sum r1 + · · ·+ rn−j (with non-negative integers r1, r2, r3, . . .). This formula appears

only to a modest extent suitable for computational purposes. For example, although C6,2 consists of only 5

monomials, a total of 70 solutions of the equation ρ(6, 1) = 4 has to be checked in order to finally obtain

C6,2 = 31X2
0X

4
1 + 146X3

0X
2
1X2 + 34X4

0X
2
2 + 57X4

0X1X3 + 6X5
0X4.

In the sequel it will be shown that Comtet’s polynomial family (Cn,k) can be smoothly integrated into our

algebraic framework developed so far. In particular, it turns out that Cn,k can be represented by the Stirling

polynomials of the first and second kind.

Theorem 5.4. Cn,k = An,k(R̂0, . . . , R̂n−k) (0 ≤ k ≤ n).

Proof. Let ϕ be any function such that D(ϕ) ∈ F1. According to Propositions 5.8 and 2.1 we have

(θD)n =

n∑
k=0

C θ
n,kD

k and (D(ϕ)−1D)n =

n∑
k=0

Aϕn,kD
k.

Choose θ = D(ϕ)−1, so that both expansions agree. Hence, by Proposition 3.1 we obtain for every j ≥ 1

Dj(ϕ) = Dj−1(θ−1) = R̂ θ
j−1,

and consequently

C θ
n,k = Aϕn,k = An,k ◦D](ϕ) = An,k(R̂ θ

0 , . . . , R̂
θ
n−k).

Replacing Dj(θ) by Xj (j = 0, 1, 2, . . .) on both sides of the equation completes the proof.

Corollary 5.2. (Cn,k) and (C⊥n,k) are B-representable.

Proof. Theorem 5.4 yields Cn,k = An,k ◦ R̂], whence by (2.11) and (2.5) Cn,k = Bn,k ◦ (A],1 ◦ R̂]), that is,

Cn,k is B-representable. — From Proposition 5.1 (iv) follows C⊥n,k = Bn,k(R̂0, . . . , R̂n−k), that is, C⊥n,k is B-

representable.

Proposition 5.9.

(i) Cn,k(1, . . . , 1) = c(n, k)

(ii) C⊥n,k(1, . . . , 1) = (−1)n−ks2(n, k)

(iii) Cn,k(1, 1, 0, . . . , 0) = s2(n, k)

Proof. (i) Observing R̂j ◦ 1 = Pj,−1 ◦ 1 = (−1)j we obtain by Theorem 5.4 and (2.14)

Cn,k(1, . . . , 1) = An,k(1,−1, . . . , (−1)n−k) = (−1)n−kAn,k(1, . . . , 1)

= (−1)n−ks1(n, k) = c(n, k).

(ii) C⊥n,k(1, . . . , 1) = Bn,k(1,−1, . . . , (−1)n−k) = (−1)n−kBn.k(1, . . . , 1).

(iii) With ϕ := 1 + ι we have C ϕ
n,k(0) = Cn,k(1, 1, 0, . . . , 0), and by Proposition 3.1 for every j ≥ 0

R̂ϕ
j (0) = Dj(ϕ−1)(0) = Dj((1 + ι)−1)(0) = (−1)jj! = s1(j + 1, 1) = Aj+1,1(1, . . . , 1),

whence by (2.12) and (2.15)

Cn,k(1, 1, 0, . . . , 0) = C ϕ
n,k(0) = An,k(R̂ϕ

0 (0), . . . , R̂ϕ
n−k(0)) = An,k(A1,1(1), . . . , An−k+1,1(1, . . . , 1))

= Bn,k(1, . . . , 1) = s2(n, k).

The question of how the coefficients γn,k(r0, . . . , rn−k) of (5.10) are made up in detail appears to be rather

tricky and must remain open for the time being. Attempting a direct evaluation of An,k(R̂0, . . . , R̂n−k) in

general form quickly leads to a piling up of more and more cumbersome expressions. While the coefficients of

An,k and Bn,k are products of simple combinatorial terms (see (2.10) and (2.13)), one might doubt whether this

also applies to the coefficients of Cn,k. For example, consider

Cn,n−4 =

(
n

5

)
15n3 − 150n2 + 485n− 502

48
Xn−4

0 X4
1
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+

(
n

5

)
15n2 − 85n+ 116

6
Xn−3

0 X2
1X2 +

(
n

5

)
5n− 13

3
Xn−2

0 X2
2

+

(
n

5

)
5n− 11

2
Xn−2

0 X1X3 +

(
n

5

)
Xn−1

0 X4.

Here, the first two coefficients γn,n−4(n − 4, 4) and γn,n−4(n − 3, 2, 1), regarded as polynomials in n, cannot

be written as products of linear factors over the field K. However, replacing each Xj by R̂j (0 ≤ j ≤ 4) and

applying Corollary 4.2 (iii) resembles a magic wand that turns Cn,n−4 ◦ R̂] into

An,n−4(X0, . . . , X4) = 105

(
n+ 3

8

)
X−n−4

0 X4
1 − 105

(
n+ 2

7

)
X−n−3

0 X2
1X2

+ 10

(
n+ 1

6

)
X−n−2

0 X2
2 + 15

(
n+ 1

6

)
X−n−2

0 X1X3 −
(
n

5

)
X−n−1

0 X4.

Also for the simpler cases An,n−k with k = 0, 1, 2, 3 one gets similarly closed product representations of the

coefficients as here (see Todorov [50, Equations (14) to (16)]). This might be a hint that focussing on the

iterations of θD eventually proves to be a less well-posed problem. The remedy is, of course, simply the choice

θ = D(ϕ)−1 (see (2.3)).

6. Applications to binomial sequences

This section demonstrates the succinct way the classical topic of binomial sequences can be treated within the

conceptual frame of the preceeding sections. Some new results will be proved.

6.1 Definition and representation

Let fn = fn(t) ∈ K[t] (n = 0, 1, 2, 3 . . .) be any sequence of polynomials with deg fn = n. Then, f0, f1, f2, . . . is

said to be binomial, or of binomial type, if for every n ≥ 0

fn(s+ t) =

n∑
k=0

(
n

k

)
fn−k(s)fk(t). (6.1)

Note that clearly f0 = 1 and f ′n(0) 6= 0.

The sequences tn and (t)n are binomial (cf. Stanley [48, Exercise 5.37] for more examples). Knuth [25]

also deals with binomial sequences fn, but in their guise of convolution polynomials fn/n!. As is well-known,

binomial sequences are closely related to the exponential polynomials. This is reflected in the following two

statements.

Proposition 6.1. Let f0, f1, f2, . . . be a sequence of polynomials from K[t]. Then the following holds:

(i) (fn) binomial ⇐⇒ ∃ϕ ∈ G : fn(t) = [x
n

n! ]etϕ(x)

(ii) (fn) binomial ⇐⇒ fn(t) = Bn(tf ′1(0), . . . , tf ′n(0))

Proof. See e. g. [48, Exercise 5.37 and Solution] or the outline in [45, p. 43].

6.2 Some results on substitution

Several authors have dealt with evaluating the Bell polynomials in cases the variables have been replaced

by special values from combinatorial number families and, more generally, also by binomial sequences (see

e. g. [11, 14, 36, 37, 52, 55]). Keeping in mind that, according to Proposition 6.1 (ii), the latter are instances of

the exponential polynomials, it is not surprising that statements concerning the substitution of the Bn into

polynomials can be readily transferred to the substitution of binomial sequences.

The subsequent list contains some of the more interesting results together with comments or short proofs.

Suppose (fn) is a binomial sequence. Then the following statements hold:

Ln(f1(t), . . . , fn(t)) = tf ′n(0), (6.2)
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Pn,k(f1(t), . . . , fn(t)) = fn(kt), (6.3)

Rn(f1(t), . . . , fn(t)) = fn(−t), (6.4)

Tn(f1(t), . . . , fn(t)) = fn−1(nt). (6.5)

Proof. (6.2) is an immediate consequence from Proposition 6.1 (ii) by observing the inverse relationship between

Ln and Bn (see Remark 4.1). (6.3) follows directly from Proposition 4.2 by replacing each Xj with tf ′j(0).

Equations (6.4) and (6.5) are special cases of (6.3); recall that Rn = Pn,−1 and Tn = Pn−1,n.

In the same way one gets from Proposition 3.5 without any calculation

Ln(f1(t), . . . , fn(t)) =

n∑
k=1

(−1)k−1 1

k

(
n

k

)
fn(kt) (6.6)

as well as from (4.1)

Bn,k(f1(t), . . . , fn−k+1(t)) =
1

k!

k∑
j=0

(−1)k−j
(
k

j

)
fn(jt). (6.7)

Remark 6.1. Equation (6.7) has been proved by Yang [55, Theorem 2]. Mihoubi, by using the methods of

Umbral Calculus, derived a slightly more general version [36, Proposition 2]. Equations (6.3)–(6.6) are new.

From (5.5) one immediately obtains by (6.3)

Bn,k(f0(t), 2f1(t), 3f2(t), . . .) =

(
n

k

)
fn−k(kt). (6.8)

Then, Proposition 5.5 yields the corresponding orthogonal companion

An,k(f0(t), 2f1(t), 3f2(t), . . .) =

(
n− 1

k − 1

)
fn−k(−nt). (6.9)

Furthermore, by substituting (6.5) into the equations of Theorem 5.2 we readily get

Bn,k(f0(t), f1(2t), f2(3t), . . .) =

(
n− 1

k − 1

)
fn−k(nt). (6.10)

together with the orthogonal companion

An,k(f0(t), f1(2t), f2(3t), . . .) =

(
n

k

)
fn−k(−kt). (6.11)

Remark 6.2. Equation (6.8) has been proved by Yang [55, Theorem 1]. Abbas and Bouroubi [1, Theorem 3]

have shown (6.10) for the special case t = 1, which just represents the binomial variant of the Khelifa/Cherruault

identity mentioned in Remark 5.5. The identities (6.9) and (6.11) are new.

6.3 A binomial sequence related to trees

Let τ denote the exponential generating function for labeled rooted trees, that is, τ(x) =
∑
n≥1 n

n−1xn/n!

(see Remark 3.1 (iii)). Knuth and Pittel [27] have introduced univariate expressions tn(y), n ≥ 0, called ‘tree

polynomials’ and defined by

tn(y) :=

[
xn

n!

]
1

(1− τ(x))y
.

Denoting g(x) := x(1−x)−1 and defining the function ϕ ∈ G by ϕ := λ ◦ g ◦ τ , we obtain (1− τ(x))−y = eyϕ(x).

From this it follows by Proposition 6.1 (i) that

t0(y) = 1, t1(y) = y, t2(y) = 3y + y2, t3(y) = 17y + 9y2 + y3, . . .

is actually a binomial sequence of polynomials from Z[y]. If we write tn(y) =
∑n
k=0 tn,ky

k, then the coefficient

tn,k counts the total number of mappings of {1, 2, . . . , n} into itself having exactly k different cycles.
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Knuth and Pittel derived some integral formulas and a Γ-function representation of the tn(y) (see ibid.

Equations (2.12), (2.13)), inasmuch the focus of their paper is on the asymptotic behavior of these polynomi-

als. Supplementary to this, we will prove here a new explicit representation built up exclusively by means of

elementary combinatorial operations.

Theorem 6.1.

(i) tn,k =
∑

k≤j≤i≤n

s1(j, k)
nn−ii!

j!

(
i− 1

j − 1

)(
n− 1

i− 1

)
;

(ii) tn(y) = Bn(yt1,1, . . . , ytn,1), where for r ≥ 1

tr,1 =
∑

1≤j≤i≤r

(−1)j−1 r
r−ii!

j

(
i− 1

j − 1

)(
r − 1

i− 1

)
.

Proof. (i) With the terms introduced above we have

∑
n≥0

tn(y)
xn

n!
= eyϕ(x) =

∑
n≥0

( n∑
k=0

Bϕn,k(0)yk
)
xn

n!

(cf. [44, Proposition 7.3 (i)]), whence tn(y) =
∑n
k=0B

ϕ
n,k(0)yk and by Jabotinsky’s Theorem 4.2 (i)

tn,k = Bϕn,k(0) = B
λ ◦ (g ◦ τ)
n,k (0) =

n∑
j=k

Bg ◦ τn,j (0)Bλj,k(0). (*)

Now observing that Bλn,k(0) = Bεn,k(0) = Aεn,k(0) = s1(n, k) and again applying Jabotinsky’s formula, we obtain

from (*)

tn,k =

n∑
j=k

s1(j, k)

n∑
i=j

Bτn,i(0)Bgi,j(0). (**)

Evaluating both substitutions gives Bτn,i(0) = Bn,i(1
0, 21, 32, . . .) =

(
n−1
i−1

)
nn−i by applying Theorem 5.2 (i)

(forest numbers, cf. Remark 5.5), and Bgi,j(0) = Bi,j(1!, 2!, 3!, . . .) = l+(i, j) = i!
j!

(
i−1
j−1

)
(unsigned Lah numbers,

cf. (5.8)). Finally, we substitute these results into (**), thus arriving at the asserted statement.

(ii) Recall that s1(j, 1) = (−1)j−1(j − 1)!. Thus tr,1 is obtained from (i) by taking n = r and k = 1.

Furthermore t′r(0) = tr,1, whence the assertion follows according to Proposition 6.1 (ii).

6.4 Coupling binomial sequences

In their seminal paper [40] Mullin and Rota developed a general theory of binomial sequences. They introduced a

family of shift-invariant linear differential operators (called ‘delta operators’) on the vector space of polynomials

such that each sequence of binomial type can be associated uniquely to a specific (‘basic’) delta operator. On

that basis, they were able to describe the exact form of the connection between two given binomial sequences

(see also Aigner [3, Chapter III]).

The following will demonstrate how the main result of these investigations can also (alternatively) be estab-

lished by using only properties of the Bell polynomials.

Theorem 6.2 (Mullin & Rota 1970). Let (fn) and (gn) be any two binomial sequences. Then there exist unique

constants cn,k ∈ K, with cn,k = 0 for n < k, such that fn(t) =
∑n
k=0 cn,kgk(t) for every n ≥ 0, and the sequence

(hn) defined by hn(t) :=
∑n
k=0 cn,kt

k is of binomial type.

Proof. According to Proposition 6.1 there are functions ϕ,ψ ∈ G such that fn and gn can be written in the

form

gn(t) =

n∑
k=0

tkBϕn,k(0) and fn(t) =

n∑
k=0

tkBψn,k(0). (6.12)

Since every sequence of binomial type consists of polynomials linearly independent in K[t], it follows that

fn(t) =

n∑
k=0

cn,kgk(t) (6.13)
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with uniquely determined connecting coefficients cn,k ∈ K. Now substituting the right-hand sides of (6.12) into
(6.13) we obtain

n∑
k=0

tkBψn,k(0) =

n∑
k=0

cn,k

k∑
j=0

tjBϕk,j(0)

=

n∑
k=0

tk
n∑
j=k

cn,jB
ϕ
j,k(0)

after rearranging the double series. Hence, by equating the coefficients of tk

Bψn,k(0) =

n∑
j=k

cn,jB
ϕ
j,k(0). (6.14)

On the other hand, applying Jabotinsky’s formula (Theorem 4.2 (i)) to the ‘decomposition’ ψ = ϕ ◦ (ϕ ◦ ψ)
yields

Bψn,k(0) =

n∑
j=k

Bϕ ◦ψn,j (0)Bϕj,k(0). (6.15)

Now we put Vn,j := cn,j −Bϕ ◦ψn,j (0). Then from (6.14) and (6.15)

n∑
j=k

Vn,jBj,k(ϕ1, . . . , ϕj−k+1) = 0 (0 ≤ k ≤ n), (6.16)

where ϕ1, ϕ2, ϕ3, . . . are the Taylor coefficients of ϕ. We take for k the values n, n − 1, n − 2, . . . in that order

to show Vn,j = 0 for j = n, n − 1, . . . , 0. In the case k = n (6.16) becomes Vn,nBn,n(ϕ1) = Vn,nϕ
n
1 = 0,

hence Vn,n = 0 because of ϕ1 6= 0. For k = n − 1 we similarly get 0 = Vn,n−1Bn−1,n−1(ϕ1) + Vn,nBn,n(ϕ1) =

Vn,n−1ϕ
n−1
1 , that is, Vn,n−1 = 0, and so on until finally Vn,0 = 0. All in all, (6.16) implies

cn,j = Bϕ ◦ψn,j (0) = Bn,j(a1, . . . , an−j+1) (0 ≤ j ≤ n)

with aj = Dj(ϕ ◦ ψ)(0). Clearly we now have cn,j = 0 for n < j, and furthermore

hn(t) =

n∑
k=0

cn,kt
k =

n∑
k=0

tkBn,k(a1, . . . , an−k+1) = Bn(ta1, . . . , tan),

where h′j(0) = aj . Hence (hn) is binomial by Proposition 6.1 (ii).

From the proof above we learn that given two binomial sequences, their connecting coefficients are B-

representable. Here the question arises whether one of the sequences may be of binomial type, but the other

may not. The (negative) answer is provided by the following both-or-none statement.

Theorem 6.3. Let (fn) and (gn) be any sequences of polynomials from K[t] and a1 (6= 0), a2, a3, . . . any sequence

of constants from K. Suppose that

fn(t) =

n∑
k=0

gk(t)Bn,k(a1, . . . , an−k+1)

holds for all n ≥ 0. Then we have: gn binomial ⇐⇒ fn binomial .

Proof. 1. Assume gn(t) to be of binomial type; then, as in the proof of Theorem 6.2, gn(t) =
∑n
k=0 t

kBϕn,k(0)

with ϕ ∈ G. We set ψ(x) :=
∑
n≥1 an(xn/n!), which turns out to be invertible because of ψ′(0) = a1 6= 0. From

this we obtain

fn(t) =

n∑
k=0

( k∑
j=0

tjBϕk,j(0)

)
Bψn,k(0)
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=

n∑
k=0

tk
( n∑
j=k

Bψn,j(0)Bϕj,k(0)

)
(by rearranging the double series)

=

n∑
k=0

tkBϕ ◦ψn,k (0). (by Jabotinsky’s formula)

Thus it follows by Proposition 6.1 that fn(t) is of binomial type.

2. Conversely, suppose fn(t) is binomial. This case will be reduced to the situation of part 1. With the

same denotations we have fn(t) =
∑n
k=0 gk(t)Bψn,k(0), ψ ∈ G. To this now, the generalized Stirling inversion

(Proposition 5.4) can be applied thus yielding

gn(t) =

n∑
k=0

fk(t)Aψn,k(0)

=

n∑
k=0

fk(t)Bψn,k(0) =

n∑
k=0

fk(t)Bn,k(a1, . . . , an−k+1),

where aj := Dj(ψ)(0). Since a1 = 1
a1
6= 0, we see by the statement of part 1 that (gn) is binomial.

Given any binomial sequence, it becomes easy now to generate a new one by linearly combining its polyno-

mials with instances of the partial Bell polynomials as connecting coefficients. The following special case has

been established by Yang [55, Lemma 2, p. 53].

Corollary 6.1. A sequence (fn) is binomial if and only if for every n ≥ 0

fn(t) =

n∑
k=0

(t)kBn,k(f1(1), . . . , fn−k+1(1)).

Proof. Since we have

(t)n =

n∑
k=0

tks1(n, k) =

n∑
k=0

tkBλn,k(0) =

[
xn

n!

]
etλ(x),

(t)n turns out to be of binomial type (by Proposition 6.1 (i)). Suppose now

fn(t) =

n∑
k=0

(t)kBn,k(a1, . . . , an−k+1) (*)

with a1 6= 0. One clearly has fj(1) = aj , and fn(t) is binomial by Theorem 6.3. — Conversely, assume fn(t)

is binomial. The Mullin-Rota Theorem 6.2 then yields connecting coefficients Bn,k(a1, . . . , an−k+1) such that

equation (*) is satisfied.

7. Lagrange inversion polynomials

7.1 Some preliminaries

Having encountered in previous sections various inverse relationships based on orthogonality, let us now turn to

the type of compositional inversion already mentioned in Example 4.1 and Remark 4.3. First we want to free

ourselves from the assumption made there, according to which the polynomials in question must be FdB, i. e.,

elements of Φn[G]. Therefore, we will consider sequences of arbitrary polynomials (Un) and (Vn) such that for

every n ≥ 0

Un ◦ V] = Xn and Vn ◦ U] = Xn. (7.1)

However, the idea that a polynomial sequence remains (uniquely) associated to a function should still be

adhered to. In order to roughly sketch the intended situation here, let us assume that f, g ∈ F are somehow

characterized by sequences of constants c0, c1, c2, . . . and d0, d1, d2, . . ., respectively. Next suppose there is a

sequence of polynomials (Un) such that dn = Un(c0, . . . , cn) for every n ≥ 0. Then Un will be called conversion

polynomial (of f with respect to g). Conversely, if we additionally have conversion polynomials Vn of g (w.r.t.
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f), then the pair (Un, Vn) satisfies (7.1). In the special case g = f , the corresponding conversion polynomials

will henceforth be called (generalized) Lagrange inversion polynomials.

The classical Lagrange inversion is a special case that arises when f and f are characterized by their

respective Taylor coefficients f1, f2, . . . and f1, f2, . . .. While a major part of the extensive literature on the

subject is devoted to its analytical and combinatorial aspects (e. g. [16,28]), explicit formulas for the coefficients

of f in the form of polynomial expressions

fn = Λn(f1, . . . , fn)

have been studied at times, for instance [54], [39, p. 412], [16, Section 2.5]. Comtet [11, p. 151] replaced these

determinantal and diophantine representations with the following elegant formula (the prehistory of which is

sketched in [22]):

Λn =

n−1∑
k=0

(−1)kX
−(n+k)
1 Bn−1+k,k(0, X2, . . . , Xn). (7.2)

Equation (7.2) is a special case of Theorem 2.1 (= Theorem 6.1 in [44]), from which immediately follows

that Λn = An,1. Alternatively, if one wants to avoid the associate Bell polynomials B̃n−1+k,k in (7.2), the

Schlömilch-Schläfli representation (5.2) could be used (taking k = n− 1) to obtain

Λn =

n−1∑
k=0

(−1)k
(

2n− 1

n− 1− k

)
X
−(n+k)
1 Bn−1+k,k.

Finally, according to Corollary 3.1, Λn can also be expressed by R̂n and T̂n.

Since the Lagrange inversion polynomial Λn is the conversion polynomial of f (w.r.t. f) and of f (w.r.t. f)

as well, it obviously must be self-inverse: Λn ◦ Λ] = Xn (see also (2.12), taking k = 1).

In addition, we see from Theorems 3.1 and 3.2 that Bn,k(f1, . . . , fn−k+1) and An,k(f1, . . . , fn−k+1) are the

Taylor coefficients of fk and f
k
, respectively. Again we encounter an orthogonality relation, this time through

raising a function and its inverse to the kth power.

7.2 A modified inversion problem

We start with a theorem that gives the solution to a modified inversion problem.

Theorem 7.1. Let s be any positive integer and let c0, c1, c2, . . . ∈ K be any sequence of constants with

c0 = 1. Then, f(x) =
∑
n≥0

cn
n! x

sn+1 has an inverse of the form f(x) =
∑
n≥0

dn
n! x

sn+1 with d0 = 1 and

dn = Λn(c1, . . . , cn) for every n ≥ 1, where

Λn =

n∑
k=1

(−1)k
(
sn+ k

k − 1

)
(k − 1)!Bn,k.

This statement is Mihoubi’s [37] slightly modified (symmetrized) version of a theorem established by Comtet

[11, Theorem F, p. 151]. The (possibly) first proof to be found in the literature results from specializing a pair of

inverse polynomials investigated by Birmajer, Gil and Weiner [5, Theorem 4.6, Example 4.9]. In the following,

too, we will regain Comtet’s theorem as a corollary of a much more general statement. However, to achieve

this, we keep following the idea (outlined in Section 7.1) of switching between certain representations of a

function and its inverse using generalized Lagrange inversion polynomials. The one from Theorem 7.1, Λn, is

the conversion polynomial of f (characterized by c0, c1, c2, . . .) w.r.t. f (characterized by d0, d1, d2, . . .), and

vice versa, that is, we obviously have Λn ◦ Λ] = Xn.

In order to obtain a more comprehensive class of inversion polynomials, we will modify the assumptions

made in Theorem 7.1 as follows: Suppose f is any invertible function and denote by fn and fn, n ≥ 1, the

respective Taylor coefficients of f and f . Both functions are now to be given the new form

(i) f(x) =
∑
n≥0

cn
n!
a(x)ϕ(x)n and (ii) f(x) =

∑
n≥0

dn
n!
b(x)ψ(x)n, (7.3)
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where a, b and ϕ,ψ are assumed to be fixed functions (with suitable properties). We will see that the required

conversions can be achieved by merely adjusting the sequences c0, c1, c2, . . . and d0, d1, d2, . . .. In a final step,

Lagrange inversion polynomials Un, Vn with property (7.1) will be constructed satisfying dn = Un(c0, . . . , cn)

and cn = Vn(d0, . . . , dn).

First we have to fix the conditions that guarantee the existence of the above representations (7.3). For this

purpose we define the functions

c(x) =
∑
n≥0

cn
xn

n!
and d(x) =

∑
n≥0

dn
xn

n!

so that the series (7.3) can equivalently be rewritten as function terms:

(i) f = a · (c ◦ ϕ) and (ii) f = b · (d ◦ ψ). (7.4)

It is at once clear that f, ϕ, ψ must be invertible functions (what will be tacidly assumed for the remainder of

this section). Furthermore, we generally suppose that both c and f are neither part of a nor of ϕ, and that the

corresponding equally holds for d and f with respect to b and ψ. As usual, the Taylor coefficients of a and b

are denoted by a0, a1, a2, . . . and b0, b1, b2, . . ., respectively.

Let us first turn to the equation (i) in (7.4).

Proposition 7.1. Suppose (7.4, i) holds. Then for all n ≥ 0 : fn = Γn(a, ϕ)(c0, . . . , cn), where

Γn(a, ϕ) :=

n∑
k=0

( n∑
j=k

(
n

j

)
an−jB

ϕ
j,k(0)

)
Xk.

Proof. According to Definition 3.1 the conversion polynomial Γn(a, ϕ) we are looking for is Ωn(f | c). Therefore,

we obtain by (3.5)

Γn(a, ϕ) = Ωn(a · (c ◦ ϕ) | c) =

n∑
j=0

(
n

j

)
Ωn−j(a | c)Ωj(c ◦ ϕ | c). (*)

Since c does not occur in either a or ϕ, we have Ωn−j(a | c) = an−j and observing (3.6) and (3.3)

Ωj(c ◦ ϕ | c) =

j∑
k=0

Ωk(c | c)(Bj,k ◦ Ω](ϕ | c)) =

j∑
k=0

Bϕj,k(0)Xk.

Substitution into (*) and rearranging the double series in Γn(a, ϕ) yields the assertion.

Remark 7.1. Note that the requirements for Proposition 7.1 can be weakend to f ∈ F and ϕ ∈ F0. Under

these assumptions, the special case a = 1 is of interest here. It yields∑
n≥0

cn
ϕ(x)n

n!
=
∑
n≥0

( n∑
k=0

Bϕn,k(0)ck

)
xn

n!
,

which, by further specializing ck = tk, leads to the expansion of etϕ(x) used in Section 6 (Proposition 6.1); see

also [44, Proposition 7.3].

Applying Remark 2.1 to (7.4, i) we see that f is invertible in just the following two cases, both of which are

covered by the linear form Γn(a, ϕ):

(1) a ∈ F1 and c ◦ ϕ ∈ G,

(2) a ∈ G and c ◦ ϕ ∈ F1.

The inverse transformations that compute the cn’s from the fn’s also turn out to be linear forms. There are

two case-specific types that differ from one another.

Proposition 7.2. Suppose (7.4, i) and a ∈ F1. Then for every n ≥ 0 : cn = Γ
(1)

n (a, ϕ)(0, f1, . . . , fn), where

Γ
(1)

n (a, ϕ) :=

n∑
k=0

( n∑
j=k

(
j

k

)
R̂j−k(a0, . . . , aj−k)Aϕn,j(0)

)
Xk.
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Proof. In order to obtain cn, we transform (7.4, i) into

c = (a−1 · f) ◦ ϕ. (7.5)

From this we get the inverse form

Γ
(1)

n (a, ϕ) = Ωn(c | f) = Ωn((a−1 · f) ◦ ϕ | f)

=

n∑
j=0

Ωj(a
−1 · f | f)(Bn,j ◦ Ω](ϕ | f)) ((3.6))

=

n∑
j=0

j∑
k=0

(
j

k

)
Ωj−k(a−1 | f)Ωk(f | f)Bϕn,j(0) ((3.5))

=

n∑
j=0

j∑
k=0

(
j

k

)
R̂j−k(a0, . . . , aj−k)Aϕn,j(0)Xk. ((2.8), Proposition 3.1 )

The assertion now follows by rearranging the double series as in the proof of Proposition 7.1.

Proposition 7.3. Suppose (7.4, i) and a ∈ G. Then for every n ≥ 0 : cn = Γ
(2)

n (a, ϕ)(f1, . . . , fn+1), where

Γ
(2)

n (a, ϕ) :=

n∑
k=0

1

k + 1

( n∑
j=k

(
j

k

)
R̂j−k(a11 , . . . ,

aj−k+1

j−k+1 )Aϕn,j(0)

)
Xk+1.

Proof. Again we use (7.5), but now with a0 = 0 and a1 6= 0. Defining h ∈ F1 by h(x) :=
∑
n≥0

an+1

n+1
xn

n! we

obtain a(x) = x · h(x), and hence a−1 · f = h−1 · (f/ι). As in the proof of Proposition 7.2, it follows

Γ
(2)

n (a, ϕ) = Ωn(c | f) = Ωn((h−1 · fι ) ◦ ϕ | f)

=

n∑
j=0

Ωj(h
−1 · fι | f)Aϕn,j(0).

Now we have by (3.5) and Proposition 3.1

Ωj(h
−1 · fι | f) =

j∑
k=0

(
j

k

)
R̂j−k(a11 , . . . ,

aj−k+1

j−k+1 )Ωk( fι | f).

Observing Ωk( fι | f) = 1
k+1Xk+1 and rearranging the double series completes the proof.

For the sake of clarity we will distinguish the cases (1) a ∈ F1 and (2) a ∈ G also for Γn(a, ϕ) in Propo-

sition 7.1. We set Γ
(1)
n (a, ϕ) := Γn(a, ϕ)(0, X1, . . . , Xn), since a0 6= 0 requires c0 = 0 in (7.4) (i). Otherwise, we

use Γ
(2)
n (a, ϕ) to denote the result obtained by putting a0 = 0 in Γn(a, ϕ).

Now we get from Propositions 7.1, 7.2, 7.3 the

Corollary 7.1. For every n ≥ 1 we have Γ
(i)
n (a, ϕ) ◦ Γ

(i)

] (a, ϕ) = Γ
(i)

n (a, ϕ) ◦ Γ
(i)
] (a, ϕ) = Xn (i = 1, 2).

Similarly as Γn(a, ϕ) covers both cases (1) a ∈ F1 and (2) a ∈ G, we formally write for brevity Γn(a, ϕ),

which is to mean either Γ
(1)

n (a, ϕ) or Γ
(2)

n (a, ϕ) depending on which of the two cases actually occurs.

We are now in a position to construct the desired general type of Lagrange inversion polynomial that fits

the situation given in (7.3).

Definition 7.1 (Generalized Lagrange inversion polynomial). Given any ϕ,ψ ∈ G and a, b ∈ F1 ∪G, we define

Λn(a, ϕ | b, ψ) := Γn(b, ψ) ◦A],1 ◦ Γ](a, ϕ).

Theorem 7.2. Suppose f, ϕ, ψ ∈ G and a, b ∈ F1 ∪ G. Then, there are uniquely determined sequences of

constants (cn) and (dn) such that (7.3) holds. Moreover, we have dn = Λn(a, ϕ | b, ψ)(c0, . . . , cn) and cn =

Λn(b, ψ | a, ϕ)(d0, . . . , dn), or equivalently, Λn(a, ϕ | b, ψ) ◦ Λ](b, ψ | a, ϕ) = Xn for every n ≥ 1.
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Proof. From f we obtain (cn) by applying Γn(a, ϕ) according to Propositions 7.2 and 7.3; and in the same

unique way one gets (dn) by applying Γn(b, ψ) to the Taylor coefficients of f .

Upon closer inspection, one can see that in general we have Λn(a, ϕ | b, ψ) ∈ K[X−1
0 , X−1

1 , X0, X1, . . . , Xn+1].

Depending on the choice of a, b the (Laurent) polynomial Λn(a, ϕ | b, ψ) can take four different forms. It may

suffice here to consider, for example, the case a ∈ G and b ∈ F1. Observing f0 = f0 = 0 we obtain

dn = Γ
(1)

n (b, ψ)(0, f1, . . . , fn) (Proposition 7.2)

= Γ
(1)

n (b, ψ)(A0,1(0), A1,1(f1), . . . , An,1(f1, . . . , fn)) (Remark 2.3)

= Γ
(1)

n (b, ψ) ◦A],1 ◦ f]

= Γ
(1)

n (b, ψ) ◦A],1 ◦ Γ
(2)
] (a, ϕ)(c0, . . . , c]−1, 0) (Proposition 7.1)

= Λn(a, ϕ | b, ψ)(c0, . . . , cn−1, 0). (Definition 7.1)

In the last step, Xj in Γ
(1)

n (b, ψ)(0, A1,1, . . . , An,1) is replaced by Γ
(2)
j (a, ϕ)(c0, . . . , cj−1, 0) for each j = 1, . . . , n. —

In the reverse direction one obtains in a similar way

cn = Γ
(2)

n (a, ϕ)(f1, . . . , fn+1) (Proposition 7.3)

= Γ
(2)

n (a, ϕ) ◦A],1 ◦ f ]
= Γ

(2)

n (a, ϕ) ◦A],1 ◦ Γ
(1)
] (b, ψ)(0, d1, . . . , d])

= Λn(b, ψ | a, ϕ)(0, d1, . . . , dn).

In the general case, the inversion polynomials Λn(a, ϕ | b, ψ) turn out to be rather complicated expressions

even for small values of n. We therefore confine ourselves here to the study of two interesting special cases:

a = b = 1 and a = b = ι.

Theorem 7.3. Let ϕ,ψ be invertible functions. Then for every n ≥ 1

Λn(1, ϕ | 1, ψ) =

n∑
k=1

(
Aψn,k(0)

k∑
j=1

Aϕj,1(0)Ak,j

)
.

Proof. Since b0 = 1 and bn = 0 for n ≥ 1, we have R̂j−k(b0, b1, . . . , bj−k) = δjk, and hence Γ
(1)

n (1, ψ) =∑n
k=1A

ψ
n,k(0)Xk by Proposition 7.2. Thus it follows from Theorem 7.2

Λn(1, ϕ | 1, ψ) =

n∑
k=1

Aψn,k(0)Ak,1(Γ1(1, ϕ), . . . ,Γk(1, ϕ)). (7.6)

Now consider any f ∈ G of the form f = c ◦ ϕ. Then c0 = 0, c1 6= 0 and f0 = 0, f1 6= 0, and according to

Proposition 7.1: fn = Γn(1, ϕ)(0, c1, . . . , cn), n ≥ 0. Applying (7.6) to (c0, . . . , cn) thus yields

Λn(1, ϕ | 1, ψ)(0, c1, . . . , cn) =

n∑
k=1

Aψn,k(0)Afk,1(0). (7.7)

Finally, we obtain by Theorem 4.2 (ii)

Afk,1(0) =
∑
j=k

Aϕj,1(0)Ak,j(c1, . . . , ck−j+1).

Substitution of the latter into (7.7) gives the assertion.

Remark 7.2. Λn(1, ϕ | 1, ψ) solves the problem of inverting a given function c ◦ ϕ ∈ G to a function of the

prescribed form d ◦ψ by computing the sequence d1, d2, . . . from c1, c2, . . .. In the particular case ϕ = ψ = ι this

amounts to the classical Lagrange inversion. Indeed, observing Aιn,k(0) = An,k(1, 0, . . . , 0) = δnk we get from

Theorem 7.3: Λn(1, ι | 1, ι) = An,1.
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Our second case, a = b = ι, is a little more involved; its solution at least can be formulated more succintly

by introducing the following special polynomial:

În,k :=

n∑
j=0

(−1)j(k + j)j−1X
−(k+1+j)
0 Bn,j .

We shall also use the instance In,k := În,k(1, X1, . . . , Xn) (which, by the way, is FdB, since In,k = Φn(ηk) with

ηk(x) := ((1 + x)−(k+1) − 1)/(k + 1)).

Theorem 7.4. Let ϕ,ψ be invertible functions. Then for every n ≥ 0

Λn(ι, ϕ | ι, ψ) =

n∑
k=0

(
Aψn,k(0)

k∑
j=0

Bϕk,j(0) Îj,k

)
.

Proof. Suppose the situation (7.4) with a = b = ι, which implies an = bn = δn1 and c ∈ F1. Similar to the

proof of Theorem 7.3, we get by Proposition 7.3

Γ
(2)

n (ι, ψ) =

n∑
k=0

Aψn,k(0) · 1

k + 1
Xk+1, (7.8)

hence by Theorem 7.2

Λn(ι, ϕ | ι, ψ) =
n∑
k=0

Aψn,k(0) · 1

k + 1
Ak+1,1(Γ1(ι, ϕ), . . . ,Γk+1(ι, ϕ)). (7.9)

We now set g = c ◦ ϕ thus obtain by Proposition 7.1 for every n ≥ 1

fn = Γn(ι, ϕ)(c0, . . . , cn) =

n∑
k=0

( n∑
j=k

(
n

j

)
δ(n−j)1B

ϕ
j,k(0)

)
ck

= n

n−1∑
k=0

Bϕn−1,k(0)ck

= nΩn−1(g | c)c(0) = ngn−1.

Combining this result with (7.9) gives

Λn(ι, ϕ | ι, ψ)(c0, . . . , cn) =

n∑
k=0

Aψn,k(0)
Ak+1,1(g0, 2g1, . . . , (k + 1)gk)

k + 1
. (7.10)

Note that g0 = c0; then, according to Proposition 5.5

Ak+1,1(g0, 2g1, . . . , (k + 1)gk) = P̂k,−(k+1)(g0, g1, . . . , gk)

=

k∑
j=0

(−k − 1)j c
−k−1−j
0 Bgk,j(0).

Here we can evaluate Bgk,j(0) with the help of Jabotinsky’s formula (Theorem 4.2 (i)):

Bgk,j(0) = Bc ◦ϕk,j (0) =

k∑
i=j

Bϕk,i(0)Bi,j(c1, . . . , ci−j+1).

With this the fractional expression in (7.10) becomes

Ak+1,1(g0, 2g1, . . .)

k + 1
=

k∑
j=0

k∑
i=j

(−k − 1)j
k + 1

c−k−1−j
0 Bϕk,i(0)Bi,j(c1, c2, . . .).

Rearranging the double series and observing
(−k−1)j
k+1 = (−1)j(k + j)j−1 yields

Ak+1,1(g0, 2g1, . . . , (k + 1)gk)

k + 1
=

k∑
i=0

Bϕk,i(0)Îi,k(c0, c1, . . . , ck).

Substitution into (7.10) finally gives the desired result.
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We conclude this section by showing that Comtet’s Theorem F (= Theorem 7.1 above) can be obtained as

a corollary from Theorem 7.4.

Proof. Considering the assumptions of Theorem 7.1, one might be tempted at first glance to directly evaluate

Λn(ι, ιs | ι, ιs). This of course fails, because ιs (s ≥ 2) is not invertible. However, Theorem 7.4 remains valid even

with the condition ϕ ∈ G weakened to ϕ ∈ F0. Therefore, as an alternative, we will first deal with calculating

Λn(ι, ϕ | ι, ψ), where ϕ = ιs(∈ F0) and ψ = ι(∈ G). Theorem 7.4 yields

Λn(ι, ιs | ι, ι) =

n∑
k=0

(
δnk

k∑
j=0

Bι
s

k,j(0) Îj,k

)
=

n∑
j=0

Bι
s

n,j(0) Îj,n. (7.11)

Since Dr(ιs)(0) = δsrs!, we have

Bι
s

n,j(0) = Bn,j(0, . . . , 0, s!, 0, . . . , 0) (s! at position s)

= (s!)j ·Bn,j(0, . . . , 0, 1, 0, . . . , 0) (by homogeneity)

= (s!)j · (sj)!

j!(s!)j
(if n = sj, else 0; by (2.10))

= δn(sj)
(sj)!

j!
.

Thus (7.11) becomes

Λn(ι, ιs | ι, ι) =

n∑
j=0

δn(sj)
(sj)!

j!
Îj,n. (7.12)

According to Theorem 7.2 the constants en = Λn(ι, ιs | ι, ι)(c0, c1, . . . , cn) are coefficients satisfying f(x) =∑
n≥0

en
n! x

n+1. From (7.12) we immediately see that en is unequal to zero if and only if n is an integral multiple

of s. Assuming n = sr for some integer r ≥ 0 and observing c0 = 1 we have

esr =
(sr)!

r!
Îr,sr(c0, c1, . . . , cr) =

(sr)!

r!
Ir,sr(c1, . . . , cr),

hence

f(x) =
∑
r≥0

esr
(sr)!

xsr+1 =
∑
r≥0

dr
r!
xsr+1

with dr = Ir,sr(c1, . . . , cr) =
∑r
j=0(−1)j

(
sr+j
j−1

)
(j − 1)!Br,j(c1, . . . , cr−j+1).

Remark 7.3. The polynomials În,sn and In,sn are self-inverse, that is, we have În,sn ◦ Î],s] = Xn (n ≥ 0), and

In,sn ◦ I],s] = Xn (n ≥ 1).

8. Reciprocity theorems

In this final section we will be occupied by establishing reciprocity laws for several previously studied classes of

polynomials. Stanley [46] pointed out that reciprocity (or ‘duality between two related enumeration problems’)

is a ‘rather vague concept’ that only becomes clearer through concrete examples. This also applies to the

reciprocity statements we are concerned with here. We are usually dealing with two families of polynomials (or

sequences of numbers) that arise in some way from certain opposing aspects of a situation, while both families

are actually united by their law of reciprocity.

According to Stanley [47, p. 15/16], the relationship between the number of k-combinations of n elements

with repetitions and the corresponding number of combinations without repetitions is ‘the simplest instance of

a combinatorial reciprocity theorem’ (which we shall make use of in the following):(
n+ k − 1

k

)
= (−1)k

(
−n
k

)
. (8.1)

Remark 8.1. (8.1) is valid for integers k ≥ 0. We will extend it also in the case k < 0 by setting
(−n
k

)
= 0, if

k > −n, and
(−n
k

)
=
( −n
−n−k

)
otherwise. Here again (8.1) can be applied because of −n− k ≥ 0.
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Another particularly typical example are the Stirling numbers of the first and second kind. Knuth [26] has

repeatedly emphasized their importance and provided insightful historical comments on their reciprocity. This

‘beautiful and easily remembered law of duality’ can be expressed in different (equivalent) ways, such as

s2(n, k) = c(−k,−n) (8.2)

or s2(n, k) = (−1)n−ks1(−k,−n) (8.3)

‘implying that there really is only one “kind” of Stirling number’ [ibid. p. 412]. In [25] Knuth has started with

generalizing these relationships to coefficient families belonging to arbitrary pairs of inverse functions. (See also

the enlightening hint from I. Gessel that Knuth mentioned in this context.)

The first aim of this section is to find a polynomial analogue of this reciprocity, that is, a multivariable identity

that turns into (8.2) or (8.3) through unification. From this point of view the resulting numerical identities might

appear, so to speak, rather as a shadow of the rich intrinsic structure that is preserved in the corresponding

original polynomial equations.

It is clear that s2(n, k) is to be understood as Bn,k ◦ 1. As for the signless Stirling numbers of the first kind

(8.2), we know the two options c(n, k) = Zn,k ◦1 (cf. Section 5.3) and c(n, k) = Cn,k ◦1 (by Proposition 5.9 (i)).

The former must be discarded for compelling reasons the reader will find discussed in [44, Remark 6.3]. According

to Theorem 5.4, the latter amounts to Cn,k ◦ 1 = An,k((−1)0, . . . , (−1)n−k) = (−1)n−ks1(n, k), that is, the

resulting situation is the same as in (8.3). In summary, we therefore recognize the following identity as the best

suitable candidate for the desired polynomial version of (8.3):

Bn,k = (−1)n−kA−k,−n. (8.4)

Looking at (8.4) we face a problem that needs to be solved: extending the index domain to the integers. As

far as (8.3) is concerned, Gould [17] [26, p. 417] was possibly the first to observe that the domain of Stirling

numbers can be extended to negative values of n by using the fact that s1(n, n − k) and s2(n, n − k) are

polynomials in n of degree 2k. As a consequence, these polynomials can also be defined for arbitrary complex

(and a fortiori negative integer) values. Details of Gould’s method are described in [41, Section 14.1], where

also a proof of (8.3) is given with the help of the Schlömilch-Schläfli formula for the signed Stirling numbers of

the first kind.

Remark 8.2. One quickly sees that Gould’s trick obviously does not work when transferred to the indices of

the polynomial families in question. Alternatively, however, the following identity may be used for the same

purpose:

Bn,n−k =

k∑
j=0

(
n

k + j

)
Xn−k−j

1 B̃k+j,j . (8.5)

(8.5) can easily be derived from Equation [3l] in [11, p. 136] (cf. also [44, Corollary 4.5]) with a few calculations

and index shifts. Based on this identity, one can obtain (8.4) as a consequence of Theorem 2.1 (= Theorem 6.1

in [44]), and also vice versa, it can be shown that Theorem 2.1 follows from (8.4). The proofs are omitted here

as we are going to take a quite different path.

To enlarge the domain of indices, we propose an easy and more straightforward procedure, which is based on

the results obtained in Section 3. First, as customary, we set the value of a void sum to zero. If n is negative, we

therefore have according to (3.9) Φn(f) = 0 and, in particular, P̂n,k = Bn,k = 0. Next, let us have a look at the

Corollaries 3.3 and 3.2. In both identities, the partial Bell polynomials Bn,k and their orthogonal companions

An,k are expressed by certain instances of
(
n
k

)
P̂n−k,k and of

(
n−1
k−1

)
P̂n−k,n, respectively. We now have nothing

else to do but redefine Bn,k and An,k by the right-hand sides of these identities under the assumption n, k ∈ Z.

That’s all!

Given any integer n, it is easy to check that Bn,k = 0 if and only if k > n or n, k have unequal signs; the

same holds for An,k. The original Stirling polynomials are restricted to indices n = k = 0 and 1 ≤ k ≤ n, that

is, they are equal to zero for all other values of n, k. After their redefinition the extended domain additionally
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includes k ≤ n ≤ −1. For example, instead of B−3,−5 = 0 (old value), we now get the new value

B−3,−5 =

(
−3

−3 + 5

)
P̂2,−5(X1

1 ,
X2

2 ,
X3

3 ) = 45X−7
1 X2

2 − 10X−6
1 10X3,

which is not new at all, since it is equal to (−1)−3+5A5,3 — apparently an instance of (8.4). The following

matrix (Bn,k) with −4 ≤ n, k ≤ 4 shows, in a neighborhood of (0, 0), the family of Stirling polynomials united

by their fundamental reciprocity law:



1
X4

1
0 0 0 0 0 0 0 0

6X2

X5
1

1
X3

1
0 0 0 0 0 0 0

15X2
2

X6
1
− 4X3

X5
1

3X2

X4
1

1
X2

1
0 0 0 0 0 0

15X3
2

X7
1
− 10X3X2

X6
1

+ X4

X5
1

3X2
2

X5
1
− X3

X4
1

X2

X3
1

1
X1

0 0 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 0 0 X1 0 0 0
0 0 0 0 0 X2 X2

1 0 0
0 0 0 0 0 X3 3X1X2 X3

1 0
0 0 0 0 0 X4 3X2

2 + 4X1X3 6X2
1X2 X4

1


Let us now turn to the proof of (8.4).

Proof. If n, k have different signs, then (8.4) holds because of Bn,k = 0 and A−k,−n = 0. For n = k = 0 both

sides of (8.4) are equal to 1. Suppose now that n, k are either both positive or both negative integers. In the

case k > n we then have P̂n−k,±k(· · · ) = 0 because of n− k < 0 and therefore Bn,k = 0 = A−k,−n (according to

the redefinition by the right-hand side expressions in Corollary 3.2 and Corollary 3.3, respectively). Thus the

two cases 1 ≤ k ≤ n and k ≤ n ≤ −1 remain. Assuming the latter we obtain n− k ≥ 0, and hence

Bn,k =

(
n

n− k

)
P̂n−k,k(X1

1 ,
X2

2 , . . .) (Corollary 3.3, Remark 8.1)

= (−1)n−k
(
−k − 1

n− k

)
P̂n−k,k(X1

1 ,
X2

2 , . . .) ((8.1))

= (−1)n−k
(
−k − 1

−n− 1

)
P̂n−k,−k(R̂0(X1

1 ), R̂1(X1

1 ,
X2

2 ), . . .) (Corollary 4.1 (ii))

= (−1)n−kA−k,−n. (Corollary 3.2)

The case 1 ≤ k ≤ n can be done in practically the same way and may be left to the reader.

Of course, (8.3) immediately follows from (8.4) through unification. On the other hand, it is easy to generalize

(8.4) to a reciprocity theorem for B-representable polynomials.

Theorem 8.1 (General Reciprocity Law). Let (Qn,k) be any regular B-representable family of polynomials.

Then for all n, k ∈ Z
Q⊥n,k = (−1)n−kQ−k,−n.

Proof. The above redefinitions of Bn,k and An,k can be regarded as applying also to Qn,k = Bn,k ◦ Q],1 and

Q⊥n,k = An,k ◦Q],1, respectively. Thus (8.4) immediately yields

Q⊥n,k = An,k ◦Q],1 = (−1)n−kB−k,−n ◦Q],1 = (−1)n−kQ−k,−n.

In Section 5 we examined a handful of regular polynomial families, all of which obey this law of reciprocity:

Zn,k (cycle indicators), Wn,k (forest polynomials), Ln,k (signed Lah polynomials, and unsigned: L+
n,k) as well

as Cn,k (Comtet’s polynomials). Since L⊥n,k = Ln,k, there is a case of self-reciprocity: Ln,k = (−1)n−kL−k,−n.

Looking back for a moment at the proof of (8.4) and at the statements of Corollaries 3.2 and 3.3, it quickly

becomes clear that P̂n,k is the real hero of the story. In the remainder of this section, we will deepen this

impression and deal with some other interesting reciprocity properties of the potential polynomials.
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Proposition 8.1. Let n, k be any integers with k ≤ n 6= 0. Then

P̂n−k,k(X1

1 , . . . ,
Xn−k+1

n−k+1 ) =
k

n
· P̂n−k,−n(

A1,1

1 , . . . ,
An−k+1,1

n−k+1 ).

Proof. Using the redefinition of the Stirling polynomials via Corollaries 3.3 and 3.2 we have

P̂n−k,k(X1

1 , . . . ,
Xn−k+1

n−k+1 ) =

(
n

k

)−1

·Bn,k

=
k!

n!
(n− k)!An,k(A1,1, . . . , An−k+1,1) ((2.12))

=
k

n

(
n− 1

k − 1

)−1

·An,k(A1,1, . . . , An−k+1,1)

=
k

n
· P̂n−k,n(R̂0(

A1,1

1 ), . . . , R̂n−1(
A1,1

1 , . . . ,
An,1

n ))

=
k

n
· P̂n−k,−n(

A1,1

1 , . . . ,
An−k+1,1

n−k+1 ). (Corollary 4.1 (ii))

Remark 8.3. Proposition 8.1 may be regarded as a reformulation of a reciprocity law known as the Schur-

Jabotinsky theorem (see Jabotinsky [20] and Gessel [16]). To see this we have to temporarily allow (formal)

Laurent series over K as functions. Suppose ϕ(x) =
∑
n≥1 ϕn

xn

n! ∈ G and k ∈ Z; then the kth powers of ϕ and

ϕ can be expanded into such series: ϕ(x)k =
∑
n an,kx

n and ϕ(x)k =
∑
n bn,kx

n. Since an,k = bn,k = 0 for

n < k, we assume n ≥ k. In the case k ≥ 0 the Taylor coefficient n!an,k = n![xn]ϕ(x)k is equal to k!Bϕn,k(0),

whence by Corollary 3.3

an,k =
1

(n− k)!
P̂n−k,k(ϕ1

1 , . . . ,
ϕn−k+1

n−k+1 ).

This formula represents an,k also for arbitrary n, k ∈ Z with n ≥ k and can thus be applied to ϕk:

b−k,−n =
1

(−k + n)!
P̂−k+n,−n(ϕ1

1 , . . . ,
ϕn−k+1

n−k+1 ).

Proposition 8.1 now yields the reciprocity law in question in the form given by Gessel [ibid. Eq. (2.1.11)]:

an,k =
k

n
b−k,−n (n 6= 0).

In the proofs of (8.4) and of Proposition 8.1, statement (ii) of Corollary 4.1 has been used. It seems to be the

simplest reciprocity law for the potential polynomials and obviously is also true for the variant without hat:

Pn,−k = Pn,k(R1, . . . , Rn). (8.6)

Comtet [11] has established a formula that expresses Pn,−k as a linear combination of the Pn,1, . . . , Pn,n (see

Theorem C, ibid. p. 142). It is stated in the following proposition and given a new and straightforward proof.

Proposition 8.2. Let n, k be integers with n ≥ 0 and (−k) /∈ {0, 1, . . . , n}. Then

Pn,−k = k

(
n+ k

n

) n∑
j=0

(−1)j
1

k + j

(
n

j

)
Pn,j .

Proof. By (3.10) we have

Pn,−k =

n∑
j=0

(−k)jBn,j =

n∑
j=0

j!

(
−k
j

)
Bn,j .

Replacing the binomial term by its reciprocal according to (8.1) and applying Bertrand’s formula (3.13) to Bn,j

thus yields

Pn,−k =

n∑
j=0

j!(−1)j
(
k − 1 + j

j

)
· 1

j!

n∑
r=0

(−1)j−r
(
j

r

)
Pn,r

=

n∑
r=0

n∑
j=0

(
j

r

)(
k − 1 + j

j

)
(−1)rPn,r. (*)
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Clearly we have
(
k−1+j
j

)
=
(
k−1+j
k−1

)
= k

k+j

(
k+j
k

)
and by an easy inductive argument

n∑
j=0

1

k + j

(
k + j

k

)(
j

r

)
=

1

k + r

(
n+ k

k

)(
n

r

)
.

Substituting this into (*) gives the assertion.

Comtet proved a slightly stronger version of Proposition 8.2, where k can be a complex number. The

following theorem shows how the statement may be extended in another direction.

Theorem 8.2. Let m,n, k ∈ Z with m ≥ n ≥ 0 and (−k) /∈ {0, 1, . . . ,m}. Then

Pn,−k = k

(
m+ k

m

) m∑
j=1

(−1)j
1

k + j

(
m

j

)
Pn,j .

Proof. We assume n to be a fixed non-negative integer and proceed by induction on m. The basis step m = n

is already done by Proposition 8.2. Let Sm denote the right-hand side of the induction hypothesis. For the

inductive step it is then enough to show that the difference ∆ := Sm+1 − Sm is equal to zero. Applying some

elementary properties of the binomial numbers leads to

∆ =

(
m+ k

k − 1

)m+1∑
j=0

(−1)j
(
m

j

)(
k

k + j
Pn,j −

k +m+ 1

k + j + 1
Pn,j+1

)
. (*)

We use the abbreviations

aj := (−1)j
(
m

j

)
k

k + j
and bj := (−1)j

(
m

j

)
k +m+ 1

k + j + 1

and rewrite (*) as

∆ =

(
m+ k

k − 1

)(
a0Pn,0 +

m−1∑
j=0

(aj+1 − bj)Pn,j+1 − bmPn,m+1

)
,

where a0Pn,0 = δn0 and −bmPn,m+1 = (−1)m+1Pn,m+1. A little calculation gives

aj+1 − bj = (−1)j+1

(
m+ 1

j + 1

)
.

In summary it results(
m+ k

k − 1

)−1

∆ = δn0 +

m−1∑
j=0

(−1)j+1

(
m+ 1

j + 1

)
Pn,j+1 + (−1)m+1Pn,m+1

= δn0 +

m+1∑
j=1

(−1)j
(
m+ 1

j

)
Pn,j

=

m+1∑
j=0

(−1)j
(
m+ 1

j

)
Pn,j .

By means of the Bertrand formula (3.13) one readily verifies that the last sum is equal to (−1)m+1(m+1)!Bn,m+1,

which in fact vanishes for m ≥ n.

Comtet’s formula for Pn,−k in Proposition 8.2 has a striking resemblance to a well-known binomial trans-

formation attributed to Melzak [33, 34]. Let p(x) be any polynomial of degree ≤ n. If we now simply write

p(x+ k) instead of Pn,−k and p(x− j) instead of Pn,j , the result is Melzak’s formula

p(x+ k) = k

(
n+ k

n

) n∑
j=0

(−1)j
1

k + j

(
n

j

)
p(x− j). (8.7)

Recently, several authors have presented new studies on this remarkable identity. Quaintance and Gould devoted

to the subject Chapter 7 of their monograph [41]. Boyadzhiev [7] and Abel [2] provided extensions (concerning
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the degree of p(x)) and new proofs. The former author even traced (8.7) back up to Nielsen’s treatise on

Bernoulli numbers (1923).

We finally will derive an extended version of (8.7) from Theorem 8.2 thus showing that the successful

replacement of Pn,−k by p(x+ k) in Comtet’s formula is not an accident. Rather, it turns out in this way that

Theorem 8.2 is the more comprehensive statement.

Theorem 8.3. Let m,n be any integers with m ≥ n ≥ 0 and let fn(x) ∈ C[x] be any polynomial of degree n.

Then for all k ∈ Z \ {−m, . . . ,−1, 0}

fn(x+ k) = k

(
m+ k

m

) m∑
j=0

(−1)j
1

k + j

(
m

j

)
fn(x− j).

Proof. We apply ◦R] on both sides of the equation of Theorem 8.2. According to the basic reciprocity law (8.6)

this gives

Pr,k = k

(
m+ k

m

) m∑
j=0

(−1)j
1

k + j

(
m

j

)
Pr,−j (8.8)

for every non-negative r ≤ n. Unification then yields

kr = k

(
m+ k

m

) m∑
j=0

(−1)j
1

k + j

(
m

j

)
(−j)r. (8.9)

By assumption we have fn(x) = a0 + a1x+ · · ·+ anx
n, an 6= 0, and hence from (8.9)

fn(k) = k

(
m+ k

m

) m∑
j=0

(−1)j
1

k + j

(
m

j

)
fn(−j). (8.10)

Setting gn,k(x) := fn(x+ k)− fn(k) we obtain gn,k(0) = 0 and

gn,k(x) =

n∑
r=1

ar((x+ k)r − kr) =

n∑
j=1

( n∑
r=j

(
r

j

)
ark

r−j

︸ ︷︷ ︸
(∗)

)
xj . (8.11)

Abbreviate the inner sum (∗) to bj(k).

We will now show that gn,k satisfies the Melzak formula. We prove that there are constants c1, . . . , cn ∈ C
such that for all n ≥ 1

Pn,k(c1x, . . . , cnx) = gn,k(x). (8.12)

According to (3.12) and observing the homogeneity of the partial Bell polynomials, the left-hand side of (8.12)

can be written as

Pn,k(c1x, . . . , cnx) =

n∑
j=1

j!

(
k

j

)
Bn,j(c1, . . . , cn−j+1)xj (for n ≥ 1). (8.13)

Equating the coefficients of xj in (8.11) and (8.13) then yields the following equation system for the constants

c1, . . . , cn:

Bn,j(c1, . . . , cn−j+1) =
bj(k)

j!
(
k
j

) (1 ≤ j ≤ n). (8.14)

Recall that according to Remark 5.1 the system (8.14) is solvable if and only if c1 ∈ C exists such that

cn1 =
bn(k)

n!

(
k

n

)−1

. (8.15)

Therefore, we can choose c1 to be any of the nth roots of (8.15). Then the remaining constants c2, . . . , cn are

uniquely determined (each of them depending on k, for example, cn = b1(k)/k). We now replace in (8.8) (taking

r = n) each Xj by cjx, 1 ≤ j ≤ n, thus obtaining

gn,k(x) = k

(
m+ k

m

) m∑
j=0

(−1)j
1

k + j

(
m

j

)
gn,−j(x). (8.16)

Since fn(x+ k) = fn(k) + gn,k(x), the assertion follows from (8.10) and (8.16).
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