
numerative
ombinatorics

pp
lic
at
io
ns

A Enumerative Combinatorics and Applications
ecajournal.haifa.ac.il

ECA 1:1 (2021) Article #S2R4
https://doi.org/10.54550/ECA2021V1S1R4

Retakh’s Motzkin Paths and Some Combinatorial Comments

Helmut Prodinger

Department of Mathematical Sciences, Stellenbosch University, 7602 Stellenbosch, South Africa, and
Department of Mathematics and Mathematical Statistics, Umea University, 907 36 Umea, Sweden

Email: hproding@sun.ac.za

Received: September 8, 2020 Accepted: November 17, 2020, Published: November 18, 2020
The authors: Released under the CC BY-ND license (International 4.0)

Abstract: Dyck paths where peaks are only allowed on level 1 and on even-indexed levels, were introduced

by Retakh and analysed by Zeilberger, with assistance from Ekhad. We add some combinatorial comments to

the enumeration, which involves Motzkin numbers, in particular, about the average height of such objects.
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1. Introduction

Retakh [3] introduced the following restricted class of Dyck paths: Peaks are only allowed on level 1 and on

even-numbered levels. Here is an example, and the corresponding plane tree using the standard bijection.
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level 4

level 6

•
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Ekhad and Zeilberger [3] proved recently that these restricted paths are enumerated by Motzkin numbers. Recall

that the generating function of the Motzkin numbers M(z) according to length satisfies M = 1 + zM + z2M2

and thus

M(z) =
1− z −

√
1− 2z − 3z2

2z2
.
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In this note, we present a few additional observations, also including the height of the paths (or the associated

plane trees). First, we are going to confirm the connection to Motzkin paths. Since the level 1 is somewhat

special, we only consider trees as symbolized by the triangle. We will use two generating functions, to deal with

the odd/even situation. We have

F =
zG

1−G
and G =

z

1− F
.

This is not too difficult to see, since the family F of trees as symbolized by the triangle does not contain a

single node, so F = zG + zG2 + · · · . However, the next generation G can contain a single node, and thus

G = z + zF + zF 2 + · · · .
Solving this (best by a computer) we find F (z) = z2M(z) and the total generating function (allowing

sequences of single nodes between copies of F ) is

z

1− z
∑
r≥0

( F

1− z

)r
= zM(z),

as predicted. Recall that the number of nodes in trees is always one more than the half-length of the corre-

sponding Dyck path.

We will compute the average height of such restricted paths, using singularity analysis of generating functions,

as in [4, 5]. Whether we define the height in terms of the maximal chain of edges resp. nodes only makes a

difference of one, and we will only compute the average height according to the leading term of order
√
n. For

readers who wish to see how more terms could be computed, at least in principle, we cite [10].

The average height of planted plane trees (and subclasses of them) has been of central interest to combina-

torialists and theoretical computer scientists alike since the seminal paper [2]. The number of leaves (endnodes)

is also one of the key parameters since Narayana [9]. We investigate it in the last section of this paper to see

how the restrictions according to Retakh influence this parameter.

2. The height

Now we will use the substitution z = v
1+v+v2 , which occurred for the first time in [11], but has been used more

recently in different models where Motzkin numbers are involved [7, 8, 12]. Motzkin numbers appear in [13] as

sequence A001006. For example, the generating function M(z) of Motzkin numbers has the very simple form

M(z) = 1 + v + v2 using this auxiliary variable. We define

Gk+1 =
z

1− zGk

1−Gk

, with G1 = z.

There is a simple formula, viz.

Gk =
v

1 + v

1− v2k

1− v2k+1
.

This is easy to prove by induction, which we will do for the convenience of the reader. The start is

G1 =
v

1 + v

1− v2

1− v3
=

v

1 + v

1 + v

1 + v + v2
=

v

1 + v + v2
= z.

Then

Gk+1 =
z

1− zGk

1−Gk

=
z(1−Gk)

1− (1 + z)Gk
=

v

1 + v + v2
1− v

1+v
1−v2k

1−v2k+1

1− (1+v)2

1+v+v2
v

1+v
1−v2k

1−v2k+1

=
v

1 + v

1 + v − v 1−v2k

1−v2k+1

1 + v + v2 − v(1 + v) 1−v2k

1−v2k+1

=
v

1 + v

(1 + v)(1− v2k+1)− v(1− v2k)

(1 + v + v2)(1− v2k+1)− v(1 + v)(1− v2k)

=
v

1 + v

1− v2k+2

1− v2k+3
,
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as claimed. From this we also get

Fk =
zGk

1−Gk
=

v2

1 + v + v2
1− v2k

1− v2k+2
.

For k ≥ 1, Fk is the generating function of trees (like in the triangle) of height ≤ 2k. Note that the height is

currently counted in terms of nodes;

F1 =
z2

1− z
,

which describes a root with ` ≥ 1 leaves attached to the root.

Now we incorporate the irregular beginning of the tree and compute

z

1− z
∑
r≥0

( Fh

1− z

)r
=

z

1− z
1

1− Fh

1− z

= v
1− v2h+2

1− v2h+4
.

From here onwards it seems to be more natural to define the height of the whole tree in terms of the number of

edges, and then the quantity we just derived is the generating function of all trees with height ≤ 2h, for h ≥ 1.

Note that the limit h→∞ gives us simply v = zM(z), which is consistent. There is also a contribution of trees

of height ≤ 1, namely z
1−z = v

1+v2 , but this term is, when we compute the average height, irrelevant and only

contributes to the error term, as we only compute the leading term, which is of order
√
n.

So, apart from normalization, we are led to investigate∑
h≥1

2h

[
v

1− v2h+2

1− v2h+4
− v 1− v2h

1− v2h+2

]
= 2v(1− v−2)

∑
h≥1

h

[
v2h+4

1− v2h+4
− v2h+2

1− v2h+2

]

= 2v(1− v−2)
∑
h≥0

h
v2h+4

1− v2h+4
− 2v(1− v−2)

∑
h≥0

(h+ 1)
v2h+4

1− v2h+4

= −2v +
2(1− v2)

v

∑
h≥1

v2h

1− v2h
.

Note that we could get explicit coefficients from here, using trinomial coefficients,
(
n,3
k

)
= [vk](1 + v + v2)n

(notation from [1]). To show the reader how this works, we compute

[zn+1]
1− v2

v

∑
h≥1

v2h

1− v2h
=

1

2πi

∮
dz

zn+2

1− v2

v

∑
h≥1

v2h

1− v2h

=
1

2πi

∮
dv(1− v2)2

(1 + v + v2)n

vn+3

∑
h≥1

∑
h,k≥1

v2hk

= [vn+2](1− 2v2 + v4)
∑
h≥1

d(h)v2h(1 + v + v2)n

=
∑
h≥1

d(h)

[(
n, 3

n+ 2− 2h

)
− 2

(
n, 3

n− 2h

)
+

(
n, 3

n− 2− 2h

)]
.

Note that d(h) is the number of divisors of h. We will, however, not use this explicit form. The expression as

derived before,

−2v +
2(1− v2)

v

∑
h≥1

v2h

1− v2h
,

has to be expanded around v = 1, which is a standard application of the Mellin transform. Details are worked

out in [6], for example: ∑
h≥1

v2h

1− v2h
=
∑
k≥1

d(k)v2k ∼ − log(1− v2)

1− v2
∼ − log(1− v)

2(1− v)
.

Note again that d(k) is the number of divisors of k. Consequently

−2v +
2(1− v2)

v

∑
h≥1

v2h

1− v2h
∼ −2 log(1− v).
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We have 1− v ∼
√

3
√

1− 3z, and z = 1
3 is the relevant singularity when discussing Motzkin numbers. We can

continue

−2v +
2(1− v2)

v

∑
h≥1

v2h

1− v2h
∼ − log(1− 3z).

The coefficient of zn in this is 3n

n . This has to be divided by

[zn]zM(z) = [zn−1]M(z) ∼ 3n+
1
2

2
√
πn3/2

,

with the final result for the average height of restricted Dyck paths (à la Retakh):

∼ 2

√
πn

3
.

Recall [11] that the average height of Motzkin paths of length n is asymptotic to√
πn

3
.

3. The number of leaves

We can use a second variable, u, to count the number of leaves. Then we have

F (z, u) =
zG(z, u)

1−G(z, u)
and G(z, u) = zu+

zF (z, u)

1− F (z, u)
,

which leads to

F (z, u) =
1− zu− z2 + z2u−

√
1− 2zu− 2z2 − 2z2u+ z2u2 − 2z3u+ 2z3u2 + z4 − 2z4u+ z4u2

2(1− zu+ z)
.

Bringing the irregular beginning also into the game leads to

z

1− zu
∑
r≥0

( F

1− zu

)r
+ zu− z.

This is an ugly expression that we do not display here. However, we can compute the average number of leaves,

by differentiation w.r.t. u, followed by setting u = 1:

R :=
v (1 + v) (1− v + 2v2 − v3)

(1− v) (1 + v + v2)
.

The coefficient of zn in this can be expressed in terms of trinomial coefficients, if needed. However, we only

compute an asymptotic formula, to keep this section short. Expanding around v = 1, we find

R ∼ 2

3

1

1− v
∼ 2

3

1√
3
√

1− 3z
,

and thus

[zn]R ∼ 2

3

1√
3

3n
1√
πn

.

We divide this again by
3n+

1
2

2
√
πn3/2

with the result
4

9
n,

which is the asymptotic number of leaves in a Retakh tree of size n. Recall that for unrestricted planar trees,

the result is n
2 , which is a folklore result using Narayana numbers. So the constant in the restricted case, 4

9 , is

a bit smaller than 1
2 .

With some effort, more precise approximations could be obtained, as well as the variance. This might be a

good project for a student.
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4. Conclusion

I am always happy to see a new occurrence of Motzkin numbers and that the methods that I learnt more than

40 years ago from Knuth, Flajolet, and others still work.
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