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Abstract: In this article, we provide combinatorial proofs of some prior identities due to Sury and McLaughlin.

We show that the solution of a general linear recurrence with constant coefficients can be interpreted as a

determinant of a matrix. Moreover, we derive determinantal expressions for the Fibonacci and Lucas numbers.

We prove Binet’s formula for Fibonacci and Lucas numbers in a purely combinatorial way and, in the course of

doing so, find a determinantal identity which we believe to be new.
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1. Introduction

This paper involves finding combinatorial proofs of some prior identities due to Sury and McLaughlin and

providing a unified treatment of determinantal formulas of general linear recurrence with constant coefficients. It

should be noted that combinatorial proofs are often preferred by enumerative combinatorists to more analytical

ones as they frequently yield more insight into “why” a particular result is true rather than just “how” it is

true [1, 5, 8, 12].

It is not always possible to find a closed form expression for an arbitrary term of a sequence defined by

a recurrence relation with given initial conditions. Many well-known integer sequences, however, such as the

Fibonacci and Lucas numbers and their generalizations and relatives, do admit to such a closed form. Identities

concerning Fibonacci numbers and their relatives frequently can be afforded a combinatorial explanation in

terms of tilings of an n-board [4]. Moreover, there are several known proofs of Binet’s formula for the Fibonacci

and Lucas numbers [2,3], some of which are combinatorial. In particular, in [3], a probabilistic proof employing

random tilings of an infinite board with squares and dominoes is given for Binet’s formula and its generalization

to arbitrary initial conditions. See also the related paper [10] where infinite tilings are used to explain some

reciprocal Fibonacci number relations. Here, we demonstrate that the solution of a general linear recurrence

with constant coefficients can be expressed as a determinant in a purely combinatorial way and particularizing

our results yields the Binet formulas for the Fibonacci and Lucas numbers. Our combinatorial approach also

implies some identities due to Sury and McLaughlin.

Let us briefly summarize the content of this paper. In Section 2, we give a bijective proof of an identity

regarding elementary and homogeneous symmetric polynomials and, as a corollary, one gets bijective proofs of

some identities of Sury and McLaughlin. In Section 3, we prove that the solution of a general linear recurrence

with constant coefficients can be interpreted as a determinant of some matrix. We prove Binet’s formula for

Fibonacci numbers in a combinatorial way. In Section 4, we derive a new combinatorial identity and, as a

corollary, we get Binet’s formula for the Lucas numbers.
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2. Combinatorial Explanation of Sury and McLaughlin
Identities

In this section, we give combinatorial proofs of some identities due to Sury and McLaughlin. Before starting,

let us review some necessary background. For further details, we refer the reader to [6,9]. Let A = (aij) denote

an n × n matrix. We associate with A a weighted digraph D(A) whose vertex set is [n] = {1, 2, . . . , n} such

that, for each ordered pair (i, j), there is an edge directed from i to j with weight aij . A linear subdigraph

(LSD) L of D(A) is a spanning collection of pairwise vertex-disjoint cycles. A loop around a single vertex is also

considered to be a cycle. The weight of a linear subdigraph L, written as w(L), is the product of the weights

of all its cycles. The weight of a cycle is the product of the weights of all its edges. The length of a cycle is the

number of edges present in that cycle. The number of cycles contained in L is denoted by c(L). Now the cycle-

decomposition of permutations yields the following description of det(A), namely, det(A) =
∑
L

(−1)n−c(L)w(L),

where the summation runs over all linear subdigraphs L of D(A).

A partition λ of a positive integer m is a weakly decreasing finite sequence (λ1, . . . , λr) of non-negative

integers such that
r∑
i=1

λi = m. For n variables x1, . . . , xn, the elementary symmetric polynomial ek(x1, . . . , xn)

(in short, ek) of degree k ≥ 0 is defined as

ek(x1, . . . , xn) :=
∑

1≤j1<j2<···<jk≤n

xj1xj2 · · ·xjk , with e0 = 1.

The n-variable complete homogeneous symmetric polynomial hk(x1, . . . , xn) (in short, hk) of degree k ≥ 0 is

the sum of all monomials of total degree k. Formally,

hk(x1, . . . , xn) :=
∑

1≤j1≤j2≤···≤jk≤n

xj1xj2 · · ·xjk , with h0 = 1.

Let λ = (λ1, . . . , λ`) be a partition and δ = (` − 1, ` − 2, . . . , 1, 0), where λ1 ≥ · · · ≥ λ` and each λj is a

non-negative integer. Then the function

aλ+δ(x1, . . . , x`) = det


xλ1+`−1
1 xλ1+`−1

2 · · · xλ1+`−1
`

xλ2+`−2
1 xλ2+`−2

2 · · · xλ2+`−2
`

...
...

. . .
...

xλ`
1 xλ`

2 · · · xλ`

`


is an alternating polynomial. The Schur polynomial, denoted by sλ(x1, . . . , x`), is defined as the ratio

aλ+δ(x1, . . . , x`)

aδ(x1, . . . , x`)
.

Let e1, . . . , em be the elementary symmetric polynomials in the variables x1, . . . , xn.We consider the following

m×m matrix

E(e1, . . . , em) =



e1 e2 e3 · · · em−1 em
1 e1 e2 · · · em−2 em−1
0 1 e1 · · · em−3 em−2
...

...
...

. . .
...

...
0 0 0 · · · e1 e2
0 0 0 · · · 1 e1


. (1)

Theorem 2.1 (Theorem 4.5.1 [9]). Let e1, . . . , em be the elementary symmetric polynomials in the variables

x1, . . . , xn. Let E(e1, . . . , em) be the m×m matrix defined as (1). Then det(E(e1, . . . , em)) = hm(x1, . . . , xn).

Proof. We prove the theorem in the case m = 5, n = 3 (similarly, one can show the general case). Regard

W (x1, x2, x3) = {x1, x2, x3} as the set of letters. The free monoid W (x1, x2, x3)∗ is the set of all finite sequences

(including the empty sequence, denoted by 1) of elements of W (x1, x2, x3), usually called linear words, with

the operation of concatenation. Construct an algebra from W (x1, x2, x3)∗ by taking formal sums of elements of
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Figure 1: The numbers appearing along the edges in the above diagram are the weights of the corresponding
edges. The left-hand side of the figure contains some terms of the PIE expression.

W (x1, x2, x3) with coefficient in Z and extending the multiplication by the usual distributive law. For example,

in this algebra, (x1 + x2 + x3)(x1 + x2 + x3) = x1x1 + x1x2 + x1x3 + x2x1 + x2x2 + x2x3 + x3x1 + x3x2 + x3x3

and (1 + x3)x2 = x2 + x3x2. Note that (x1 + x2 + x3)(x1 + x2 + x3) is usually written as (x1 + x2 + x3)2, etc.

Let WL be the sum of all linear words in W (x1, x2, x3)∗ of length 5, where the letter x2 does not occur just

before the letter x1 and the letter x3 does not occur just before the letters x1 and x2, i.e., x2x1, x3x1 and x3x2

do not occur in the words as a consecutive pair. So,

WL = x1x1x1x1x1 + x1x1x1x1x2 + · · ·+ x2x2x2x2x2 + x1x1x1x1x3 + · · ·+ x3x3x3x3x3.

Now we compute WL by using the Principle of Inclusion and Exclusion (PIE) rule.

The sum of all possible words of length 5 is (x1 + x2 + x3)5. This can be written as

(x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3).

The sum of all possible words of length 5, where there is an occurrence of x2x1 at least as the first two letters,

is x2x1(x1 +x2 +x3)3. Similarly, the sum of all possible words of length 5, where there is an occurrence of x3x2

and x3x1 at least as the first two letters, is given by x3x2(x1 + x2 + x3)3 and x3x1(x1 + x2 + x3)3, respectively.

The sum of all possible words of length 5, where there is an occurrence of x3x2x1 at least as the first three

letters, is x3x2x1(x1 + x2 + x3)2. Proceeding this way, and using the PIE rule, we get

WL =(x1 + x2 + x3)5 − x2x1(x1 + x2 + x3)3 − x3x1(x1 + x2 + x3)3 − x3x2(x1 + x2 + x3)3−

(x1 + x2 + x3)x2x1(x1 + x2 + x3)2 − (x1 + x2 + x3)x3x1(x1 + x2 + x3)2−

(x1 + x2 + x3)x3x2(x1 + x2 + x3)2 + · · ·+ x3x2x1(x1 + x2 + x3)2+

(x1 + x2 + x3)x3x2x1(x1 + x2 + x3) + (x1 + x2 + x3)2x3x2x1.

Now the terms appearing in the above PIE expression of WL are (x1+x2+x3)5, x2x1(x1+x2+x3)3, x3x1(x1+

x2+x3)3, x3x2(x1+x2+x3)3, . . . , x3x2x1(x1+x2+x3)2, (x1+x2+x3)x3x2x1(x1+x2+x3), (x1+x2+x3)2x3x2x1,

and the signs of the corresponding terms are +,−,−,−, . . . ,+,+,+, respectively. We define the weight of

a word w in W (x1, x2, x3)∗ as the homomorphic image f(w), where f : W (x1, x2, x3)∗ → Z[x1, x2, x3] is

a ring homomorphism, with f(x1) = x1, f(x2) = x2 and f(x3) = x3. Figure 1 illustrates the sign- and
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weight-preserving bijection between the terms appearing in the PIE expression and the linear subdigraphs of

D(E(e1, . . . , em)). What is really meant by this is that the weight of the linear subdigraph on the right side of

Figure 1 is the image of the corresponding word on the left, under the ring homomorphism f : W (x1, x2, x3)∗ →
Z[x1, x2, x3].

Using the same combinatorial model as in the proof above, one can rederive some interesting identities of Sury

and McLaughlin [7, 11]. Note that the original proofs of those identities involve, to some extent, cumbersome

algebraic manipulations, whereas our approach is purely combinatorial.

Corollary 2.1 (Theorem 1 [7]). Let x1, . . . , xk be independent variables. Let e1, . . . , ek denote the elementary

symmetric polynomials in the xi of degrees 1, . . . , k respectively. Then in the polynomial ring K[x1, . . . , xk],

where K is a field of characteristic 0, one has the following identity for each n ≥ 1:∑
r1+r2+···+rk=n,ri≥0

xr11 x
r2
2 · · ·x

rk
k

=
∑

2i2+3i3+···+kik≤n

c(i2, . . . , ik, n)en−2i2−3i3−···−kik1 × (−e2)i2 × ei33 × · · · × ((−1)k−1ek)ik ,

where

c(i2, . . . , ik, n) =
(n− i2 − 2i3 − · · · − (k − 1)ik)!

i2! · · · ik!(n− 2i2 − 3i3 − · · · − kik))!
.

Proof. We consider the n× n matrix

E(e1, . . . , ek, 0, . . . , 0) =



e1 e2 e3 · · · ek 0 · · · 0 0
1 e1 e2 · · · ek−1 ek · · · 0 0
0 1 e1 · · · ek−2 ek−1 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

0 0 0 · · · e1 e2 · · · en−k en−k+1

0 0 0 · · · 1 e1 · · · en−k−1 en−k
...

...
...

. . .
...

...
. . .

...
...

0 0 0 · · · 0 0 · · · e1 e2
0 0 0 · · · 0 0 · · · 1 e1


.

By Theorem 2.1, we get

det(E(e1, . . . , ek, 0, . . . , 0)) =
∑

r1+r2+···+rk=n,ri≥0

xr11 x
r2
2 · · ·x

rk
k . (2)

We know that

det(E(e1, . . . , ek, 0, . . . , 0)) =
∑
L

(−1)n−c(L)w(L), (3)

where the summation runs over all LSD L of the digraph D(E(e1, . . . , ek, 0, . . . , 0)). Clearly, each LSD in the

digraph D(E(e1, . . . , ek, 0, . . . , 0)) contains cycles of length at most k. Suppose L is an arbitrary LSD and

L contains it cycles of length t (t = 2, 3, . . . , k). Then L contains (n − 2i2 − 3i3 − · · · − kik) loops. Note

(−1)n−c(L) = (−1)i2+2i3+3i4+···+(k−1)ik . The weight of the LSD L is

en−2i2−3i3−···−kik1 × (e2)i2 × ei33 × · · · × (ek)ik ,

and

c(i2, . . . , ik, n) =
(n− i2 − 2i3 − · · · − (k − 1)ik)!

i2! · · · ik!(n− 2i2 − 3i3 − · · · − kik))!

is the number of L containing n − 2i2 − 3i3 − · · · − kik loops and it (t = 2, 3, . . . , k) cycles of length t. Upon

considering the weight and sign of each L in Equation (3), we get

det(E(e1, . . . , ek, 0, . . . , 0))

=
∑

2i2+3i3+···+kik≤n

c(i2, . . . , ik, n)en−2i2−3i3−···−kik1 × (−e2)i2 × ei33 × · · · × ((−1)k−1ek)ik ,

and hence the identity.

ECA 1:1 (2021) Article #S2R5 4
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Corollary 2.2 (Theorem 3 [7]). Let n be a positive integer and x, y, z be indeterminates. Then∑
2i+3j≤n

(−1)i
(
i+ j

j

)(
n− i− 2j

i+ j

)
(x+ y + z)n−2i−3j(xy + yz + zx)i(xyz)j

=
xy(xn+1 − yn+1)− xz(xn+1 − zn+1) + yz(yn+1 − zn+1)

(x− y)(x− z)(y − z)
.

Proof. Let λ = (n) denote the partition of n consisting of a single part. Then the right-hand side of this identity

is the Schur polynomial

sλ(x, y, z) =
aλ+δ(x, y, z)

aδ(x, y, z)
, where

aλ+δ(x, y, z) = det

 xn+2 yn+2 zn+2

x y z
1 1 1

 and aδ(x, y, z) = det

 x2 y2 z2

x y z
1 1 1

 .

So for the partition λ, we have that sλ(x, y, z) is the complete homogeneous polynomial of degree n in the

variables x, y, z. Thus, by Theorem 2.1,

hn(x, y, z) = det



e1 e2 e3 · · · 0 0
1 e1 e2 · · · 0 0
0 1 e1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · e1 e2
0 0 0 · · · 1 e1


=
∑
L

(−1)n−c(L)w(L),

where e1, e2, e3 are the elementary symmetric polynomials in the variables x, y, z and the order of the matrix is

n. Now applying the same argument used in the proof of Corollary 2.1, we get the desired identity.

Corollary 2.3. Let x, y be indeterminates. Then the following polynomial identity holds:∑
0≤i≤n/2

(−1)i
(
n− i
i

)
(x+ y)n−2i(xy)i = xn + xn−1y + · · ·+ xyn−1 + yn.

Proof. Clearly, the right-hand side of the above identity is the complete homogeneous polynomial hn(x, y) of

degree n. By Theorem 2.1,

det



x+ y xy 0 · · · 0 0
1 x+ y xy · · · 0 0
0 1 x+ y · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · x+ y xy
0 0 0 · · · 1 x+ y


= hn(x, y), (4)

where the matrix is of order n. Also, we have

det



x+ y xy 0 · · · 0 0
1 x+ y xy · · · 0 0
0 1 x+ y · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · x+ y xy
0 0 0 · · · 1 x+ y


=
∑
L

(−1)n−c(L)w(L),

where the summation runs over all linear subdigraphs L. Proceeding now as in the proof of Corollary 2.1 above,

one obtains the identity.
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3. Determinantal Interpretation of General Linear Re-
currences

In this section, we prove that the solution of a general linear recurrence with constant coefficients can be

expressed as the determinant of a suitable matrix.

Definition 3.1. Let c1, c2, . . . , cr be complex numbers. Let un be the sequence defined by the r-th order linear

recurrence

un = c1un−1 + c2un−2 + · · ·+ crun−r, n ≥ 1,

with initial conditions u0 = 1 and uj = 0 for j < 0.

There is a more or less a well-known combinatorial interpretation of general linear recurrences (see [4]). In

fact, un is the sum of weights of all tilings of a board of length n with tiles of length at most r, where for each

i (1 ≤ i ≤ r), the weight of each tile of length i is ci and the weight of a tiling is the product of the weights of

all its tiles. Now we consider the following n× n matrix

C =



c1 −c2 c3 · · · (−1)r+1cr 0 · · · 0 0
1 c1 −c2 · · · (−1)rcr−1 (−1)r+1cr · · · 0 0
0 1 c1 · · · (−1)r−1cr−2 (−1)rcr−1 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

0 0 0 · · · c1 −c2 · · · (−1)n−r+1cn−r (−1)n−r+2cn−r+1

0 0 0 · · · 1 c1 · · · (−1)n−rcn−r−1 (−1)n−r+1cn−r
...

...
...

. . .
...

...
. . .

...
...

0 0 0 · · · 0 0 · · · c1 −c2
0 0 0 · · · 0 0 · · · 1 c1


.

Theorem 3.1. Let un(n ≥ 1) be a general linear recurrence defined as (3.1). Then un = det(C).

Proof. To prove this result, we use the combinatorial interpretation of un (stated above) and the fact det(C) =∑
L

(−1)n−c(L)w(L), where the summation runs over all LSD L in D(C) (as in Section 2). In fact, we demonstrate

a sign- and weight-preserving bijection between tilings of the n-board and the linear subdigraphs of D(C). Let

τ be a tiling of the n-board and suppose τ contains tiles of length at most r. Assume for each fixed i ∈ [r]

that τ contains ti tiles τi1, . . . , τiti of length i. For fixed j ∈ [ti], suppose the tile τij occupies the positions

kij , (kij + 1), . . . , (kij + i−1), where kij ∈ [n− i+ 1]. (For example, the left side of Figure 2 contains two tiles of

lengths 2 and 3, which occupy the positions 1, 2, and 3, 4, 5, respectively.) For this tiling, we choose the LSD Lτ

containing ti cycles Ci1, . . . , Citi each of length i. Moreover, the cycle Cij , corresponding to the tile τij , contains

the vertices kij , (kij + 1), . . . , (kij + i− 1) and kij → (kij + i− 1)→ (kij + i− 2)→ · · · → (kij + 1)→ kij (here,

u→ v denotes an edge directed from u to v). Clearly, this is a bijection. See Figure 2 for an illustration.

1 5

432

c2 c3

1 2 3 4 5

c3
−c2

1
1

1

Figure 2: The bold line in each tile represents the length of the corresponding tile.

To complete the proof, we must show that this bijection preserves both the sign and weight. Suppose that

Lτ contains k cycles of even length and m cycles of odd length. Let the total number of vertices in the k cycles

be 2s. Then the remaining n − 2s (n is total number of vertices in Lτ ) vertices are among the m odd cycles.

Now,

(−1)n−(k+m)w(Lτ ) = (−1)k(−1)n−mw(Lτ ).

If m is odd, then n − 2s is odd, so n is odd. If m is even, then n is also even. So (−1)n−m is always 1.

Note that only a cycle of even length contributes a negative sign towards the weight of the LSD Lτ . Hence

ECA 1:1 (2021) Article #S2R5 6
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(−1)n−(k+m)w(Lτ ) is positive. From the construction of the bijection, the weight of τ is the same as the

weight of the LSD Lτ . For example, Figure 3 describes the required bijection for finding u4 in the recurrence

un = c1un−1 + c2un−2.

c1c1

1 2 3 4

c1c1

1 2 3 4

c1 c1 c1 c1

c1 c1c2

1 2 3 4

3

c1

4

c1

c2 c2

1 2 3 4

1 2

−c2

1

1 2 3 4

−c2

1

−c2

1

c4

1 2 3 4

1 42 31

1
−c4

11

Figure 3: Each bold line in every tile represents the length of the corresponding tile. For example, the last tiling
of the board contains exactly one tile of length 4 occupying the positions 1, 2, 3, 4, whereas the second tiling
contains one tile of length 2 occupying the position 1, 2 and two tiles of length 1 occupying the positions 3 and
4. The numbers appearing above the tiles are the weights of the corresponding tiles and the numbers appearing
along the edges are the weights of the corresponding edges.

Definition 3.2. The r-acci sequence Fn is defined by the recurrence

Fn = Fn−1 + Fn−2 + · · ·+ Fn−r, n ≥ 1,

with initial conditions F0 = 1 and Fi = 0 for i < 0.

One combinatorial interpretation for Fn is the number of ways to tile a board of length n using tiles of

length at most r. In [7], the authors proved a formula for the r-acci numbers. Here we give a determinantal

expression of the same. Consider the following n× n matrix

G =



1 −1 1 · · · (−1)r+1 0 · · · 0 0
1 1 −1 · · · (−1)r (−1)r+1 · · · 0 0
0 1 1 · · · (−1)r−1 (−1)r · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

0 0 0 · · · 1 −1 · · · (−1)n−r+1 (−1)n−r+2

0 0 0 · · · 1 1 · · · (−1)n−r (−1)n−r+1

...
...

...
. . .

...
...

. . .
...

...
0 0 0 · · · 0 0 · · · 1 −1
0 0 0 · · · 0 0 · · · 1 1


. (5)

Corollary 3.1. Let Fn be the n-th term of the r-acci sequence defined above. Then Fn = det(G).

Proof. The proof follows from the combinatorial interpretation of r-acci numbers and the proof of Theorem

3.1.

ECA 1:1 (2021) Article #S2R5 7
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Corollary 3.2 (Corollary 5 [7]). Let Fn be the n-th term of the r-acci sequence. Then

Fn =
∑

2i2+···+rir≤n

(n− i2 − 2i3 − · · · − (r − 1)ir)!

i2! · · · ir!((n− 2i2 − 3i3 − · · · − rir)!)
.

Proof. By Corollary 3.1, Fn = det(G) and each LSD of D(G) contributes 1 to det(G). Again,

(n− i2 − 2i3 − · · · − (r − 1)ir)!

i2! · · · ir!((n− 2i2 − 3i3 − · · · − rir)!)

is the number of LSD containing (n−2i2−3i3−· · ·−rir) loops and it (t = 2, 3, . . . , r) cycles of length t. Hence,

det(G) =
∑

2i2+···+rir≤n

(n− i2 − 2i3 − · · · − (r − 1)ir)!

i2! · · · ir!((n− 2i2 − 3i3 − · · · − rir)!)
.

Let fn be the n-th Fibonacci number defined by

fn = fn−1 + fn−2, n ≥ 2, (6)

with f0 = f1 = 1. Then fn may be interpreted combinatorially as the number of linear tilings of a board of

length n using tiles of length at most 2. Consider now the n× n matrix

F =



1 −1 0 · · · 0 0
1 1 −1 · · · 0 0
0 1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −1
0 0 0 · · · 1 1


. (7)

Then we have the following corollary.

Corollary 3.3. Let F be the matrix defined as (7). Then fn = det(F ).

Proof. We use the same argument as in the proof of Theorem 3.1 above and the combinatorial interpretation

for the Fibonacci numbers.

Corollary 3.4 (Binet’s Formula). Let fn be the n-th Fibonacci number. Then Binet’s formula says that

fn =

(
1+
√
5

2

)n+1

−
(

1−
√
5

2

)n+1

√
5

.

Proof. To show this, consider the matrix (4) from the proof of Corollary 2.3 above. If x 6= y, then the determinant

of (4) can be written as xn+1−yn+1

x−y . Now put x+y = 1 and xy = −1 in (4). Then one gets the matrix F. Clearly,

x and y are the roots of the polynomial t2 − t− 1 = 0, whence x = 1+
√
5

2 and y = 1−
√
5

2 . By Corollary 3.3, we

have fn = det(F ). By Corollary 2.3, det(F ) =

(
1+
√

5
2

)n+1
−
(

1−
√

5
2

)n+1

√
5

, which implies the result.

4. Determinantal Expression of the Lucas Numbers and
a New Identity

In this section, we derive a determinantal formula for members of the Lucas sequence. In the course of doing so,

we first prove a new determinantal identity and, as a consequence, one obtains the desired Lucas determinantal

formula. Recall that the Lucas numbers are defined recursively by

`n = `n−1 + `n−2, n ≥ 2,

with `0 = 2 and `1 = 1. Then `n can be interpreted combinatorially as the number of tilings of a circular

n-board with tiles of length at most 2 (see [4]).
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For the variables a and b, we consider the n× n (n ≥ 3) matrix

S =



a+ b (−1)n+1a 0 · · · 0 b
(−1)n+1b a+ b a · · · 0 0

0 b a+ b · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · a+ b a
a 0 0 · · · b a+ b


. (8)

Then the following result holds.

Theorem 4.1. Let S be an n× n matrix defined as (8). Then det(S) = 2(an + bn).

Proof. We prove this theorem in the case n = 4 (the general case can be done in a similar fashion). For n = 4,

we have

S =


a+ b −a 0 b
−b a+ b a 0
0 b a+ b a
a 0 b a+ b

 .

It must be shown that det(S) = 2(a4 + b4). Regard A = {a, b} as the set of letters. Let C be the set of all

cyclic words of length 4 formed by a and b. For cyclic words, we always take the starting point to be 1 and the

orientation to be clockwise. For example, Figure 4 contains three cyclic words of length 4 with starting point 1

and clockwise orientation.

a

a

aa

1

2

3

4

a

b

a

b

1

2

3

4

,,

b

b

a

b

1

2

3

4

etc...

Figure 4: Illustrated are three cyclic words formed by a, b.

Let us introduce the following notation. We will denote by ZC(n) the set of all formal linear combinations

a + b

b

a

b

1

2

3

4 =

a

b

a

b

1

2

3

4 +

b

b

a

b

1

2

3

4

a

a + b

a a + b

3

1

4 2 =

a

a

a

a

1

2

3

4 +

a

b

a

a

1

2

3

4 +

b

a

a

a

1

2

3

4 +

b

b

a

a

1

2

3

4

a + a

b

a

a

1

2

3

4 =

a

b

a

a

1

2

3

4 +

a

b

a

a

1

2

3

4

etc...

Figure 5:

of cyclic words of length n (with the starting point and orientation already prescribed) with integer coefficients.

For example, c1, c2, c1 + c2, 2c1 − c2, 0 (the empty word) are some typical elements of ZC(n), where c1, c2 are

cyclic words. Now let us consider Figure 5. Note that none of the items on the left side of Figure 5 is a cyclic

word but may be regarded as an element of ZC(n) by the corresponding item on the right side.
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We wish to evaluate the sum of all possible cyclic words of length 4 formed by a and b such that ab does not

appear as a subword, i.e., a and b do not occur as a consecutive pair (note that ba may appear as a subword).

Figure 6 shows some cyclic words containing ab as a subword. Let C0(∈ ZC(4)) be the formal sum of all cyclic

b

a

b b

3

1

4 2

,

a

a

b

b

1

2

3

4

,

b

a

b

a

1

2

3

4

etc...

Figure 6: These are some cyclic words, where ab appears as a subword. For example, in the first cyclic word,
the letters a and b occupy the consecutive positions 1, 2, whereas the last cyclic word contains two pairs of
consecutive positions 2, 3 and 4, 1 occupied by ab.

words with constant coefficient 1, i.e.,
∑
`∈C

`. Now the sum of all possible cyclic words of length 4 such that the

a

a

a

a

1

2

3

4

b

b

b

b

1

2

3

4+

Figure 7:

letters a and b do not occupy two consecutive positions on the circle is clearly described in Figure 7. Again, we

can calculate this sum by the PIE rule. One has that the sum of all cyclic words avoiding ab as a subword is

given by C0 − C1 + C2, where C1 is the sum of all cyclic words of length 4 formed by letters a and b such that

1 2 3 4

−a
a a

a

1
2 3 4

b

b−b
b

Figure 8: This figure contains two LSD of D(S): L1 (above) and L2 (below). The number appearing along an
edge is the corresponding weight.

there is at least one pair of consecutive positions (i.e., either 1, 2 or 2, 3 or 3, 4 or 4, 1 on a circle) occupied by ab

(for example, see Figure 6) and C2 is the sum of all cyclic words of length 4 formed by letters a and b such that

there are at least two pairs of consecutive positions (i.e., 1, 2 and 3, 4 or 2, 3 and 4, 1) occupied by ab. See the

last item of Figure 6 for an illustration of the latter. Now we describe a sign- and weight-preserving bijection

w = abbb(= ab3)

b

a

b b

3

1

4 2 , w = baba(= a2b2)

b

a

b

a

1

2

3

4

etc.

Figure 9: Two cyclic words and their weights.

between the terms in C0 −C1 +C2 and the LSDs in the set L \ {L1, L2}, where L is the collection of all LSDs
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in D(S) and L1, L2 are the LSDs in Figure 8.

The weight of a cyclic word C, denoted by w(C), is the product (here, we mean the usual polynomial

product) of all letters present in that cyclic word and extend this to ZC(n) by linearity, i.e., for any two cyclic

words ` and ´̀, w(x`+ y ´̀) := xw(`) + yw(´̀), x, y ∈ Z. See Figures 9 and 10 for an illustration.

w w

a + b

b

a

b

1

2

3

4 =

=

a

b

a

b

1

2

3

4 +

b

b

a

b

1

2

3

4

a

b

a

b

1

2

3

4 + w

b

b

a

b

1

2

3

4w

=abab(= a2b2) + bbab(= b3a) = a2b2 + ab3

Figure 10: This figure describes the weights of the sum of cyclic words.

Figure 11 shows the required bijection, which preserves both the sign and weight. Note that (−1)4−1w(L1) =

a4 and (−1)4−1w(L2) = b4. Hence, det(S) = 2(a4 + b4).

(a + b)

(a + b)

(a + b)

(a + b)

1

2

3

4
1

(a + b)

3

(a + b) 2

(a + b)

4

(a + b)

a

b

(a + b)

(a + b)

1

2

3

4

1

2
4

−a

−b

3

(a + b)

(a + b)

b

a + b

(a + b)

a

1

2

3

4

1

4

b
a

3

(a + b) 2

(a + b)

etc...

Figure 11: The number appearing along an edge in the above figure is the weight of the corresponding edge.
The left-hand side of this figure describes some terms of the PIE expression.

Now we establish a determinantal expression for the Lucas numbers. First, we consider the n × n (n ≥ 3)
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matrix

A =



1 (−1)n+1 1+
√
5

2 0 · · · 0 1−
√
5

2

(−1)n+1 1−
√
5

2 1 1+
√
5

2 · · · 0 0

0 1−
√
5

2 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 1+
√
5

2
1+
√
5

2 0 0 · · · 1−
√
5

2 1


.

Corollary 4.1. Let `n denote the n-th term of the Lucas sequence. Then `n = 1
2 det(A) for n ≥ 3.

Proof. Putting a = 1+
√
5

2 and b = 1−
√
5

2 in S, we get matrix A. So,

det(A) = 2

[(
1 +
√

5

2

)n
+

(
1−
√

5

2

)n]
.

On the other hand, from the proof of Theorem 4.1 and the combinatorial interpretation of the Lucas numbers,

one can write

det(A) = `n +

(
1 +
√

5

2

)n
+

(
1−
√

5

2

)n
,

which implies the result.

Acknowledgement

I would like to thank my mentor Prof. Arvind Ayyer for his constant support, encouragement and for valuable

discussion and suggestions in the preparation of this paper. Also, I would like to thank Dr. Sajal Kumar Mukher-

jee for many helpful discussions and for proposing Theorem 4.1. The author was supported by Department of

Science and Technology grant EMR/2016/006624 and partially supported by UGC Centre for Advanced Studies.

Further, the author was supported by NBHM Post Doctoral Fellowship grant 0204/52/2019/RD-II/339.

References

[1] A. Ayyer, Determinants and perfect matchings, J. Combin. Theory Ser. A 120 (2013), 304–314.

[2] A.T. Benjamin, H. Derks and J.J. Quinn, The combinatorialization of linear recurrences, Electron. J.

Combin. 18(2) (2011-2), P12.

[3] A.T. Benjamin, G.M. Levin, K. Mahlburg and J.J. Quinn, Random approaches to Fibonacci identities,

Amer. Math. Monthly 107 (2000), 511–516.

[4] A.T. Benjamin and J.J. Quinn, Proofs that Really Count: The Art of Combinatorial Proof, Mathematical

Association of America, Washington, DC, 2003.

[5] S. Bera and S.K. Mukherjee, Combinatorial proofs of some determinantal identities, Linear and Multilinear

Alg. 66 (2018), 1659–1667.

[6] A.R. Brualdi and D. Cvetkovic, A Combinatorial Approach to Matrix Theory and its Application, Discrete

Mathematics and Its Applications, CRC Press, Boca Raton, London, New York, 2009.

[7] J. McLaughlin and B. Sury, Powers of a matrix and combinatorial identities, Integers 5(1) (2005), #A13.

[8] S.K. Mukherjee and S. Bera, Combinatorial proofs of the Newton–Girard and Chapman–Costas-Santos

identities, Discrete Math. 342 (2019), 1577–1580.

[9] B.E. Sagan, The Symmetric Group Representations, Combinatorial Algorithms, and Symmetric Functions,

Graduate Texts in Mathematics, Springer-Verlag, New York, 2001.

[10] M. Shattuck, Recounting some reciprocal Fibonacci number relations, Util. Math. 79 (2009), 259–265.

[11] B. Sury, A curious polynomial identity, Nieuw Arch. Wisk. 11 (1993), 93–96.

[12] D. Zeilberger, A combinatorial proof of the Newton’s identity, Discrete Math. 49 (1984), 319.

ECA 1:1 (2021) Article #S2R5 12


