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1. Introduction

In the last few years several researchers focused their attention to the topic of non-overlapping matrices which

can be seen as a generalization of the more famous subject of non-overlapping words. These words are a part

of the wide area of Theory of Codes, where, among many interesting questions and applications, the definition

of sets of words with particular characteristics is considered. Much care has been paid to matters involving

overlaps among the words of a set (or, more precisely, among their prefixes or suffixes). For example, since

their introduction, various kinds of codes have been considered: prefix-free, suffix-free and fix-free codes [15,18],

comma-free codes [16], bifix-free codes [17], non-overlapping codes [12], cross-bifix-free codes [2, 3, 11] (often

called non-overlapping codes), variable length non-overlapping codes [10]. More recently, cross-bifix-free codes

have been deeply studied thanks to their involvement in the development of DNA-based storage systems for

big amounts of data [19, 20]. In literature several approaches can be found providing different definitions of

cross-bifix-free words [7, 11,13] and concerning their listing in a Gray code sense [8, 9].

The generalization of the notion of non-overlapping strings to two dimensions appears, probably for the first

time in a rigorous manner, in the article [5] where only square matrices are considered. Here, the notion of

prefix (and suffix) of a string is simply translated into a square matrix anchored in the top-left or bottom-right

entry. Nevertheless, in other papers [4,6] more general matrices are considered and the the notion of prefix and

suffix is also improved. In particular, a set of non-overlapping matrices is defined over a finite alphabet where

the rows of the matrices (which are considered as words) are subjected to some constraints. More precisely,

some entries of the matrices are fixed and the rows must avoid certain consecutive patterns of symbols of the

alphabet.

In the present paper we give a new set of non-overlapping matrices over the binary alphabet. The rows are

not restricted words, in the sense that there are no patterns to be avoided. Here, we use the well known Dyck

words which allow us to define the matrices of the set in a simpler way with respect to [4, 6]. Moreover, being

Dyck words enumerated by the famous Catalan numbers, we are able to find a closed formula for the cardinality

of the set, depending only on the dimension of the matrices. A further remark lies in the fact that in each

matrix the numbers of 1’s and 0’s are substantially balanced, thanks to the use of Dyck words, differently from
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the matrices defined in [4,6]. We conclude by observing that the proofs of the properties of the matrices involve

only the examination of prefixes or suffixes of the strings constituting their rows, by using standard techniques

typical of non-overlapping words.

2. Definitions and background

The matrices we are dealing with in the present paper are binary matrices and their rows are generated using

particular binary strings (Dyck words). Before describing the construction of the main set (next section), we

give a formal definition of non-overlapping matrices, together with some tools useful in the sequel. We also

recall some concepts about strings.

Definition 2.1. Let u and v be two strings over an alphabet Σ = {σ1, σ2 . . . , σq}. They are said non-overlapping

strings if any non-empty proper prefix of u is different from any non-empty proper suffix of v, and vice versa.

If u = v, then the string u is said self non-overlapping.

If some prefix (suffix) of u matches with some suffix (prefix) of v, then u and v are overlapping strings.

When a factor of length k of consecutive symbols σj ∈ Σ occurs in a string u, we denote it by σkj . For example,

the binary string u = 1000110 can be indicated as u = 103120.

We extend the notion of non-overlapping strings to the case of matrices:

Definition 2.2. Let A and B be two distinct matrices in Mm×n, the set of all matrices with m rows and n

columns. A and B are said non-overlapping if all the following conditions are satisfied by A and B:

• there do not exist two block partitions

A =

[
A11 A12

A21 A22

]
B =

[
B11 B12

B21 B22

]
such that A11, B22 ∈ Mr×s, with 1 ≤ r ≤ m− 1, 1 ≤ s ≤ n− 1, and either A11 = B22 nor A12 = B21, or

A21 = B12, or A22 = B11.

• there do not exist two block partitions

A =

[
A11

A21

]
B =

[
B11

B21

]
such that A11, B21 ∈ Mr×n, with 1 ≤ r ≤ m− 1, and either A11 = B21, or A21 = B11.

• there do not exist two block partitions

A =
[
A11 A12

]
B =

[
B11 B12

]
such that A11, B12 ∈ Mm×s, with 1 ≤ s ≤ n− 1, and either A11 = B12, or A12 = B11.

In Figure 1 three pairs of overlapping matrices contradicting the three above points are depicted. Informally,

Definition 2.2 states that two matrices A and B of the same dimension do not overlap if there is no a rigid

movement of B on A (note that rotations are not allowed) such that at the end the corresponding entries of

B and A coincide. More precisely, after the rigid slipping, a common area (control window) is formed. This

common area is a rectangular array (the intersection between A and B) consisting of a finite number of 1 × 1

cells of the discrete plane, each containing an entry of A and an entry of B. If all the entries of A coincide with

the corresponding entries of B, then the two matrices are said overlapping matrices, otherwise they are two

non-overlapping matrices. Note that the roles of A and B can be interchanged so that we can assume, without

loss of generality, that B is the matrix that moves on A.

Finally, Definition 2.2 can be naturally extended to the case A = B, and the matrix is said self non-

overlapping.

Definition 2.3. A set Sm×n ⊂ Mm×n is called non-overlapping if each matrix of Sm×n is self non-overlapping

and for any two matrices A,B ∈ Sm×n they are non-overlapping matrices.
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0 1 0 1 0 1

0 1 1 1 0 1

1 1 1 1 0 0

1 0 0 0 1 1

0 1 0 1 0 1

1 1 1 0 0 0

1 1 0

1 1 1

0 1 0 1 0 1

0 1 1 1 0 1

1 1 1 1 0 0

1 0 0

11 0 1 0 1

1 1 1 0 0 0

1 1 0

0 1 0 1 0 1

0 1 1 1 0 1

1 1 1 1 0 0

1 0 0 0 1 1

1 1 1 0

1 1 1 0

1 0 0 0

0 1 0 1

Figure 1: Three pairs of overlapping matrices of 4× 6.

If A ∈ Mm×n, we indicate, as usual, by ai,j the entry in the i-th row and j-th column, so that A = (ai,j),

with i = 1, 2, . . . ,m and j = 1, 2, . . . , n. A generic row of A is denoted by Ai. Moreover, in the following, if u

is a binary string, we denote its length by |u|. The number of 1’s and the number of 0’s will be denoted by |u|1
and |u|0, respectively.

Definition 2.4. Let ` > 1. A Dyck word v is a binary string of length 2` such that |v|1 = |v|0 and |γ|1 ≥ |γ|0
for each prefix γ of v. The set of all the Dyck words of length 2` is denoted by D2`.

Note that in a Dyck word it is also |δ|1 6 |δ|0 for any suffix δ of v. For example if ` = 4, some Dyck words of

length 8 are 11110000, 10101010, 11001100.

Definition 2.5. A Dyck word v is a type α Dyck word if for each proper prefix γ, we have |γ|1 > |γ|0.

Clearly, in a type α Dyck word it is also |δ|1 < |δ|0 for any proper suffix δ of v. Then, a type α Dyck word

is a self non-overlapping string [11]. Moreover, for each type α Dyck word v of length 2`, it is v = 1u0 for

some Dyck word u ∈ D2`−2. For example if ` = 4, two type α Dyck words of length 8 are v = 11110000 and

v = 11100100 where u = 111000 and u = 110010, respectively, while the string 10101010 is not a type α Dyck

word.

We conclude this section by recalling that a Dyck word u ∈ D2` can be read as Dyck path which is a lattice

path starting from (0, 0), ending at (2`, 0), never crossing the x-axis and using only north-east and south-east

steps. A type α Dyck word v = 1u0, with |v| = 2` and u ∈ D2`−2, is a Dyck path which touches the x-axis

only at the beginning and at the end.

3. A set of non-overlapping binary matrices

In this section we are going to define a particular set of non-overlapping binary matrices, the set Lm×n. We

distinguish two cases depending on the number n of columns: n even and n odd.

3.1 The set Lm×n with n even

Definition 3.1. Let m > 2 and n > 4 with n even. We denote by Lm×n ⊂Mm×n the set of matrices satisfying

the following conditions. Let A = (ai,j) an element of Lm×n.

• The first row, A1, is a type α Dyck word of length n: A1 = 1u0 where u ∈ Dn−2. Moreover, we require

that the first row A1 is the same for all the matrices of Lm×n and it can not appear in any other row.

• For i = 2, . . . ,m− 1, the row Ai is a string of length n chosen among the following different five types of

strings:
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– type 1 : a Dyck word of length n (Ai ∈ Dn).

– type 2 : a Dyck word of length n − 2 different from u preceded by 11 (Ai = 11w where w ∈ Dn−2

and w 6= u).

– type 3 : a Dyck word of length n − 2 different from u followed by 00 (Ai = w00 where w ∈ Dn−2

and w 6= u).

– type 4 : a Dyck word of length n − 2 different from u preceded by 01 (Ai = 01w where w ∈ Dn−2

and w 6= u).

– type 5 : a Dyck word of length n− 2 followed and preceded by 0 (Ai = 0w0 where w ∈ Dn−2).

We refer to a row Ai (i = 2, 3, . . . ,m− 1) as a type k row, with k = 1, 2, 3, 4, 5. Note that for type

2, type 3, type 4 rows it is required w 6= u, where u is the Dyck word used to generate A1.

• The last row Am, is a type 1, type 2 or type 3 row (type 4 and type 5 are not allowed in the last

row).

In Figure 2 an element of the set L7×8 is given. The italic entries correspond to the ones needed to obtain

a type 2, type 3, type 4 or type 5 row.

type α row1 1 0 1 0 1 0 0

1 0 1 0 1 0 1 0 type 1 row

0 1 1 1 0 0 1 0 type 4 row

0 1 0 1 0 1 0 0 type 5 row

1 0 1 0 1 0 1 0 type 1 row

1 0 1 1 0 0 0 0 type 3 row

1 1 1 1 0 0 1 0 type 2 row

Figure 2: An element of L7×8.

Proposition 3.2. Lm×n with n even is a non-overlapping set.

Proof. Let A and B two matrices in Lm×n (possibly the same). Since we have to check if A and B overlap,

we immediately notice that the first row of A or B is always involved in the control window. We consider two

different kinds of overlaps: vertical overlap when the i-th column of A is superimposed on the i-th column of B

and skew overlap in all the other cases.

If a vertical overlap occurs, then A and B can not overlap since, looking at the control window (Figure 3),

the row A1 (B1 = A1) is over a row Bj (Aj) and, by Definition 3.1, A1 6= Bj (B1 6= Aj), for j = 2, 3, . . . ,m.

1 1 1 0 0 0

1 1 1 0 0 0

Figure 3: Vertical overlap

If A and B skew overlap, then two cases must be considered: the control window contains a prefix of A1 (or

B1 = A1) or the control windows contains a suffix of A1 or B1.

• Let γ be a proper prefix of A1 which is involved in the control window: it is superimposed with a proper

suffix δ of Bj , j = 1, 2, . . . ,m. Depending on the type of the row Bj , we have different cases:

– Bj is a type 1 row: since |γ|1 > |γ|0 and |δ|0 > |δ|1, the prefix γ and the suffix δ do not match, then

rows A1 and Bj , and consequently the matrices A and B, do not overlap.
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– Bj is a type 2 or a type 4 row: if |δ| 6 n − 2, then the same argument of the above case can

be used to conclude that A and B do not overlap, while, if |δ| = n − 1, then we observe that

δ = 1bj,3bj,4 . . . bj,n and γ = 1u where u ∈ Dn−2, so that γ and δ do not match since, by Definition

3.1, it is u 6= bj,3bj,4 . . . bj,n. Therefore, A and B do not overlap.

– Bj is a type 3 or a type 5 row: since |γ|1 > |γ|0 and |δ|0 > |δ|1, matrices A and B can not overlap.

Notice that in the above bullet, the roles of A and B can be interchanged, leading to the same conclusion.

• Let δ be a proper suffix of A1 which is involved in the control window: it is superimposed with a proper

prefix γ of Bj , for some j = 1, 2, . . . ,m. Depending on the type of the row Bj , we have the following

different cases:

– Bj is a type 1 row: since |δ|0 > |δ|1 and |γ|1 > |γ|0, the prefix γ and the suffix δ do not match, then

rows A1 and Bj , and consequently the matrices A and B, do not overlap.

– Bj is a type 2 row: since |δ|0 > |δ|1 and |γ|1 > |γ|0, similarly to the above case, matrices A and B

can not overlap.

– Bj is a type 3 row: if |γ| 6 n − 2, no match is possible (see before) between γ and δ (so that A

and B do not overlap), while, if |γ| = n− 1, then we observe that γ = bj,1bj,2 . . . bj,n−20 and δ = u0

where u ∈ Dn−2, so that γ and δ do not match since, by Definition 3.1, it is u 6= bj,1bj,2 . . . bj,n−2.

Therefore A and B can not overlap.

– Bj is a type 4 row: in this case, by Definition 3.1, it is j 6= m. If |γ| = 1, then γ = b1,j = 0 and

δ = a1,n = 0 (each row of a matrix in the set ends with 0) form a match. Nevertheless, there exists

an index i (with 2 6 i 6 m − 1) such that b1,m = 1 is over the entry ai,n which is 0. Therefore, no

overlapping between A and B is possible (Figure 4). If |γ| > 1, then |γ|1 > |γ|0 and |δ|0 > |δ|1 which

does not allow A and B to overlap.

– Bj is a type 5 row: also in this case j 6= m. If |γ| = 1, the matrices A and B are arranged as in the

above case and they do not overlap (Figure 4). If |γ| > 1, then γ = 0w where w is a proper prefix of

a Dyck word, so that |γ|1 > |γ|0 (if |w|1 > |w|0) or |γ|1 + 1 = |γ|0 (if |w|1 = |w|0). In the first case γ

and δ do not match since it is |δ|0 > |δ|1. In the latter, the string w would be a suffix of A1. This is

not possible since A1 is a type α row. We conclude that also in this case A and B do not overlap.

0

×
A

B

Figure 4: The prefix of a type 4 or type 5 row in B composed by the only first 0 is superimposed on the last 0
of the first row in A. The × represents a mismatch.

Notice that from the proof above we can deduce that A1 and any other row of type 1, 2 or 3 are non-

overlapping strings. 2

3.2 The set Lm×n with n odd

Definition 3.3. Let m > 2 and n > 5 with n odd. We denote by Lm×n ⊂ Mm×n the set of matrices satisfying

the following conditions. Let A = (ai,j) an element of Lm×n.

• The first row, A1, is a type α Dyck word of length n − 1 preceded by 1: A1 = 11u0 where u ∈ Dn−3.

Moreover, we require that the first row is the same for all the matrices of Lm×n and it can not appear in

any other row.

• For i = 2, . . . ,m − 1, the row Ai is a string of length n chosen among the following different three types

of strings:
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– type 6 : a Dyck word of length n− 1 preceded by 1 (Ai = 1w where w ∈ Dn−1 and w 6= u).

– type 7 : a Dyck word of length n− 1 followed by 0 (Ai = w0 where w ∈ Dn−1 and w 6= u).

– type 8 : a Dyck word of length n− 1 preceded by 0 (Ai = 0w where w ∈ Dn−1).

We refer to a row Ai (i = 2, 3, . . . ,m − 1) as a type k row, with k = 6, 7, 8. Note that for type 6

and type 7 rows it is required w 6= u, where u is the Dyck word used to generate A1.

• The last row Am is a type 6 or type 7 row (type 8 is not allowed in the last row).

In Figure 5 an element of the set L6×7 is given. The italic entries correspond to the ones needed to obtain

a type 6, type 7 or type 8 row.

1 1 1 1 0 0 0 type α

1 1 0 0 1 0 0 type 7

1 0 1 0 1 0 0 type 7

0 1 1 1 0 0 0 type 8

1 1 1 0 0 1 0 type 6

1 1 0 1 0 1 0 type 6

Figure 5: An element of L6×7.

Proposition 3.4. Lm×n with n odd is a non-overlapping set.

Proof. Let A and B be two matrices in Lm×n (possibly the same). The argument is very similar to the one

used in the proof of the Proposition 3.2. Since we have to check if A and B overlap, we immediately notice that

the first row of A or B is always involved in the control window.

We distinguish two different kinds of overlaps: vertical overlap and skew overlap. A vertical overlap can not

occur since, by Definition 3.3, the j-th row, j = 2, . . . ,m, of any matrix in Lm×n is different from the common

first row of all the matrices in the set. If A and B skew overlap, then two cases must be considered: the control

window contains a prefix of A1 or B1 or the control windows contains a suffix of A1 or B1.

• Let γ be a proper prefix of A1 which is involved in the control window: it is superimposed with a proper

suffix δ of Bj , j = 1, 2, . . . ,m. Depending on the type of the row Bj , we have different cases:

– Bj is a type 6 or a type 8 row: since |γ|1 > |γ|0 and |δ|0 > |δ|1, the prefix γ and the suffix δ do not

match, then rows A1 and Bj , and consequently the matrices A and B, do not overlap.

– Bj is a type 7 row: since |γ|1 > |γ|0 and |δ|0 > |δ|1, the prefix γ and the suffix δ do not match, then

rows A1 and Bj , and consequently the matrices A and B, do not overlap.

Notice that in the above bullet, the roles of A and B can be interchanged, leading to the same conclusion.

• Let δ be a proper suffix of A1 which is involved in the control window: it is superimposed with a proper

prefix γ of Bj , j = 1, 2, . . . ,m. Depending on the type of the row Bj , we have different cases:

– Bj is a type 6 row: since |δ|0 > |δ|1 (|δ|0 > |δ|1 if |δ| 6 n− 2) and |γ|1 > |γ|0, the prefix γ and the

suffix δ do not match, then rows A1 and Bj , and consequently the matrices A and B, do not overlap.

– Bj is a type 7 row: if |δ| 6 n − 2, since |δ|0 > |δ|1 and |γ|1 > |γ|0, the prefix γ and the suffix δ do

not match, then rows A1 and Bj , and consequently the matrices A and B, do not overlap.

If |δ| = n− 1, then δ = u, where u ∈ Dn−1 and γ = bj,1bj,2 . . . bj,n−1 = w where w ∈ Dn−1 so that γ

and δ do not match since, by Definition 3.4, it is u 6= w. Therefore A and B can not overlap.

– Bj is a type 8 row: in this case j 6= m. If |γ| = 1, then γ = b1,j = 0 and δ = a1,n = 0 (each

row of a matrix in the set ends with 0) form a match. Nevertheless, there exists an index i (with

2 6 i 6 m−1) such that b1,m = 1 is over the entry ai,n which is 0. Therefore, no overlapping between

A and B is possible (Figure 4). If |γ| > 1, then γ = 0w where w is a proper prefix of a Dyck word,

ECA 1:2 (2021) Article #S2R9 6
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so that |γ|1 > |γ|0 (if |w|1 > |w|0) or |γ|1 + 1 = |γ|0 (if |w|1 = |w|0). In the first case γ and δ do not

match since it is |δ|0 > |δ|1. In the latter, the string w would be a suffix of A1. This is not possible

since A1 is a type α row. We conclude that also in this case A and B do not overlap.

Notice that, similarly to Proposition 3.2, from the above proof we can deduce that A1 and any other row of

type 6 or 7 are non-overlapping strings. 2

4. The enumeration of Lm×n

In this section we are going to enumerate the set Lm×n. The first row A1 of all the matrices in Lm×n is the same,

so that it is easy to realize that the cardinality of Lm×n depends on the number of the remaining m − 1 rows

satisfying the constraints of Definition 3.1 or 3.3. We recall that the Dyck words of length 2n are enumerated

by the n-th Catalan number Cn given by

Cn =
1

n+ 1

(
2n

n

)
.

Following the constraints of Definition 3.1, in the case n even and reminding that A1 = 1u0 with u ∈ Dn−2,

we observe that if the row Ai, i = 2, 3, . . . ,m− 1, is a type 2,3,4 row, then it can be constructed by using a

Dyck word w ∈ Dn−2 and w 6= u and adding the prefixes 11 or 01 or the suffix 00, so that there are Cn−2
2
− 1

possibilities for each type of row. If Ai is a type 5 row, then it can be constructed in Cn−2
2

different ways by

using whichever Dyck word w ∈ Dn−2 and adding the prefix and the suffix 0 (Ai = 0w0). Finally, if Ai is a

type 1 row, then Ai ∈ Dn and Ai 6= A1. The foregoing is summarized in the first term of the following formula

where the exponent m − 2 tracks the number of rows from the second to the second to last one. The second

term counts the possibilities for the last row which is a type 1, 2 or type 3 row.

|Lm×n| =

Cn
2
− 1︸ ︷︷ ︸

type 1

+ 3Cn−2
2
− 3︸ ︷︷ ︸

type 2, 3, 4

+Cn−2
2︸ ︷︷ ︸

type 5


(m−2)Cn

2
− 1︸ ︷︷ ︸

type 1

+ 2Cn−2
2
− 2︸ ︷︷ ︸

type 2, 3

 . (1)

With a similar argument, following Definition 3.3 in the case n odd, we obtain:

|Lm×n| =

2Cn−1
2
− 2︸ ︷︷ ︸

type 6, 7

+Cn−1
2︸ ︷︷ ︸

type 8


(m−2)2Cn−2

2
− 2︸ ︷︷ ︸

type 6, 7

 . (2)

Table 1 shows some values of the cardinality Lm×n with some estimated values of m and n up to 10. A careful

analysis of them, reveals that if n > m, then the cardinality of Lm×n is greater then the cardinality of Ln×m.

So, fixed n and m, in the case n > m, it is convenient to define the matrices by columns (according to Definition

3.1 and 3.3) in order to obtain the set with the highest cardinality. In other words, if the columns are longer

than the rows, then Dyck words should be used to construct the columns of the matrices of the set.

5. A comparison with S
(k)
m×n

In [6] a remarkable family of non-overlapping matrices was defined. Here we briefly recall its construction.

Definition 5.1. Let 3 ≤ k ≤
⌊
n
2

⌋
and m ≥ 2. We denote by S(k)m×n ⊂Mm×n the set of the matrices A = (ai,j)

satisfying the following conditions:

• A1 = 1k−10w110k−1, where v1 = 0w11 is a binary string of length n − 2k + 2 avoiding both 0k and 1k

(explicitly, the string v1 can contain neither k consecutive 0’s nor k consecutive 1’s);

• for i = 2, . . . ,m− 1, Ai = wi0 = vi, where vi is a binary string of length n avoiding both 0k and 1k;

• Am = 1kvm0k, where vm is a binary string of length n− 2k avoiding both 0k and 1k.

(With A1, Ai and Am we denote the first, the i-th and the m-th row of the matrix A.)
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m�n 4 5 6 7 8 9 10
2 1 2 6 8 21 26 67
3 2 4 54 104 630 1040 6.2 · 103

4 4 8 486 1352 1.9 · 104 4.1 · 104 5.9 · 105

5 8 16 4374 1.7 · 104 5.7 · 105 1.6 · 106 5.5 · 107

6 16 32 3.9 · 104 2.2 · 105 1.7 · 107 6.6 · 107 5.2 · 109

7 32 64 3.5 · 105 3.0 · 106 5.1 · 108 2.7 · 109 4.9 · 1011

8 64 128 3.1 · 106 3.8 · 107 1.5 · 1010 1.1 · 1011 4.6 · 1013

9 128 256 2.8 · 107 5.0 · 108 4.6 · 1011 4.2 · 1012 4.3 · 1015

10 256 512 2.6 · 108 6.5 · 109 1.4 · 1013 1.7 · 1014 4.1 · 1017

Table 1: Some values of the cardinality of Lm×n


1 1 0 ∗ ∗ ∗ ∗ 1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
1 1 1 ∗ ∗ ∗ ∗ 0 0 0


Figure 6: The structure of the matrices in S(3)6×10.

In other words, some entries on the frame of a matrix in S(k)m×n are fixed. For example, the matrices in S(3)6×10
are represented in Figure 6 where the generic entries ∗ ∈ {0, 1} are chosen so that the conditions of Definition

5.1 are satisfied.

The cardinality of S
(k)
m×n can be computed [6] in terms of k-generalized Fibonacci numbers as

|S(k)m×n| =


(
f
(k−1)
2k−1

)m−2
if n = 2k

f
(k−1)
n−2k−1 ·

(
f
(k−1)
n−2k+1 + d

(k)
n−2k+2

)
·
(
f
(k−1)
n−1

)m−2
if n > 2k ,

(3)

where

d
(k)
` =


1 if (` mod k) = 0

−1 if (` mod k) = 1

0 if (` mod k) ≥ 2

(explicitly
{
d
(k)
`

}
`≥0

=
{

1,−1, 0, 0, . . . , 0︸ ︷︷ ︸
k−2

, 1,−1, 0, 0, . . . , 0︸ ︷︷ ︸
k−2

, 1,−1, 0, . . .
}

), and (k-generalized Fibonacci num-

bers sequence)

f
(k)
` =

{
2` if 0 ≤ ` ≤ k − 1

f
(k)
`−1 + f

(k)
`−2 + . . .+ f

(k)
`−k if ` ≥ k .

The cardinality of Lm×n involves Catalan numbers (formulas (1) and (2)), while equation (3) involves the

k-generalized Fibonacci numbers. Even if the first ones grow faster than the second ones, it is not true in

general that |Lm×n| ≥ |Sm×n| for n ≥ n0, since |Lm×n| involves Cn/2 rather than Cn. Actually, an analysis of

the two cardinalities reveals that |Lm×n| ≤ |Sm×n|, for large values of n and m. Nevertheless, in the following

we present a brief inspection of formulas (1) and (3), showing which are the cases when |Lm×n| ≥ |Sm×n|.
We start by recalling that, using Stirling’s approximation for n!, it is

Cn ∼
4n

n3/2
√
π
,

so that, after some simple calculation, formula (1) boils down to

|Lm×n| ' 3 · 2m−3
(√

2

π

)m−1(
2n+1

n3/2

)m−1
. (4)
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From [14] it is known that

f (k)n =

⌊
α− 1

2 + (k + 1)(α− 2)
· αn+1 + 1/2

⌋
(5)

where α is the unique real root of xk − xk−1 − . . .− x− 1 = 0 and, moreover,

2− 1

3k
< α < 2 if k ≥ 4 . (6)

First, we consider the case n = 2k, so that

|S(k)m×n| =
(
f
(k−1)
2k−1

)m−2
.

Supposing k ≥ 4, thanks to (5) and (6) and some calculation, we have:

f
(k−1)
2k−1 =

⌊
(α− 1)α2k

2 + k(α− 2)
+ 1/2

⌋
<

⌊
3 · 22k+1 + 5

10

⌋
<

3

5

(
22k + 1

)
,

so that

|S(k)m×n| <
(

3

5

(
22k + 1

))m−2
.

Moreover, being n = 2k, it is

|Lm×n| '
3 · 22k(m−1)+m−3

(
√
π)
m−1

k
3(m−1)

2

.

Solving (
3

5

(
22k + 1

))m−2
<

3 · 22k(m−1)+m−3

(
√
π)
m−1

k
3(m−1)

2

,

it is possible to prove that

|S(k)m×n| ≤ |Lm×n| if m < 1 +
2k + log2

9
10

log2

(
3
√
π

5 k3/2
) ,

or, showing the number of columns n and after a little adjustment,

|S(k)m×n| ≤ |Lm×n| if m ≤ 1 +

⌊
n− 1

3
2 log2 n− 1

⌋
.

This last formula shows that if the number of rows is opportunely bounded (by a quantity depending on the

number of columns), then we get a larger number of non overlapping matrices.

If n > 2k, then

|S(k)m×n| = f
(k−1)
n−2k−1 ·

(
f
(k−1)
n−2k+1 + d

(k)
n−2k+2

)
·
(
f
(k−1)
n−1

)m−2
.

We have:

f
(k−1)
n−2k−1 ≤

3

5

(
2n−2k + 1

)
,

f
(k−1)
n−2k+1 ≤

3

5

(
2n−2k+2 + 1

)
,

f
(k−1)
n−1 ≤ 3

5
(2n + 1) ,

dn−2k+2 ≤ 1 ,

and

|S(k)m×n| ≤
3

5

(
2n−2k + 1

)(3

5

(
2n−2k+2 + 1

))(3

5
(2n + 1)

)m−2

≤ 4

(
3

5

)m (
2n−2k + 1

)2
(2n + 1)

m−2
.
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The expression

4

(
3

5

)m (
2n−2k + 1

)2
(2n + 1)

m−2 ≤ 3 · 2m−3
(√

2

π

)m−1(
2n+1

n3/2

)m−1
is satisfied when

m ≤
4k − 8 + log2 3− log2

√
2
π − n+ 3

2 log2 n

log2
3
5 − 1− log2

√
2
π + 3

2 log2 n
= θ(n) .

In other words, if m ≤ θ(n), then |S(k)m×n| ≤ |Lm×n|. Since m > 0, also θ(n) > 0 must hold. It is possible to

prove that

θ(n) > 0 if 17 ≤ n ≤ 4k .

Concluding, if the number of columns is bounded (max{17, 2k} ≤ n ≤ 4k), and the number of rows is not so

large (m ≤ θ(n)), also in this case we get a larger number of non overlapping matrices.

6. On the non-expandability of Lm×n

As well as in the theory of cross-fix-free codes, an interesting study concerns their non-expandability. We recall

the following definition, adapted to matrices.

Definition 6.1. Let N be a set of non-overlapping matrices and let U be the set of all self-non-overlapping

matrices. N is non-expandable if for each A ∈ U \N there exists at least one matrix B ∈ N such that A and

B are not non-overlapping matrices.

On the contrary, the set N is expandable if there exists a matrix A ∈ U\N such that A and B are non-overlapping

matrices, for any B ∈ N .

We will prove that Lm×n is not a non-expandable set of matrices. The reason why it is not, maybe lies on

the fact that, for such kinds of sets, some constraints on the columns of the matrices are needed, as it seems to

come out from [1]. The columns of the matrices of Lm×n are not subject to obvious constraints. We recall that

Lm×n is constructed by using Dyck words which form the rows of the matrices (adding some suitable prefixes

or suffixes). This does not induces explicit restrictions over the columns.

Fixed a set Lm×n, denote A1 the first row of each A ∈ Lm×n. Suppose that there exist a binary strings X

with the following properties:

1. X is not a type 1, 2, 3, 4 or type 5 string in the n even case (type 6, 7 or type 8 in the n odd

case);

2. X and A1 are non-overlapping strings.

We observe that, from the second property, X begins with 1 and ends with 0. Now, we define the matrix

Z ∈Mn×n as follows:

• Z1 = A1;

• Zi = X for i = 2, . . . ,m.

It is not difficult to realize that Z /∈ Lm×n: its rows from the second to the last one do not match the

requirements of Definitions 3.1 or 3.3. Moreover, Z is a self non-overlapping matrix since any prefix (suffix)

of Z1 (involved in any vertical or skew overlap) does not match any suffix (prefix) of Zi = X for the second

property of the string X.

We conclude with the following

Proposition 6.2. Z ∪ Lm×n is a non-overlapping set.
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A =

Z

1 1 0 1 0 1 0 0

1 1 0 1 0 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 1 0 0 1 0 1 0

Z =

A

1 1 0 1 0 1 0 0

1 1 0 1 0 1 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

Figure 7: Two skew overlaps between Z and an element A ∈ Lm×n

Proof. Let A ∈ Lm×n. Vertical overlaps between A and Z do not create control windows with identical

corresponding entries since, for i = 2, 3, . . . ,m, it is A1 6= Zi and Z1 6= Ai according to Definitions 3.1 (or

3.3) and the construction of Z. In case of skew overlaps (see Figure 7), we observe that a prefix or a suffix

of A1 = Z1 is always involved in the control window and it is superimposed to a suffix or a prefix of X or Ai

(i = 1, 2, . . . ,m).

If the involved rows are A1 = Z1 and X, no their prefix or suffix can match since A1 and X are non-

overlapping strings. If the involved row are Z1 and Ai, then the proof is similar to the one of Proposition 3.2

(or 3.4) recalling that X ends with 0. 2

The construction of the string X strictly depends on the first row A1 of an element of Lm×n. For example,

if A1 = 11010100, the string X = 11111100 can be used to construct the matrix Z in order to expand the set

Lm×n:

1 1 0 1 0 1 0 0

Z =

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

Nevertheless, if A1 = 11100010, then the same X = 11111100 can not be used to construct Z since its suffix

11100 matches the prefix of length 5 of A1.

Unfortunately, once fixed a string A1, we are not able to find a general criterion to construct a suitable

string X.

7. Further developments

A first attempt to improve this study could start from the last hint of the preceding section. If A1 = 1u0 with

u ∈ Dn−2 is a type α Dyck word of length n, is there always a string X with the required properties? In the

positive case, is there a general procedure to construct it? If this procedure were found, it could shed light on

the possibility of developing the set Lm×n in order to make it a non-expandable set.

As far as the expandability is concerned, we notice that the types of rows of a matrix from the second to

the last one depends on the first row A1. For example, if A1 = 1n/20n/2, then a row Ai (i 6= 1) can be the

following: Ai = 14v with v ∈ Dn−4 and v 6= 1(n−4)/20(n−4)/2. This is a different row type with respect to type
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1, 2, 3, 4, 5. It is not difficult to show that this new row and A1 are non overlapping strings, so that it can

be used to generate new matrices in Lm×n. Consequently, we could ask to find all the possible strings which

are non-overlapping with A1. Again, is there a general and efficient procedure which, fixed A1, lists all the

non-overlapping strings with it?

Finally, an attempt aimed to the construction of variable-dimension matrices which are non-overlapping

could be carried on, following up what already done [10] for strings set.
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