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1. Introduction

I was approached by the editors to write a survey article, accessible to combinatorialists, discussing the “bridge”

between combinatorics and probability. The oldest lanes on that bridge are more than three hundred years old.

Probability problems from that period and for quite some time afterwards as well, involving cards and dice,

helped spur the development of basic combinatorial principles, which were then applied to solve the probability

problems. The initial lanes constructed in the other direction might be said to exist almost as long; indeed,

de Moivre’s seminal 1733 paper proving the Central Limit Theorem in the context of fair coin-tossing may be

thought of as a way of estimating binomial coefficients through a probabilistic lens. A very different aspect of

probability in the service of combinatorics dates to the 1940’s when the so-called “Probabilistic Method” was

first popularized by Erdős. Around the same time, an interest in random permutations began to develop among

certain probabilists. In this latter case, it is difficult to say which field is the giver and which the receiver. The

rising tide of graph theory and computer algorithms over the past seventy years has certainly provided fertile

ground for the use of probability in combinatorics. By today this bridge between combinatorics and probability

has amassed a multitude of decks and lanes, far more than can be dealt with in a single survey of modest length.

Thus, the choice of material was dictated by my own interests, tastes, and familiarity. It was also guided by a

desire to present results with either complete proofs or well-developed sketches of proofs, and to ensure that the

arguments are rather accessible to combinatorialists, including graduate students in the field. A large majority

of the material herein concerns enumerative combinatorics. For more on the historical view of the connection

between combinatorics and probability, see [17,26,63].

Elementary probability based on equally likely outcomes is almost by definition co-extensive with enu-

merative combinatorics. Today, probabilists sometimes study combinatorial structures on which probability

distributions other than the uniform ones are used. These other distributions are usually constructed as an

exponential family with a parameter. For example, in the context of random permutations, a lot of work has

been done in recent years in the case that the uniform measure is replaced by a measure from the family of

Ewens sampling distributions or the family of Mallows distributions. For the Ewens sampling distributions, see

for example [5,28]; for the Mallows distributions, see for example [9,31,32,52,58]. In this survey, we restrict to

the uniform distribution on combinatorial objects.

I now note several from among many of the important and interesting directions that I do not touch

upon at all. One such direction is Analytic Combinatorics, where probability and complex function theory

unite to provide answers to problems concerning the probabilistic structure of large combinatorial objects. We

refer the reader to the book, [29] for a comprehensive treatment and many additional references. See also

the book [54]. Another such direction is the problem of the length of the longest increasing subsequence in

a random permutation. This very specific problem turns out to be packed with a great wealth and variety

of mathematical ideas and directions. The original seedling for this direction was provided in [34]. Then

fundamental contributions were provided in [47,73], followed by the tour-de-force [7]. We refer the reader to the

book [64] for a very readable treatment and comprehensive references. Another direction not touched upon here

is random trees. We refer the reader to the book [21] and the survey article [45], along with references therein,

to the classical articles [1,2] on the Brownian continuum random tree, and for example to the papers [10,46,50].

Yet another direction not discussed in this article is the probabilistic aspects of pattern avoiding permutations.

See for example [36–40] and references therein. For the combinatorial aspects of pattern avoiding permutations,

see for example [14].

A nice set of lecture notes on combinatorics and probability is provided by [61]. The paper [60] aims to

bridge several results in combinatorics and probability. The book [67] concerns probabilistic methods in solving

combinatorial problems. A combinatorics book with many probabilistic exercises is [16].

To access the bridge on the probability side, one must pass a toll booth, which consists of some basic

probability. This is the material in Sections 2, 3 and 4. An excellent reference for this material is [22]; see
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also [26]. Readers who so wish can skirt the toll booth and access the bridge at Section 5, referring back if and

when necessary.

2. Some basic probabilistic concepts

Let Ω be a set, F a σ-algebra on Ω and P a probability measure on the measure space (Ω,F). The triplet

(Ω,F , P ) is called a probability space. In the case that Ω is finite or countably infinite, there is no reason not to

choose F to be the σ-algebra consisting of all subsets of Ω. In such cases, we will refer to (Ω, P ) as a probability

space. A random variable X on the probability space (Ω,F , P ) is a measurable function from (Ω,F) to (R,B),

where B is the Borel σ-algebra on R. For A ∈ B, we write P (X ∈ A) for P (X−1(A)). The expected value of X

is defined as

EX =

∫
Ω

XdP,

if X is integrable (that is, if
∫

Ω
|X|dP <∞) and if so, then the variance of X is defined as

σ2(X) = E(X − EX)2 =

∫
Ω

(X − EX)2dP,

which can be written as

σ2(X) = EX2 − (EX)2.

For k ∈ N, the kth moment of the random variable is defined as

EXk =

∫
Ω

XkdP,

if
∫

Ω
|X|kdP < ∞. If

∫
Ω
|X|kdP = ∞, we say that the kth moment does not exist. A subset D ⊂ Ω

is called an event. A collection D of events is called independent if for every finite or countably infinite

collection {Dj}j∈I ⊂ D, one has P (∩j∈IDj) =
∏
j∈I P (Dj). A sequence {Xn}∞n=1 of random variables is called

independent if P (X1 ∈ A1, X2 ∈ A2, . . .) =
∏∞
n=1 P (Xn ∈ An), for all Borel sets An ⊂ R, n = 1, 2, . . ..

Given events A,B with P (A) > 0, the conditional probability of the event B given the event A is denoted

by P (B|A) and defined by

P (B|A) =
P (A ∩B)

P (A)
.

The distribution ν of a random variable X is the probability measure on R defined ν(A) = P (X ∈ A), for

Borel sets A ⊂ R. The distribution function F (x) of a random variable X is defined by

F (x) = P (X ≤ x), x ∈ R.

It follows that F is continuous at x if and only if x is not an atom for the distribution ν of X; that is if and

only if ν({x}) = P (X = x) = 0. Given a probability measure ν on R, one can always construct a probability

space and a random variable on it whose distribution is ν.

A sequence {νn}∞n=1 of probability measures on R is said to converge weakly to the probability measure ν on

R if limn→∞ νn(A) = ν(A), for all Borels sets A ⊂ R which satisfy ν(∂A) = 0, where ∂A denotes the boundary

of A. With the help of some nontrivial measure-theoretic machinery, weak convergence can be shown to be

equivalent to the seemingly weaker requirement that replaces the class of all Borel sets above by the class of

rays (−∞, x], with x ∈ R.

A sequence {Xn}∞n=1 of random variables is said to converge in distribution to a random variable X if their

distributions {νn}∞n=1 converge weakly to the distribution ν of X. In light of the above two paragraphs, this

requirement can be written as

lim
n→∞

Fn(x) = F (x), for all x ∈ R at which F is continuous.

We write Xn
dist→ X. Note that if X is almost surely equal to the constant c, then Xn

dist→ X is equivalent to

limn→∞ P (|Xn − c| ≥ ε) = 0, for every ε > 0.
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3. The binomial distribution, the Poisson approxima-
tion, and some other classical distributions

For each n ∈ N and each p ∈ [0, 1], the binomial distribution Binomial(n, p) describes the random number Xn,p

of “successes” in a sequence of independent trials, where for each trial the probability of success is p. Such trials

are known as Bernoulli trials. Simple probabilistic and combinatoric reasoning reveals that

P (Xn,p = j) =

(
n

j

)
pj(1− p)n−j , j = 0, 1, . . . , n.

A random variable Xλ has the Poisson distribution with parameter λ > 0 if

P (Xλ = j) = e−λ
λj

j!
, j = 0, 1 · · · .

We denote this distribution by Poisson(λ). Unlike the case of the binomial distribution, at first glance one

does not see any combinatorics here; yet as we shall see directly below and in later sections, quite a bit of

combinatorics is lurking behind the scenes. A basic result appearing in a first course in probability theory

is the “Poisson approximation to the binomial distribution,” which states that for large N and small p, the

Poisson(Np) distribution approximates the Binomial(N, p) distribution. More precisely,

lim
N→∞,Np→λ

P (XN,p = j) = P (Xλ = j), j = 0, 1, . . . ;

that is,

lim
N→∞,Np→λ

(
N

j

)
pj(1− p)N−j = e−λ

λj

j!
, j = 0, 1, . . . . (1)

The proof of (1) is an easy calculus exercise. We note that (1) is equivalent to the statement

Xn,pn
dist→ Xλ as n→∞ and npn → λ.

The Poisson distribution arises in a wealth of applications, the most canonical of which is probably with

regard to call centers. Under many real-life situations, the number of calls that arrive at a call center during t

units of time, for any t > 0, can be modeled by the Poisson distribution with parameter λt, where λ is referred

to as the intensity parameter. The intuition behind this is as follows. Fix t > 0, and let n ∈ N. Divide the time

interval [0, t] into subintervals {J (n)
i }ni=1 all of length t

n . One makes two assumptions: (i) the (random) number

of calls in different subintervals are independent and identically distributed; (ii) in each subinterval J
(n)
i , the

probability of at least one call is λt
n + o( 1

n ), for some appropriate λ > 0 that characterizes the call center, and

the probability of more than one call is o( 1
n ). Under this scenario, it is easy to see that the distribution of

the number of calls can be approximated by Bin(n, λtn ). (Note that the probability that no interval has more

than one call is given by (1 − o( 1
n ))n, which approaches one as n → ∞.) And by the Poisson approximation,

Binomial(n, λtn ) is close to the Poisson(λt) distribution. For basic applications of the Poisson approximation,

see [26], and for a more extensive study, see [8].

A random variable X has the geometric distribution with parameter ρ ∈ (0, 1) if P (X = k) = ρk(1 − ρ),

k = 0, 1, . . ..

So far all the distributions we’ve presented have been discrete; that is there exists a finite or countably infinite

set {xj}j∈I , such that a random variable X with the distribution in question satisfies P (X = xj) > 0, for all

j ∈ I, and
∑
j∈I P (X = xj) = 1. Now we recall three continuous distributions that will appear in this survey.

A distribution is continuous if a random variable with the distribution in question satisfies P (X = x) = 0, for

all x ∈ R; equivalently, the random variable’s distribution function F (x) is a continuous function.

A random variable X has the exponential distribution with parameter λ > 0 if its distribution function is

given by F (x) = 1− e−λx, for x ≥ 0. Its density function is given by f(x) := F ′(x) = λe−λx, x ≥ 0. A random

variable has the standard normal (or Gaussian) distribution, denoted by N(0, 1), if its distribution function

is given by F (x) =
∫ x
−∞

e−
y2

2√
2π
dy, x ∈ R. Its density function is f(x) = e−

x2

2√
2π

, x ∈ R. For XN(0,1) a random

variable with the standard normal distribution, one has EXN(0,1) = 0 and σ2(XN(0,1)) = 1. A random variable

U has the uniform distribution on [0, 1] if its distribution function satisfies F (x) = x, for x ∈ [0, 1]. Its density

function is f(x) = 1, x ∈ [0, 1].

ECA 1:3 (2021) Article #S2S3 4



Ross G. Pinsky

4. Some basic probabilistic tools and results

Consider the probability space (Ω,F , P ). For events {Dj}Nj=1, we have by the subadditivity of measures,

P (∪Nj=1Dj) ≤
N∑
j=1

P (Dj),

with equality if and only if P (Di ∩Dj) = 0, for i 6= j.

Let X be a random variable, denote its expected value by EX, and let σ2(X) = E(X − EX)2 denote its

variance. Markov’s inequality states that

P (|X| ≥ L) ≤ 1

L
E|X|, for L > 0.

Multiplying both sides of the above inequality by L, one sees that its proof is essentially immediate from

the definition of the expectation. We recall Chebyshev’s inequality, an extremely simple but often very useful

formula. It states that

P (|X − EX| ≥ λ) ≤ σ2(X)

λ2
, λ > 0.

Here is a one-line proof using Markov’s inequality (with L = 1):

P (|X − EX| ≥ λ) = P

(
(X − EX)2

λ2
≥ 1

)
≤ E (X − EX)2

λ2
=
σ2(X)

λ2
.

Let {Xn}∞n=1 be a sequence of random variables and let Sn =
∑n
j=1Xj . We have

ESn =

n∑
j=1

EXj .

If the random variables are independent and have finite variances, then a rather straightforward calculation

reveals that the variance of the sum equals the sum of the variances:

σ2(Sn) =

n∑
j=1

σ2(Xj).

Now assume that {Xn}∞n=1 are independent and identically distributed (henceforth IID). Assuming that the

expected value exists for these random variables, and denoting it by µ, the Weak Law of Large Numbers holds;

namely,
Sn
n

dist→ µ.

As noted earlier, the above result is equivalent to

lim
n→∞

P

(
|Sn
n
− µ| ≥ ε

)
= 0, for all ε > 0. (2)

Under the additional assumption of finite variance, (2) follows immediately by applying Chebyshev’s inequality

to the random variable Sn
n , and using the fact that σ2(Sn) = nσ2(X1).

Assuming that the IID random variables {Xn}∞n=1 have a finite variance σ2, then the Central Limit Theorem

holds. This result describes the probabilistic fluctuations of Sn
n from it expected value µ:

√
n

σ

(Sn
n
− µ

)
=
Sn − nµ
σ
√
n

dist→ XN(0,1),

where XN(0,1) denotes a random variable with the standard normal distribution.

More generally, if {Wn}∞n=1 is an arbitrary sequence of random variables with finite expectations, we say

that the weak law of large numbers holds for {Wn}∞n=1 if

Wn

EWn

dist→ 1,
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and if furthermore, the variances σ2(Wn) are finite, we say that the central limit theorem holds for {Wn}∞n=1 if

Wn − EWn

σ(Wn)

dist→ XN(0,1).

Let {Wn}∞n=1 be an arbitrary sequence of random variables. The first moment method states that:

if lim
n→∞

E|Wn| = 0, then Wn
dist→ 0. (3)

The proof is immediate from Markov’s inequality; indeed,

P (|Wn| ≥ ε) ≤
1

ε
E|Wn|

n→∞→ 0, for all ε > 0.

The second moment method states that

if σ2(Wn) = o((EWn)2), then
Wn

EWn

dist→ 1. (4)

The proof is almost immediate from Chebyshev’s inequality. Indeed, let Yn = Wn

EWn
. Then EYn = 1 and

σ2(Yn) = 1
(EWn)2σ

2(Wn), where we use the fact that σ2(cX) = c2σ2(X), if X is a random variable and c is a

constant. Thus, by Chebyshev’s inequality, for any ε > 0,

P (| Wn

EWn
− 1| ≥ ε) = P (|Yn − EYn| ≥ ε) ≤

σ2(Yn)

ε2
=

σ2(Wn)

ε2(EWn)2

n→∞→ 0.

A frequently employed tool in these pages is the method of indicator random variables. The indicator

random variable IA for an event A ⊂ Ω is defined by

1A(ω) =

{
1, if ω ∈ A;

0, if ω ∈ Ω−A.

We illustrate this tool first with the case of a binomial random variable. According to the definition, we have

EXn,p =
∑n
j=0 j

(
n
j

)
pj(1−p)n−j . A simpler way to calculate this expectation is to recall the probabilistic model

that gave rise to Xn,p; namely that Xn,p is the number of successes in a sequence of n independent Bernoulli

trials, where for each trial the probability of success is p. Thus, we define the indicator random variable Ii to be

equal to 1 if there was a success on the ith Bernoulli trial and 0 if there was a failure. Then Ii has the following

Bernoulli distribution with parameter p: P (Ii = 1) = 1 − P (Ii = 0) = p. Clearly EIi = p. We can represent

Xn,,p as

Xn,p =

n∑
i=1

Ii,

and then by the linearity of the expectation, we immediately obtain

EXn,p = np.

Note that this calculation does not use the fact that the {Ii}ni=1 are independent. An easy calculation shows

that the variance of Ii is equal to p(1− p). Thus, we have

σ2(Xn,p) =

n∑
i=1

σ2(Ii) = np(1− p).

When we employ indicator random variables in this article, the typical situation will be

X =

n∑
i=1

1Ai ,

where the events {Ai}ni=1 are not independent. Since E1A = P (A), we have

EX =

n∑
i=1

P (Ai).
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Since the variance is given by σ2(X) = EX2 − (EX)2, we will have the variance at our disposal as soon as we

calculate the second moment. We have

EX2 = E(

n∑
i=1

1Ai)
2 =

n∑
i=1

P (Ai) + 2
∑

1≤i<j≤n

P (Ai ∩Aj).

We conclude this section with the method of moments for proving convergence in distribution [22]. Consider

a random variable X which possesses all of its moments. Under the growth condition

lim sup
k→∞

1

k
(EX2k)

1
2k <∞,

the convergence in distribution of a sequence of random variables {Xn}∞n=1 to X follows if

lim
n→∞

EXk
n = EXk, for all k ∈ N.

5. Moments of the Poisson distribution, Stirling num-
bers of the second kind and Touchard polynomials

It turns out that the Poisson distribution has an intimate connection with the Stirling numbers of the second

kind S(n, k), n ∈ N, 1 ≤ k ≤ n. Recall that S(n, k) counts the number of ways to partition a set of n labelled

objects into k non-empty subsets [48, 71]. For convenience in formulas, one defines S(n, 0) = 0, for n ∈ N and

S(0, 0) = 1. The connection comes via the moments of the Poisson distribution. The nth moment, by definition,

is given by

EXn
λ =

∞∑
k=0

(e−λ
λk

k!
)kn, n = 0, 1, . . . ; (5)

however we will calculate the moments using a different tack.

It will be convenient to define the falling factorial:

(x)j = x(x− 1) · · · (x− j + 1) = j!

(
x

j

)
, for j ∈ N and x ∈ R.

Also, for convenience, one defines (x)0 = 1. The falling factorials and the Stirling numbers of the second kind

are connected by the formula

xn =

n∑
j=0

S(n, j)(x)j , n = 0, 1, . . . . (6)

We supply a quick proof of (6) [71]. We may assume that n ≥ 1. It is enough to prove (6) for positive integers

x, in which case xn is the number of functions f : [n] → A, where |A| = x. We now count such functions in

another way. For each j ∈ [x], consider all those functions whose range contains exactly j elements. The inverse

images of these elements give a partition of [n] into j nonempty sets, {Bi}ji=1. We can choose the particular j

elements in
(
x
j

)
ways, and we can order the sets {Bi}ji=1 in j! ways. Thus there are S(n, j)

(
x
j

)
j! = S(n, j)(x)j

such functions. Therefore the number of functions f as above can also be represented as
∑n
j=0 S(n, j)(x)j .

In the case of the Poisson distribution, the falling factorial moments, E(Xλ)j , are very simple. We have

E(Xλ)j =

∞∑
k=0

(e−λ
λk

k!
)(k)j = e−λ

∞∑
k=0

λk

(k − j)!
= λj , j ≥ 0. (7)

Substituting Xλ for x in (6), taking expectations on both sides of the equation and using (7) gives

EXn
λ =

n∑
j=0

S(n, j)E(Xλ)j =

n∑
j=0

S(n, j)λj . (8)

The Touchard polynomials (for example, see [49]) are defined by

Tn(x) =

n∑
j=0

S(n, j)xj , n = 0, 1, . . . .
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(For n ≥ 1, we can begin the summation above from j = 1.) Thus, from (8), the moments of a Poisson–

distributed random variable can be written in terms of the Touchard polynomials as

EXn
λ = Tn(λ), n = 0, 1, . . . . (9)

Recall that for each n ∈ N, the Bell number Bn counts the total number of partitions of the set [n]; that is,

Bn =

n∑
k=0

S(n, k), n = 1, 2, . . . .

It then follows from (9) that

EXn
1 = Bn, n = 1, 2, . . . . (10)

Thus, the nth moment of the Poisson distribution with parameter λ = 1 is equal to the total number of partitions

of the set [n].

In each of Sections 6 and 8, we give an application of the connection between the Poisson distribution and

Stirling numbers of the second kind as expressed in (9).

The calculations in (6)-(8) hardly lend intuition as to why the Poisson distribution should be connected

to the Stirling numbers of the second kind via (9). The intuition (as well as an alternate proof of (9)) comes

from the Poisson distribution’s connection to combinatorics; namely, through the Poisson approximation to the

binomial distribution.

Alternate proof of (9). We may assume that n ≥ 1. The nth moment of a random variable distributed as

Bin(N, λN ) is given by

EXn
N, λN

=

N∑
j=0

jn
(
N

j

)
(
λ

N
)j(1− λ

N
)N−j .

Since
N∑

j=M

jn
(
N

j

)
(
λ

N
)j(1− λ

N
)N−j ≤

∞∑
j=M

jn

j!
λj , 0 ≤M ≤ N,

we have limM→∞ supN≥M
∑N
j=M jn

(
N
j

)
( λN )j(1− λ

N )N−j = 0. This in conjunction with (1) shows that

EXn
λ = lim

N→∞
EXn

N, λN
, n = 0, 1, . . . . (11)

Writing XN, λN
as a sum of indicator random variables,

XN, λN
=

N∑
j=1

I
(N)
j ,

where the {I(N)
j }Nj=1 are IID and distributed according to the Bernoulli distribution with parameter λ

N , we have

Xn
N, λN

=

N∑
j1,j2,...,jn=1

n∏
i=1

I
(N)
ji

, n ∈ N. (12)

Note that

E

n∏
i=1

I
(N)
ji

= (
λ

N
)k, where k = |{j1, j2, . . . , jn}|. (13)

From here on, we assume that N ≥ n. (Recall from (11) that we will be letting N → ∞ with n fixed.) How

many n-tuples (j1, . . . , jn) ∈ [N ]n satisfy |{j1, j2, . . . , jn}| = k? We first need to choose k integers from [N ];

there are
(
N
k

)
ways to make this choice. Having fixed k such integers, we then need to set ji equal to one of

these integers, for each i = 1, . . . , n, and we need to do it in such a way as to insure that |{j1, . . . , jn}| = k.

The number of ways to do this is k! times the number of ways to partition a set of size n into k non-empty sets;

namely, k!S(n, k) ways. Using this observation along with (12) and (13), we have

EXn
N, λN

=

n∑
k=1

(
N

k

)
k!S(n, k)(

λ

N
)k, n ∈ N. (14)
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From (14), we conclude that

lim
N→∞

EXn
N, λN

=

n∑
k=0

S(n, k)λk = Tn(λ), n = 0, 1, . . . . (15)

From (15) and (11), we obtain (9). �

6. Dobiński’s formula for Bell numbers and an algorithm
for selecting a random partition of [n]

Considering (5) along with (10) yields the beautiful formula

Bn = e−1
∞∑
k=0

kn

k!
, n ∈ N.

It is quite striking that the sequence {Bn}∞n=1 of combinatorial numbers can be represented as such an infinite

series with a parameter. This result is known as Dobiński’s formula [19, 48, 49, 59, 65]. As an interesting

application of Dobiński’s formula, we define a constructive algorithm that chooses uniformly at random a

partition of [n]; that is, it chooses at random one of the Bn partitions of [n] in such a way that each partition

has probability 1
Bn

of being chosen [59,70].

To choose a partition of [n], we must choose a k ∈ [n] that determines how many sets will be in the

partition, and then given k, we must choose one of the S(n, k) partitions of [n] into k non-empty subsets. We

utilize a balls-in-bins type of construction. For each n, let Mn be a positive, integer-valued random variable

with distribution

P (Mn = m) =
1

eBn

mn

m!
, m = 1, 2, . . . . (16)

Note that this is indeed a probability distribution in light of Dobiński’s formula. Now take Mn bins, and

sequentially place n balls, numbered from 1 to n, into these bins, uniformly at random. Let Kn denote the

number of non-empty bins. (Of course, Kn is random.) We have now constructed a random set partition of [n]

into Kn non-empty sets. Denote it by Ψn.

Proof that the random partition Ψn is uniformly distributed. We need to show that P (Ψn = ψ) = 1
Bn

, for every

partition ψ of [n]. Fix a partition ψ of [n]. Let k denote the number of sets in the partition ψ. If Mn = m < k,

then it is clear from the construction that it is not possible to have Ψn = ψ. That is, the conditional probability

that Ψn = ψ given that Mn = m is equal to zero:

P (Ψn = ψ|Mn = m) = 0, if m < k.

On the other hand, for m ≥ k, we claim that

P (Ψn = ψ|Mn = m) =
(m)k
mn

=
m(m− 1) · · · (m− k + 1)

mn
, m ≥ k. (17)

To see this, note first that conditioned on Mn = m, there are mn possible ways to place the balls into the bins.

Thus, to prove (17), we need to show that of these mn ways, exactly m(m − 1) · · · (m − k + 1) of them result

in constructing the partition ψ. In the paragraph after the next one, we will prove this fact. In order to make

the proof more reader-friendly, in the next paragraph, we consider what must happen to the first three balls in

two specific examples.

Let 3 ≤ k ≤ n and of course, as in (17), let m ≥ k. Assume first, for example, that the numbers 1 and 3

appear in the same subset of the partition ψ, and that the number 2 appears in a different subset of ψ. Then

in order to construct the partition ψ, there are m bins to choose from for ball number 1, there are m− 1 bins

to choose from for ball number 2, namely any bin except for the one containing ball number 1, and there is

one bin to choose from for ball number 3, namely the bin containing ball number 1. Now assume alternatively

that the numbers 1,2 and 3 all appear in different subsets in the partition ψ. Then in order to construct the

partition ψ, there are m bins to choose from for ball number 1, there are m − 1 bins to choose from for ball

number 2, and there are m− 2 bins to choose from for ball number 3.
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We now give the full proof. Let l1 = 0 and for j = 2, . . . , n, let lj equal the number of subsets in the

partition ψ that contain at least one of the numbers in [j − 1]. For each j ∈ [n], consider the situation where

balls numbered 1 through j − 1 have been placed in bins in such a way that it is still possible to end up with

the partition ψ, and then let γj denote the number of bins in which ball number j can be placed in order to

continue to preserve the possibility of ending up with the partition ψ. Of course γ1 = m. For j ≥ 2, γj is

equal to 1 if in ψ, the subset containing j also contains an element from [j − 1], while otherwise, γj = m− lj .
Furthermore, for j ≥ 1, if γj = 1, then lj+1 = lj , while if γj = m− lj , then lj+1 = lj + 1. From this analysis, it

follows that the number of ways to place the n balls into the m bins in such a way as to result in constructing

ψ is
∏n
j=1 γj = m(m− 1) · · · (m− j + 1).

From (16)-(17) we conclude that

P (Ψn = ψ) =

∞∑
m=1

P (Mn = m)P (Ψn = ψ|Mn = m)

=

∞∑
m=k

1

eBn

mn

m!

(m)k
mn

=
1

eBn

∞∑
m=k

1

(m− k)!
=

1

Bn
,

which completes the proof that the algorithm yields a uniformly random partition of [n]. �

We note that in [70] it is also proved that the number of empty bins appearing in the construction is

independent of the particular partition produced, and is distributed according to the Poisson distribution with

parameter 1.

For some more on probabilistic aspects of set partitions, see [48, 59]. For some results concerning the

asymptotic behavior of certain partition statistics under the uniform distribution on partitions of [n], see [35,66].

7. Chinese restaurant and Feller constructions of ran-
dom permutations with applications

Consider the space Sn of permutations of [n] with the uniform probability measure Pn which gives probability
1
n! to each permutation σ ∈ Sn. We present the so-called Chinese restaurant construction which simultaneously

yields a uniformly random permutation Σn in Sn, for all n [61]. Furthermore, this construction is consistent in

the sense that if one writes out the permutation Σn as the product of its cycles and deletes the number n from

the cycle in which it appears, then the resulting random permutation of Sn−1 is equal to Σn−1.

The construction works as follows. Consider a restaurant with an unlimited number of circular tables, each

of which has an unlimited number of seats. Person number 1 sits at a table. Now for n ≥ 1, suppose that

persons number 1 through n have already been seated. Then person number n+1 chooses a seat as follows. For

each j ∈ [n], with probability 1
n+1 , person number n+1 chooses to sit to the left of person number j. Also, with

probability 1
n+1 , person number n+ 1 chooses to sit at an unoccupied table. Now for each n ∈ N, the random

permutation Σn ∈ Sn is defined by Σn(i) = j, if after the first n persons have taken seats, person number j is

seated to the left of person number i.

To see that Σn is a uniformly random permutation in Sn, proceed by induction. It is true for n = 1. Now

assume it is true for some n ≥ 1. Let σ ∈ Sn+1, and let σ′ ∈ Sn be the permutation obtained by writing σ as

a product of cycles and deleting n + 1. By the inductive assumption, P (Σn = σ′) = 1
n! . By the construction,

P (Σn+1 = σ|Σn = σ′) = 1
n+1 and P (Σn+1 = σ|Σn 6= σ′) = 0. Thus,

P (Σn+1 = σ) = P (Σn = σ′)P (Σn+1 = σ|Σn = σ′)+

P (Σn 6= σ′)P (Σn+1 = σ|Σn 6= σ′) =
1

n!

1

n+ 1
=

1

(n+ 1)!
.

The above-noted consistency is also clear.

The construction above allows for easy analysis of certain properties of random permutations. We illustrate

this with regard to the number of cycles in a random permutation. Let N (n)(σ) denote the number of cycles

in the permutation σ ∈ Sn. Then N (n) is a random variable on the probability space (Sn, Pn). Fix n ∈ N. The

number of cycles in the random permutation Σn is the number of persons from among persons 1 through n who
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chose to sit at an unoccupied table. The probability that person j chose to sit at an unoccupied table is 1
j . It

is clear that whether or not person j chose to sit at an empty table is independent of whether or not any of the

other persons chose to do so. In light of this, it follows that the distribution of the random variable Nn is equal

to the distribution of
∑n
i=1 Ii, where {Ii}ni=1 are independent and for each i, Ii has the Bernoulli distribution

with parameter 1
i . From this it is immediate that

EN (n) =

n∑
i=1

1

i
∼ log n as n→∞.

Recalling that the variance of a sum of independent random variables is equal to the sum of their variances, a

simple calculation gives

Var(N (n)) =

n∑
i=1

i− 1

i2
∼ log n as n→∞.

Now the second moment method (4) yields the weak law of large numbers for N (n).

Theorem 7.1. The total number of cycles N (n) in a uniformly random permutation from Sn satisfies

N (n)

log n

dist→ 1.

And some rather basic probabilistic machinery yields the central limit theorem for N (n) [22].

Theorem 7.2. The total number of cycles N (n) in a uniformly random permutation from Sn satisfies

N (n) − log n√
log n

dist→ N(0, 1).

We now present an alternative construction of a random permutation in Sn. The construction, called the

Feller construction [5, 25], builds the permutation’s cycles one by one. Begin with the number 1. Choose

uniformly at random a number j from [n] and set it equal to σ1: σ1 = j. If j = 1, then we have constructed

a complete cycle (of length one) in the permutation. If j 6= 1, choose uniformly at random a number k from

[n] − {j} and set it equal to σj : σj = k. If k = 1, then we have constructed a complete cycle (of length two).

If k 6= 1, choose uniformly at random a number l from [n] − {j, k} and set it equal to σk: σk = l. If l = 1,

then we have constructed a complete cycle (of length three). If l 6= 1, choose uniformly at random a number m

from [n] − {j, k, l} and set it equal to σl: σl = m. Continue like this until the number 1 is finally chosen and

a cycle is completed. Once a cycle is completed, start the process over again beginning, say, with the smallest

number that has not been used in the completed cycle. This number now takes on the role that the number 1

had above. After n selections of a number uniformly at random, each time from a set whose size has shrunk by

one from the previous selection, the process ends and the construction of the permutation is completed. Denote

the permutation constructed here by Σ′n. It is clear from the construction that Σ′n is uniformly distributed on

Sn. As an example, let n = 6. If we first select uniformly at random from [6] the number 4, and then select

uniformly at random from [6]−{4} the number 1, then we have σ1 = 4 and σ4 = 1, completing a cycle. Now we

start with the smallest number not yet used, which is 2. If we select uniformly at random from [6]− {1, 4} the

number 2, then σ2 = 2, and we have completed another cycle. Now we start again with the smallest number

not yet used, which is 3. If we select uniformly at random from [6] − {1, 2, 4} the number 6, then we have

σ3 = 6. If then we select uniformly at random from [6] − {1, 2, 4, 6} the number 5, then σ6 = 5. The last step

of course is deterministic; we must choose σ5 = 3. We have constructed the permutation Σ′6 = 426135 (where

the permutation has been written in one-line notation).

From the above description, it is clear that the probability of completing a cycle at the jth selection of a

number is 1
n−j+1 ; indeed, at the jth selection, there are n − j + 1 numbers to choose from, and only one of

them completes a cycle. Define the indicator random variable In−j+1 to be one if a cycle was completed at the

jth selection, and zero otherwise. Then In−j+1 has the following Bernoulli distribution with parameter 1
n−j+1 :

P (In−j+1 = 1) = 1 − P (In−j+1 = 0) = 1
n−j+1 . A little thought also shows that the {Ii}ni=1 are mutually

independent; knowledge of the values of certain of the Ii’s has no influence on the probabilities concerning the
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other Ii’s. Thus, as with the Chinese restaurant construction, the Feller construction leads immediately to the

fact that Nn is distributed as
∑n
i=1 Ii.

For j ∈ [n] and σ ∈ Sn, let L(n);j(σ) denote the length of the cycle in σ that contains j. Then L(n);j is

a random variable on the probability space (Sn, Pn). Since Pn is the uniform distribution, it is clear that the

distribution of L(n);j is the same for all j ∈ [n]. Using the Feller construction, we easily obtain the following

result.

Proposition 7.1. Under Pn, for each j ∈ [n], the random variable L(n);j is uniformly distributed on [n].

Proof. As noted above, it suffices to consider j = 1. From the Feller construction, the probability that for the

uniformly random permutation Σ′n in Sn, the cycle containing 1 is of size j is given by 1
n , for j = 1, and is given

by n−1
n

n−2
n−1 · · ·

n−j+1
n−j+2

1
n−j+1 = 1

n , for j = 2, . . . , n.

Now for each n ∈ N and j ∈ [n], let A
(n)
j = A

(n)
j (Σ′n) denote the length of the jth cycle constructed via

the Feller construction, with A
(n)
j = 0 if fewer than j cycles were constructed. We refer to {A(n)

j }nj=1 as the

ordered cycles. Note that whereas L(n);j was defined on (Sn, Pn), independent of any particular construction,

A
(n)
j is defined in terms of the Feller construction. Let {Un}∞n=1 be a sequence of IID random variables with

the uniform distribution on [0, 1]. Let X1 = U1 and Xn = (1− U1) · · · (1− Un−1)Un, for n ≥ 2. The {Xn}∞n=1

can be understood in terms of the uniform stick breaking model: take a stick of length one and break it at a

uniformly random point. Let the length of the left-hand piece be X1. Take the remaining piece of stick, of

length 1−X1, and break it at a uniformly random point. Let the length of the left-hand piece be X2, etc. In

light of Proposition 7.1 and the Feller construction, the following theorem is almost immediate.

Theorem 7.3. For any k ∈ N, the random vector 1
n (A

(n)
1 , . . . , A

(n)
k ) converges in distribution to the random

vector (X1, . . . , Xk), where

Xj = (1− U1) · · · (1− Uj−1)Uj , j ∈ N,

and {Un}∞n=1 are IID random variables distributed according to the uniform distribution on [0, 1].

The distribution of {Xn}∞n=1 is known as the GEM distribution [5]. It will be mentioned again in Section 9.

8. Convergence in distribution of cycle counts of fixed
length in random permutations to Poisson distribu-
tions

In this section, we present a second application of the connection between the Poisson distribution and Stirling

numbers of the second kind as expressed in (9). As in the previous section, we consider the space Sn of

permutations of [n] with the uniform probability measure Pn. For each m ∈ [n], let C
(n)
m : Sn → N count the

number of m-cycles in a permutation; that is, C
(n)
m (σ) equals the number of m-cycles in σ ∈ Sn. Then C

(n)
m is

a random variable on the probability space (Sn, Pn). We use the standard probability notation Pn(C
(n)
m = k):

Pn(C(n)
m = k) = Pn({σ ∈ Sn : C(n)

m (σ) = k}) =
|{σ ∈ Sn : C

(n)
m (σ) = k}|
n!

.

For fixed n, the distribution of C
(n)
m is complicated, but we will prove that as n→∞, the distribution of C

(n)
m

converges in distribution to the Poisson( 1
m ) distribution. That is,

lim
n→∞

Pn(C(n)
m = k) = e−

1
m

( 1
m )k

k!
, k = 0, 1, . . . ; m = 1, 2, . . . . (18)

In fact, a stronger result holds; namely that for anym ∈ N, the distribution of the random vector (C
(n)
1 , . . . , C

(n)
m )

converges in distribution to a random vector, call it (X1, . . . , Xm), with independent components, where Xi is

distributed according to the Poisson distribution with parameter 1
i . In the theorem below, the product on the

right-hand side expresses the independence of the components {Xi}mi=1.
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Theorem 8.1. Let C
(n)
i denote the total number of cycles of length i in a uniformly random permutation from

Sn. Then

lim
n→∞

Pn(C
(n)
1 = k1, . . . , C

(n)
m = km) =

m∏
i=1

e−
1
i

( 1
i )
ki

ki!
,

for ki = 0, 1, . . . , 1 ≤ i ≤ m; m = 1, 2, . . . .

(19)

The proof we give of (18) readily generalizes to a proof Theorem 8.1, but the notation is more cumbersome.

The combinatorial part of our proof is contained in the following proposition.

Proposition 8.1. For n ≥ mk,

En(C(n)
m )k = Tk(

1

m
).

The proof of (18) follows from Proposition 8.1, (9) and the method of moments described in the final

paragraph of Section 4. To see that the condition required to employ the method of moments indeed holds in

the case at hand, see, for example, the explanation in the first two paragraphs of the proof of Theorem C in [56].

We note that there are ways other than the method of moments to prove (18) and Theorem 8.1. See for

example [5] which uses (22) in Chapter 9 and the method of inclusion-exclusion, or [53] for a completely different

approach. A proof of (19) in [74] (and also in [55]) uses generating functions in a rather involved way. The first

proof of (18) seems to be in [33] and the proof of (19) may go back to [43].

Proof of Proposition 8.1. Assume that n ≥ mk. For D ⊂ [n] with |D| = m, let 1D(σ) be the indicator random

variable equal to 1 or 0 according to whether or not σ ∈ Sn possesses an m-cycle consisting of the elements of

D. Then we have

C(n)
m (σ) =

∑
D⊂[n]

|D|=m

1D(σ),

and

En(C(n)
m )k =

∑
{(D1,...,Dk)⊂[n]k:|Dj |=m,j∈[k]}

En

k∏
j=1

1Dj . (20)

Now En
∏k
j=1 1Dj 6= 0 if and only if for some l ∈ [k], there exist disjoint sets {Ai}li=1 such that {Dj}kj=1 =

{Ai}li=1. If this is the case, then

En

k∏
j=1

1Dj = En

l∏
j=1

1Aj =
(n− lm)!((m− 1)!)l

n!
. (21)

(Here we have used the assumption that n ≥ mk.) The number of ways to construct a collection of l disjoint

sets {Ai}li=1, each of which consists of m elements from [n], is n!
(m!)l(n−lm)! l!

. Given the {Ai}li=1, the number

of ways to choose the sets {Dj}kj=1 so that {Dj}kj=1 = {Ai}li=1 is equal to the Stirling number of the second

kind S(k, l), the number of ways to partition a set of size k into l nonempty parts, multiplied by l!, since the

labeling must be taken into account. From these facts along with (20) and (21), we conclude that for n ≥ mk,

En(C(n)
m )k =

k∑
l=1

( (n− lm)!((m− 1)!)l

n!

)( n!

(m!)l(n− lm)!

)
S(k, l) =

k∑
l=1

1

ml
S(k, l) = Tk(

1

m
).

�

9. Limiting behavior of the lengths of the largest and
smallest cycles in random permutations and the con-
nection to the Dickman and Buchstab functions

Theorem 8.1 deals with the limiting distributions of the number of cycles of fixed lengths. We now consider the

limiting behavior of the lengths of the largest cycles or the smallest cycles. We begin by considering the largest

cycles.
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One way to analyze this begins with the formula of Cauchy which counts the number of permutations with

given cycle numbers. Let {cj}nj=1 be nonnegative integers. Cauchy’s formula [5] states that the number of

permutations σ ∈ Sn that satisfy C
(n)
j (σ) = cj , for all j ∈ [n], is equal to n!

∏n
j=1( 1

j )cj 1
cj !

, if
∑n
j=1 jcj = n, and

of course is equal to zero otherwise. Therefore, for a random permutation of Sn, we have

Pn(C
(n)
1 = c1, . . . , C

(n)
n = cn) =

n∏
j=1

(
1

j
)cj

1

cj !
, if

n∑
j=1

jcj = n. (22)

The product on the right-hand side above reminds one of Poisson distributions. Let {Zj}∞j=1 be a sequence of

independent random variables, with Zj ∼ Poisson( 1
j ), and define T[n] =

∑n
j=1 jZj , for n ∈ N. We have

P (Z1 = c1, . . . , Zn = cn, T[n] = n) =

n∏
j=1

e−
1
j (

1

j
)cj

1

cj !
=

e−
∑n
j=1

1
j

n∏
j=1

(
1

j
)cj

1

cj !
, if

n∑
j=1

jcj = n,

(23)

since the requirement T[n] = n is automatically fulfilled if
∑n
j=1 jcj = n. Summing (22) over all {cj}nj=1 which

satisfy
∑n
j=1 jcj = n gives ∑

(c1,...,cn):∑n
j=1 jcj=n

n∏
j=1

(
1

j
)cj

1

cj !
= 1. (24)

Summing (23) over this same set of {cj}nj=1, and using (24) gives

P (T[n] = n) = e−
∑n
j=1

1
j . (25)

From (22), (23) and (25), we conclude that

Pn(C
(n)
1 = c1, . . . , C

(n)
n = cn) = P (Z1 = c1, . . . , Zn = cn|T[n] = n). (26)

The representation in (26) of the distribution of the lengths of the cycles in terms of a conditioned distribution

of independent random variables can be exploited. We demonstrate this by sketching the method in the case

of the longest cycle [5]. Let L
(n)
j (σ) denote the length of the jth longest cycle in σ ∈ Sn, j = 1, 2, . . .. We will

consider only L
(n)
1 , but one can work similarly with the random vector (L

(n)
1 , . . . , L

(n)
j ). The event {L(n)

1 ≤ m}
can be written as {C(n)

m+1 = C
(n)
m+2 = · · · = C

(n)
n = 0}. Using (26) this gives

Pn(L
(n)
1 ≤ m) = P (Zm+1 = · · · = Zn = 0|T[n] = n) =

P (Zm+1 = · · · = Zn = 0, T[n] = n)

P (T[n] = n)
=
P (Zm+1 = · · · = Zn = 0, T[m] = n)

P (T[n] = n)
=

P (Zm+1 = · · · = Zn = 0)P (T[m] = n)

P (T[n] = n)
=
P (T[m] = n)

P (T[n] = n)
exp(−

n∑
j=m+1

1

j
),

(27)

where we have used the independence of T[m] and {Zj}nj=m+1 in the next to the last equality.

It is known that the random variable 1
nT[n] = 1

n

∑n
j=1 jZj converges in distribution as n → ∞ to the

so-called Dickman distribution [5, 57]. This distribution, supported on [0,∞), has density e−γρ(x), where γ

is Euler’s constant and ρ is the Dickman function, defined as the unique continuous function satisfying the

differential-delay equation
ρ(x) = 1, x ∈ (0, 1];

xρ′(x) + ρ(x− 1) = 0, x > 1.
(28)

(The proof that
∫∞

0
ρ(x)dx = eγ is not immediate [51,72].) For use below, we note that∫ x

x−1

ρ(y)dy = xρ(x), x ≥ 1. (29)

This identity follows by defining H(x) =
∫ x
x−1

ρ(y)dy and using (28) to obtain H ′(x) = (xρ(x))′ and H(1) = 1.

For more on the interesting topic of convergence in distribution to the Dickman distribution, see [57] and
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references therein. In (27), replace m by mn and assume that mn ∼ nx as n→∞, where x ∈ (0, 1). Then the

quotient on the right-hand side of (27) can be written as

P (T[mn] = n)

P (T[n] = n)
=
P ( 1

mn
T[mn] = n

mn
)

P ( 1
nT[n] = 1)

. (30)

On the right-hand side above, both 1
mn

T[mn] and 1
nT[n] converge in distribution to the Dickman distribution,

and limn→∞
n
mn

= 1
x . Convergence in distribution to the Dickman distribution yields

lim
N→∞

P (
1

N
T[N ] ∈ [a, b]) =

∫ b

a

e−γρ(x)dx, 0 ≤ a < b <∞, (31)

but it gives no information about the point probabilities on the right-hand side of (30). However, applying a

technique called size-biasing, which has particularly nice properties in the case of sums of independent Poisson

random variables, one can express the point probabilities of T[N ] in terms of interval probabilities:

P (T[N ] = k) =
1

k

N∑
l=1

P (T[N ] = k − l), k = 1, 2, . . . . (32)

Using (31) and (32) with N = n and with N = mn, along with (30) and (29), we obtain

lim
n→∞

P (T[mn] = n)

P (T[n] = n)
=

∫ 1
x

1
x−1

ρ(y)dy =
1

x
ρ(

1

x
), if lim

n→∞

mn

n
= x ∈ (0, 1). (33)

Substituting mm ∼ nx in (27), noting that limn→∞ exp(−
∑n
j=mn+1

1
j ) = x, and using (33), we arrive at the

following result.

Theorem 9.1. Let L
(n)
1 denote the length of the largest cycle in a uniformly random permutation from Sn.

Then 1
nL

(n)
1 converges in distribution to the distribution whose distribution function is given by ρ( 1

x ), x ∈ [0, 1].

That is,

lim
n→∞

Pn(
1

n
L

(n)
1 ≤ x) = ρ(

1

x
), x ∈ [0, 1].

As noted, we have followed [5] for the proof of Theorem 9.1; the original proof appears in [68].

The distribution arising above, whose distribution function is ρ( 1
x ), for x ∈ [0, 1], is the first component of

the Poisson-Dirichlet distribution, which can be defined as follows. Recall the GEM distribution, that is, the

stick-breaking model {Xn}∞n=1 introduced at the end of Section 7 and appearing in Theorem 7.3. Let {X̂n}∞n=1

denote the decreasing rearrangement of {Xn}∞n=1. The Poisson-Dirichlet distribution can be defined as the

distribution of {X̂n}∞n=1. See [5] and references therein. In particular, the distribution of X̂1 is the distribution

arising in Theorem 9.1. It can be shown that for any j ∈ N, the random vector (L
(n)
1 , . . . , L

(n)
j ) converges in

distribution to the distribution of (X̂1, . . . , X̂j) [5].

In number theory, the Poisson-Dirichlet distribution comes up in a parallel fashion in relation to smooth

numbers, which are integers with no large prime divisors. Let p+
1 (k) denote the largest prime factor of k ∈ N.

It was proved by Dickman [18] that

lim
n→∞

1

n
|{k ∈ [n] : p+

1 (k) ≤ nx}| = ρ(
1

x
), x ∈ [0, 1].

See [51,72]. Similar to the extension from L
(n)
1 to the vector (L

(n)
1 , . . . , L

(n)
j ), the above result can be extended

to the vector
(
p+

1 (·), . . . , p+
j (·)

)
, where p+

i (k) denotes the ith largest prime factor (counted with multiplicities)

of k, and p+
i (k) = 0 if k has fewer than i prime factors [11].

We now turn to the smallest cycles. Let S
(n)
j (σ) denote the length of the jth shortest cycle of σ ∈ Sn. We

have

Pn(S
(n)
j > m) = Pn(

m∑
i=1

C
(n)
i < j).

Thus, by (19),

lim
n→∞

Pn(S
(n)
j > m) = P (

m∑
i=1

Zi < j), (34)
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where {Zi}∞i=1 are independent random variables and Zi has the Poission( 1
i ) distribution. A straight forward

calculation shows that if X and Y are independent and distributed according to Poisson(λ1) and Poisson(λ2)

respectively, then

P (X + Y = m) =

m∑
i=0

P (X = i)P (Y = m− i) =
(λ1 + λ2)m

m!
e−(λ1+λ2);

that is X + Y has the Poisson(λ1 + λ2) distribution. Thus, from (34) we have

lim
n→∞

Pn(S
(n)
j > m) =

j−1∑
i=0

e−h(m) (h(m))i

i!
, where h(m) =

m∑
i=1

1

i
.

A theory similar to that discussed above for the longest cycles, that also uses (26), can be developed to

obtain a result concerning the so-called large deviations of S
(n)
j [5]. This result involves the Buchstab function

ω(x), which is defined for x ≥ 1 as the unique continuous function satisfying

ω(x) =
1

x
, 1 ≤ x ≤ 2,

and satisfying the differential-delay equation

(xω(x))′ = ω(x− 1), x > 2.

In particular, for the shortest cycle, the result is as follows [5].

Theorem 9.2.

Pn(S
(n)
1 >

n

x
) ∼ xω(x)

n
, x > 1, as n→∞.

In number theory, the Buchstab function comes up in a parallel fashion in relation to rough numbers, which

are integers with no small prime divisors. Let p−1 (k) denote the smallest prime factor of k ∈ N. It was proved

by Buchstab [15] that

1

n
|{k ∈ [n] : p−(k) ≥ n 1

x }| ∼ xω(x)
1

log n
, x > 1, as n→∞. (35)

See [51, 72]. (Note that (35) for x = 1 is the Prime Number Theorem. Buchstab assumed the Prime Number

Theorem when proving his result.)

10. The statistical behavior of random partitions of large
integers

A partition λ of a positive integer n is a j-tuple (a1, . . . , aj) where j ∈ [n], {ai}ji=1 are positive integers satisfying

a1 ≥ · · · ≥ aj and
∑j
i=1 ai = n. Let Λn denote the set of partitions of n. There is a natural map, call it Mn,

from the set of permutations Sn of [n] onto the set of partitions of [n], via the cycle decomposition of the

permutation. We could write out a formal definition, but a simple example is probably clearer and should

suffice. Let σ ∈ S9 be given in terms of its cycle decomposition by σ = (154)(2)(386)(79). Then M9(σ) is the

partition (3,3,2,1) of the integer 9. The mapMn along with the uniform probability measure Pn on Sn induces

a (non-uniform) probability measure Pn on Λn; namely,

Pn(λ) = Pn({σ :Mn(σ) = λ}), for λ ∈ Λn.

For k ∈ N, let Xk(λ) denote the number of parts of the partition λ ∈ Λn that are equal to k. For s ∈ N, let

Ys(λ) denote the s-th largest part of λ, with Ys(λ) = 0 if λ has fewer than s parts. (For convenience later on,

we consider Xk and Ys to be defined simultaneously on Λn, for all n.) For example, consider the partition of 13,

λ = (4, 4, 2, 1, 1, 1). Then X1(λ) = 3, X2(λ) = 1, X4(λ) = 2 and Xk(λ) = 0 for k 6∈ {1, 2, 4}; Y1(λ) = Y2(λ) = 4,

Y3(λ) = 2, Y4(λ) = Y5(λ) = Y6(λ) = 1 and Yk(λ) = 0, for k ≥ 7.
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Recalling from Section 8 that C
(n)
k (σ) denotes the number of cycles of length k in the permutation σ ∈ Sn,

it follows that

Xk(λ) = C
(n)
k (σ),where λ =Mn(σ).

Recalling form Section 9 that L
(n)
j (σ) denotes the length of the jth longest cycle in σ ∈ Sn, it follows that

Ys(λ) = L(n)
s (σ), where λ =Mn(σ).

In light of (18), it follows that under the probability measure Pn, the distribution of Xk converges to the

Poisson( 1
k ) distribution:

lim
n→∞

Pn(Xk = j) = e−
1
k

( 1
k )j

j!
, j = 0, 1, . . . . (36)

And in light of Theorem 9.1,

lim
n→∞

Pn(
Y1

n
≤ x) = ρ(

1

x
), x ∈ [0, 1], (37)

where we recall that ρ is the Dickman function. We recall from the discussion after Theorem 9.1 that the

distribution on [0, 1] whose distribution function is given by ρ( 1
x ) is the distribution of the first component

X̂1 of the random vector {X̂n}∞n=1 whose distribution is called the Poisson-Dirichlet distribution. From that

discussion, it then follows more generally that

lim
n→∞

Pn(
Yk
n
≤ x) = P (X̂k ≤ x), x ∈ [0, 1], k ≥ 1. (38)

In this section, we consider the statistical behavior of Λn under the uniform measure that gives probability
1
|Λn| to each partition λ ∈ Λn. The results are very different from the results in (36)-(38) in the case of the

measures {Pn}∞n=1. The paper [30] makes beautiful use of generating functions to study the asymptotic behavior

of partition statistics in the case of the uniform distribution. We state here three of the many results in that

paper. Denote the uniform measure on Λn by P part
n . Recall that Xk is the number of parts of size k in the

random partition.

Theorem 10.1. If limn→∞
kn

n
1
2

= 0, then

lim
n→∞

P part
n (

π√
6n

knXkn ≤ x) = 1− e−x, x ≥ 0.

The above theorem states that for any fixed k (kn = k) as well as for kn growing at a sufficiently slow rate,

the rescaled quantity π√
6n
knXkn converges in distribution as n → ∞ to an exponential random variable with

parameter 1. Compare this with (36).

The next theorem concerns Ys, the s-th largest part of the random partition. In the case s = 1, it was

originally proved in [23].

Theorem 10.2.

lim
n→∞

P part
n (

π√
6n
Ys − log

√
6n

π
≤ x) =

∫ x

−∞

exp(−e−y − sy)

(t− 1)!
dy, x ∈ R, s ∈ N.

Compare Theorem 10.2 to (37) and (38).

If instead of looking at Ys, one considers Ysn with sn → ∞ at a sufficiently slow rate, then one gets

convergence in distribution to a Gaussian limiting distribution.

Theorem 10.3. If limn→∞ sn =∞ and limn→∞
sn

n
1
4

= 0, then

lim
n→∞

P part
n (π

√
sn
6n
Ysn −

√
sn log

√
6n

πsn
≤ x) =

∫ x

−∞

1√
2π
e−

y2

2 dy, x ∈ R.

We now sketch the method used to prove Theorem 10.1. The proofs of Theorems 10.2 and 10.3 use the same

method along with some additional ingredients. Let Λ denote the set of all partitions of all nonnegative integers,
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including the empty partition of 0. Let p(n) = |Λn| denote the number of partitions of n. As is well-known and

easy to check, the generating function
∑∞
n=0 p(n)qn for {p(n)}∞n=0 is given by the formula

∞∑
n=0

p(n)qn =

∞∏
j=1

(1− qj)−1. (39)

Define |λ| = n, if λ ∈ Λn. For q ∈ (0, 1), consider the following probability measure on the set Λ of all partitions

of nonnegative integers:

Qq(λ) = q|λ|
∞∏
j=1

(1− qj), λ ∈ Λ. (40)

To see that Qq is a probability measure, note that

∑
λ∈Λn

Qq(λ) = p(n)qn
∞∏
j=1

(1− qj),

and thus using (39), ∑
λ∈Λ

Qq(λ) =

∞∑
n=0

∑
λ∈Λn

Qq(λ) =

∞∏
j=1

(1− qj)
∞∑
n=0

qnp(n) = 1.

The key observation is that under Qq, the random variables {Xj}∞j=1 are independent and the distribution of

Xj is geometric with parameter qj . To verify the above observation, note that the values {Xj(λ)}∞j=1 uniquely

determine λ, and note that |λ| =
∑∞
j=1 jXj(λ). Thus, from (40),

Qq(Xj = xj , j = 1, 2, . . .) = q
∑∞
j=1 jxj

∞∏
j=1

(1− qj) =

∞∏
j=1

(qj)xj (1− qj), n = 0, 1, . . . .

The product on the right-hand side above indicates the independence of {Xj}∞j=1 under Qq.

Let N = |λ|. Of course, P part
n (N = n) = 1. However, under Qq, the number N being partitioned is random.

From (40), we have

Qq(N = n) = p(n)qn
∞∏
j=1

(1− qj), n = 0, 1 · · · .

Note from the definition of the uniform measure P part
n on Λn and from the definition of the measure Qq that

if λ1 and λ2 are partitions for which N(λ1) = N(λ2) = n, then P part
n (λ1) = P part

n (λ2) and Qq(λ1) = Qq(λ2).

From these fact it follows that

P part
n (A) = Qq(A|N = n), A ⊂ Λn. (41)

Let EQq denote expectation with respect to Qq. Consider the probability generating function of N under

Qq, defined by Φ(r) = EQqrN . We have

Φ(r) = EQqrN =

∞∑
n=0

Qq(N = n)rn =

∞∏
j=1

(1− qj)
∞∑
n=0

p(n)qnrn =

∞∏
j=1

1− qj

1− (qr)j
,

where we have used (39) in the final equality. Using the fact that Φ′(1) = EQqN and Φ′′(1) = EQqN(N − 1),

one can calculate the expected value and variance of N :

EQqN =

∞∑
j=1

jqj

1− qj
;

VarQq (N) =

∞∑
j=1

j2qj

(1− qj)2
.

An asymptotic analysis shows that if one chooses

q = qn = e
− π√

6n , (42)

ECA 1:3 (2021) Article #S2S3 18



Ross G. Pinsky

then VarQqn (N) ∼
√

24
π n

3
2 and |n−EQqnN | = o(n

3
4 ). This shows that the random variable N under the measure

Qqn concentrates around n. Indeed,

|N − n| ≤ |n− EQqnN |+ |N − EQqnN | = o(n
3
4 ) + |N − EQqnN |,

and by Chebyshev’s inequality,

Qqn(|N − EQqnN |) ≥ n 3
4 ln) ≤ O(n

3
2 )

n
3
2 l2n

→ 0, if ln →∞.

Thus, with probability approaching 1 as n → ∞, N will be within lnn
3
4 of n if ln → ∞. Using Fourier

analysis, it was shown in [30] that Qqn(N = n) ∼ (96n3)−
1
4 . From these results, the author was able to show

that the Prohorov distance (a certain metric) between the distribution of Xkn under the probability measure

Qqn and its distribution under the measure Qqn(· |N = n) converges to 0 as n → ∞, if kn = o(n
1
2 ). It then

follows from (41) that the Prohorov distance between the distributions of Xkn under Qqn and under P part
n also

converges to 0 as n → ∞. From this, it follows that the P part
n -probability appearing on the left-hand side of

Theorem 10.1 can be replaced by the Qqn probability. However, as noted, under Qqn , the random variables

{Xj}∞j=1 are independent with geometric distributions; thus, everything can be calculated explicitly. Indeed,

we have

Qqn(
π√
6n
knXkn ≤ x) = Qqn(Xkn ≤

√
6nx

πkn
) =

b
√

6nx
πkn

c∑
j=0

(1− qknn )(qknn )j =

1− q
knb

√
6nx
πkn

c
n

n→∞→ 1− e−x,

where in the final step we use (42).

11. Threshold calculations for Erdős-Rényi random graphs
using the first and second moment methods

We recall the definition of the Erdős-Rényi random graph G(n, p), for n ∈ N and p ∈ (0, 1). This graph has n

vertices and thus
(
n
2

)
possible edges. Independently, each of these edges is included in the graph with probability

p, and not included with probability 1− p. We will analyze three so-called threshold properties of the random

graphs G(n, pn) as n → ∞, in two cases with variable pn, and in one case with fixed pn = p. In what follows,

Pn and En will be used for probabilities and expectations concerning G(n, p) or G(n, pn).

The method of proof we use in these threshold calculations is based on the first and second moment methods

that were stated and proved in Section 4 – see (3) and (4).

Threshold for disconnected vertices. The first result we present concerns disconnected vertices in G(n, pn).

Theorem 11.1. Let Dn be the random variable denoting the number of disconnected vertices in G(n, pn).

i. If pn = logn+cn
n , and limn→∞ cn =∞, then Dn

dist→ 0; equivalently, limn→∞ Pn(Dn = 0) = 1;

ii. If pn = logn+cn
n , and limn→∞ cn = −∞, then Dn

EnDn

dist→ 1. Also, limn→∞ Pn(Dn > M) = 1, for any M ∈ N.

Proof. For part (i), we use the first moment method. For 1 ≤ j ≤ n, let Dn,j denote the indicator random

variable for vertex j to be disconnected; that is, Dn,j is equal to 1 if vertex j is disconnected in G(n, pn),

and equal to 0 otherwise. Then we can represent the random variable Dn as Dn =
∑n
j=1Dn,j . For distinct

vertices j, k ∈ [n], let In,j,k denote the indicator random variable that is equal to 1 if G(n, pn) contains an edge

connecting j and k, and is equal to 0 otherwise. Then Dn,j =
∏
k∈[n];k 6=j(1 − In,j,k). By the definition of the

Erdős-Rényi graph, the random variables {In,j,k}k∈[n],k 6=j are independent and EnIn,j,k = Pn(In,j,k = 1) = pn.

Thus,

EnDn,j =
∏

k∈[n];k 6=j

E(1− In,j,k) = (1− pn)n−1 (43)

and

EnDn = n(1− pn)n−1. (44)
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Substituting pn as in part (i) of the theorem into (44), it follows that limn→∞EnDn = 0, and thus by the first

moment method, Dn converges in distribution to 0; that is limn→∞ Pn(Dn ≥ ε) = 0, for all ε > 0. Since Dn is

integer-valued, this gives limn→∞ P (Dn = 0) = 1.

We use the second moment method for part (ii). We write

EnD
2
n = E

n∑
j=1

Dn,j

n∑
k=1

Dn,k =

n∑
j=1

EnDn,j + 2
∑

1≤j<k≤n

EnDn,jDn,k.

We have
EnDn,jDn,k = Pn(Dn,j = Dn,k = 1) =

Pn(In,j,l = In,k,m = 0, l ∈ [n]− {j},m ∈ [n]− {j, k}) = (1− pn)2n−3, j 6= k.
(45)

From (43)-(45), we obtain

σ2(Dn) = EnD
2
n − (EnDn)2 = n(n− 1)(1− pn)2n−3 + n(1− pn)n−1 −

(
n(1− pn)n−1

)2
. (46)

Let pn be as in part (ii) of the theorem. Then standard estimates give

n(n− 1)(1− pn)2n−3 ∼
(
n(1− pn)n−1

)2 ∼ e−2cn n→∞→ ∞.

Using this with (46) and (44), we conclude that σ2(Dn) = o((EnDn)2) and limn→∞EnDn =∞. In particular

then, by the second moment method, Dn
EnDn

dist→ 1. Since EnDn
n→∞→ ∞, it follows from the convergence in

distribution that limn→∞ Pn(Dn > M) = 1, for any M ∈ N.

Threshold for connectivity. We now investigate the threshold for connectivity in G(n, pn). If G(n, pn) has at

least one disconnected vertex, then of course G(n, pn) is disconnected. Thus, the threshold of pn for connectivity

is greater than or equal to that for no disconnected vertices. It turns out that the threshold for connectivity is

asymptotically the same as for no disconnected vertices. The following result was first proved in [24].

Theorem 11.2. i. If pn = logn+cn
n , and limn→∞ cn =∞, then

limn→∞ Pn(G(n, pn) is connected) = 1;

ii. If pn = logn+cn
n , and limn→∞ cn = −∞, then

limn→∞ Pn(G(n, pn) is connected) = 0.

The proof of part (ii) of course follows from part (ii) of Theorem 11.1, so we only need to prove part (i).

The proof is not via the simple first moment method presented above, but rather via a slightly more involved

first moment technique [12].

Proof of part (i). We may and will assume that n ≥ 3 and 1 ≤ cn ≤ log n. For each A ⊂ [n], let IA,n be the

indicator random variable that is equal to one if in G(n, pn) every vertex in A is disconnected from the set of

vertices [n]−A, and that is equal to zero otherwise. Then

Pn(IA,n = 1) = (1− pn)k(n−k), if |A| = k. (47)

Clearly,

Pn(G(n, pn) is disconnected) = Pn(∪A⊂[n],|A|≤bn2 c{IA,n = 1}). (48)

Since the probability of the union of events is less than or equal to the sums of the probabilities of the individual

events composing the union, we have from (47) and (48) that

Pn(G(n, pn) is disconnected) ≤
bn2 c∑
k=1

(
n

k

)
(1− pn)k(n−k). (49)

We break the sum on the right-hand side of (49) into two parts. Substituting for pn from part (i) of the

theorem, using the estimate
(
n
k

)
≤ ( enk )k from Stirling’s formula, using the inequality 1 − x ≤ e−x, for x ≥ 0,

and recalling our additional assumption 1 ≤ cn ≤ log n from the first line of the proof, we have

bn
3
4 c∑

k=1

(
n

k

)
(1− pn)k(n−k) ≤

bn
3
4 c∑

k=1

(
en

k
)ke−k(logn+cn)e2k2 logn

n = e(1−cn)e
2 logn
n +

bn
3
4 c∑

k=2

(e1−cne2k logn
n

k

)k
≤ e(1−cn)e

2 logn
n + e2(1−cn)

bn
3
4 c∑

k=2

(e2n−
1
4 logn

2

)k
.

(50)
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Consequently, for sufficiently large n,

bn
3
4 c∑

k=1

(
n

k

)
(1− pn)k(n−k) ≤ e2e−cn + e2(1−cn).

For the second part of the sum, using two of the inequalities used for the first part, using the fact that

k(n− k) ≥ kn
2 (which of course holds over the entire original range of k), and substituting for pn, we have

n∑
k=bn

3
4 c+1

(
n

k

)
(1− pn)k(n−k) ≤

n∑
k=bn

3
4 c+1

(
en

k
)ke−

k logn
2 ≤

n∑
k=bn

3
4 c+1

(en
1
4 )kn−

k
2 =

n∑
k=bn

3
4 c+1

(en−
1
4 )k. (51)

(Note that for this part of the sum we have ignored the term cn in pn as it is not needed.) From (49)-(51), we

conclude that

lim
n→∞

Pn(G(n, pn) is disconnected) = 0,

if pn is as in part (i) of the theorem. �

Threshold for clique size. We now consider a problem regarding G(n, p) with p ∈ (0, 1) fixed. Recall that a

clique of size k in G(n, p) is a complete subgraph on k vertices and that the clique number of the graph is the

largest k for which a clique of size k exists. Let log 1
p

denote the logarithm in base 1
p and let log

(2)
1
p

= log 1
p

log 1
p
.

The following result reveals the close to deterministic nature of the clique number in G(n, p). See [12,55].

Theorem 11.3. Let Ln be the random variable denoting the clique number of G(n, p). Then

lim
n→∞

Pn(Ln ≥ 2 log 1
p
n− c log

(2)
1
p

n) =

{
0, if c < 2;

1, if c > 2.

Theorem 11.3 is an immediate corollary of the following theorem [55]. For each k ∈ [n], define the random

variable Nn,k to be the number of cliques in G(n, p) of size k.

Theorem 11.4. i. If kn ≥ 2 log 1
p
n− c log

(2)
1
p

n, for some c < 2, then

lim
n→∞

EnNn,kn = 0. (52)

Thus, Nn,kn
dist→ 0; equivalently, limn→∞ Pn(Nn,kn = 0) = 1;

ii. If kn ≤ 2 log 1
p
n− c log

(2)
1
p

n, for some c > 2, then

lim
n→∞

EnNn,kn =∞. (53)

Also,
Nn,kn
ENn,kn

dist→ 1, (54)

and

lim
n→∞

Pn(Nn,kn > M) = 1, for any M ∈ N. (55)

Note that the claims in the sentence following (52) are a consequence of the first moment method along with

the fact that Nn,kn is integer-valued. Note also that (55) follows immediately from (53) and (54). We will give

the proofs of (52) and (53); they are of course first moment calculations. The proof of (54) can be given by the

second moment method, but the calculations are much more involved than they were in the case of Theorem

11.1. We will begin the second moment calculation so as to reveal the considerations that arise, and then refer

the interested reader elsewhere for complete proof.

Proofs of (52) and (53). We will prove the two results simultaneously. For (52), fix c < 2 and for each n

sufficiently large, let cn ≤ c be such that kn := 2 log 1
p
n − cn log

(2)
1
p

n is an integer. For (53), fix c > 2 and for

each n sufficiently large, let cn ≥ c be such that kn := 2 log 1
p
n− cn log

(2)
1
p

n is an integer. We need to show that

(52) holds for the first choice of kn and that (53) holds for the second choice of kn.
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There are
(
n
kn

)
different subsets of [n] of size kn. For each such subset K, let IK be the indicator random

variable that is equal to 1 if the vertices in K form a clique in G(n, p), and equal to 0 otherwise. Then

Nn,kn =
∑

K⊂[n],|K|=kn

1K .

From the definition of the Erdős-Rényi graph, we have

En1K = p(
kn
2 ), |K| = kn. (56)

Thus,

EnNn,kn =

(
n

kn

)
p(
kn
2 ).

It is not hard to show that as long as kn = o(n
1
2 ), then(

n

kn

)
∼ nkn

kn!
. (57)

From (56) and (57) along with Stirling’s formula, we obtain

EnNn,kn ∼
nknp

kn(kn−1)
2

kknn e−kn
√

2πkn
. (58)

Taking logarithms in base 1
p on both sides of (58), we have

log 1
p
EnNn,kn ∼ kn log 1

p
n− 1

2
k2
n +

1

2
kn − kn log 1

p
kn + kn log 1

p
e− 1

2
log 1

p
2πkn. (59)

We have

log 1
p
kn = log 1

p

(
2 log 1

p
n− cn log

(2)
1
p

n
)

= log 1
p

(
(log 1

p
n)
(
2−

cn log
(2)
1
p

n

log 1
p
n

))
=

log
(2)
1
p

n+ log 1
p

(
2−

cn log
(2)
1
p

n

log 1
p
n

)
= log

(2)
1
p

n+O(1).

(60)

The sum of the three terms of highest orders on the right-hand side of (59) is kn log 1
p
n− 1

2k
2
n−kn log 1

p
kn. Using

(60) to substitute for log 1
p
kn, and using the definition of kn to substitute for kn where it appears elsewhere in

this three term sum, we have

kn log 1
p
n− 1

2
k2
n − kn log 1

p
kn

= (2 log 1
p
n− cn log

(2)
1
p

n) log 1
p
n− 1

2

(
2 log 1

p
n− cn log

(2)
1
p

n
)2 − (2 log 1

p
n− cn log

(2)
1
p

n)(log
(2)
1
p

n+O(1))

= (cn − 2)(log 1
p
n) log

(2)
1
p

n+O(log 1
p
n).

(61)

The sum of the rest of the terms on the right-hand side of (59) satisfies

1

2
kn + kn log 1

p
e− 1

2
log 1

p
2πkn = O(log 1

p
n). (62)

From (59), (61) and (62), in the case of the first choice of kn, for which cn ≤ c < 2, we have

lim
n→∞

log 1
p
EnNn,kn = −∞,

and thus, (52) holds, while in the case of the second choice of kn, for which cn ≥ c > 2, we have

lim
n→∞

log 1
p
EnNn,kn =∞,

and thus (53) holds. �
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We now begin the second moment calculation to give an idea of what is involved. Since σ2(Nn,kn) =

EnN
2
n,kn
− (EnNn,kn)2, the requirement σ2(Nn,kn) = o((EnNn,kn)2) that is needed for the second moment

method can be written as

En(Nn,kn)2 = (EnNn,kn)2 + o
(
(EnNn,kn)2

)
.

We label the subsets K ⊂ [n] satisfying |K| = kn according to the vertices they contain. Thus Ki1,...,ikn
denotes

the subset {i1, . . . , ikn}. Let IKi1,...,ikn
denote the indicator random variable that is equal to one if the vertices

in Ki1,...,ikn
form a clique in G(n, p), and equal to zero elsewhere. Then we can write Nn,kn in the form

Nn,kn =
∑

1≤i1<i2<···<ikn≤n

IKi1,...,ikn
.

Consequently,

EnN
2
n,kn =

∑
1≤i1<i2<···<ikn≤n
1≤l1<l2<···<lkn≤n

EnIKi1,...,ikn
IKl1,...,lkn

.

Note that EnIKi1,...,ikn
IKl1,...,lkn

equals 1 or 0 depending on whether or not the graph G(n, p) possesses an edge

between every pair of vertices in Ki1,...,ikn
and between every pair of vertices in Kl1,...,lkn

. It is easy to see that

the expression
∑

1≤l1<l2<···<lkn≤n
EnIKi1,...,ikn

IKl1,...,lkn
is independent of the particular set Ki1,...,ikn

. Thus,

choosing the set K1,...,kn , we have

EnN
2
n,kn =

(
n

kn

) ∑
1≤l1<l2<···<lkn≤n

EnIK1,...,kn
IKl1,...,lkn

.

Let J = J(l1, . . . , lkn) = |K1,...,kn∩Kl1,...,lkn
| denote the number of vertices shared by K1,...,kn and Kl1,...,lkn

.

It is not hard to show that

EnIK1,...,kn
IKl1,...,lkn

=

{
p2(kn2 )−(J2), if J = J(l1, . . . , lkn) ≥ 2;

p2(kn2 ), if J = J(l1, . . . , lkn) ≤ 1.
.

Thus, we can write

EnN
2
n,kn =

(
n

kn

) ∑
1≤l1<l2<···<lkn≤n
J(l1,...,lkn )≤1

p2(kn2 ) +

(
n

kn

) ∑
1≤l1<l2<···<lkn≤n
J(l1,...,lkn )≥2

p2(kn2 )−(J2).

It turns out that the first term on the right-hand side above is equal to (EnNn,kn)2 + o
(
(EnNn,kn)2

)
, while the

second term is equal to o
(
(EnNn,kn)2

)
. However the proofs of these statements require considerable additional

calculation. We refer the reader to [55], and note that the notation there is a little different from the notation

here.

A deeper and more difficult result than the above ones is the identification and analysis of a striking phase

transition in the connectivity properties of G(n, pn) between the cases p = c
n with c ∈ (0, 1) and pn = c

n with

c > 1. Note that by Theorem 11.2, for such values of pn the probability of G(n, pn) being connected approaches

zero as n → ∞. The phase transition that occurs for pn close to 1
n concerns the size of the largest connected

component, which makes a transition from logarithmic to linear as a function of n. We only state the result,

which was proved by Erdős and Rényi in 1960 [24]. For more recent proofs, see [4, 55].

Theorem 11.5. i. Let pn = c
n , with c ∈ (0, 1). Then there exists a γ = γ(c) such that the size C lg

n of the

largest connected component of G(n, pn) satisfies

lim
n→∞

Pn(C lg
n ≤ γ log n) = 1;

ii. Let p = c
n with c > 1. Then there exists a unique solution β = β(c) ∈ (0, 1) to the equation 1− e−cx−x = 0.

For any ε > 0, the size C lg
n of the largest connected component of G(n, pn) satisfies

lim
n→∞

P ((1− ε)βn ≤ C lg
n ≤ (1 + ε)βn) = 1.

A detailed analysis of the largest connected component in the case that pn = 1
n + o( 1

n ) can be found in [13].
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12. Arcsine law for random walks and a combinatorial
lemma of Sparre-Andersen

Consider the simple symmetric random walk (SSRW) {S±n }∞n=0 on Z. It is constructed from a sequence {X±n }∞n=1

of IID random variables with the following Bernoulli distribution with parameter 1
2 : P (X±n = 1) = P (X±n =

−1) = 1
2 . One defines S±0 = 0 and S±n =

∑n
j=1X

±
j , n ≥ 1. It is well-known that the SSRW is recurrent [22], [55]:

P (lim inf
n→∞

S±n = −∞ and lim sup
n→∞

S±n = +∞) = 1.

Let

A+,n = A+,n({S±j }
n
j=1) = |{j ∈ [n] : S±j > 0}|

denote the number of steps up until step n that the SSRW spends on the positive half axis. If one wants to

consider things completely symmetrically, then one can define instead

Asym
+,n = Asym

+,n({S±j }
n
j=1) = |{j ∈ [n] : S±j > 0 or S±j = 0 and S±j−1 > 0}|.

There are several ways, some more probabilistic and some more combinatoric, to prove the following result.

Theorem 12.1. For SSRW,

P (Asym
+,2n = 2k) =

(
2k
k

)(
2n−2k
n−k

)
22n

, k = 0, 1, . . . , n. (63)

See, for example, [26] for a somewhat probabilistic approach and see [55] for a completely combinatorial approach

using Dyck paths. Stirling’s formula gives(
2k
k

)(
2n−2k
n−k

)
22n

∼ 1

π

1√
k(n− k)

,

and for any ε ∈ (0, 1), the above estimate is uniform for k ∈ [εn, (1− ε)n] as n→∞. Using this estimate with

(63), a straightforward calculation [55] reveals that

lim
n→∞

P (
1

2n
Asym

+,2n ≤ x) =
2

π
arcsin

√
x, x ∈ [0, 1]. (64)

Of course, it then follows that (64) also holds with n in place of 2n. It is not hard to show that the proportion

of time up to n that the SSRW is equal to zero converges in distribution to 0. See, for example, [55, Exercise

4.3]. Thus, we also have

lim
n→∞

P (
1

n
A+,n ≤ x) =

2

π
arcsin

√
x, x ∈ [0, 1]. (65)

The distribution whose distribution function is 2
π arcsin

√
x, for x ∈ [0, 1], is called the Arcsine distribution.

The density of this distribution is given by d
dx

(
2
π arcsin

√
x)
)

= 1
π

1√
x(1−x)

. We note that in (63), the most

likely values of the distribution are k = 0 and k = n, and the least likely values are k = n
2 , if n is even, and

k = bn2 c±1, if n is odd. In the limit, the resulting density is unbounded at 0+ and 1−, and attains its minimum

at x = 1
2 . Thus, counter-intuitively, it turns out that the most likely proportions of time that the SSRW is on

the positive half axis are 0 and 1, and the least likely proportion is 1
2 . For a discussion of this, see [26].

Now consider a general symmetric random walk on R. It is constructed from an IID sequence of random

variables {Xn}∞n=1 with an arbitrary symmetric distribution: P (Xn ≥ x) = P (Xn ≤ −x), for x ≥ 0. We define

S0 = 0 and Sn =
∑n
j=1Xj , n ≥ 1. We will assume that the distribution is continuous; that is P (Xn = x) = 0,

for all x ∈ R. It then follows that P (Sn = x) = 0, for all x ∈ R and n ∈ N. In the sequel we will use the fact

that P (Sn > 0) = 1− P (Sn < 0). Here is a truly remarkable result concerning A+,n = A+,n({Sj}nj=1):

Theorem 12.2. For any symmetric random walk {Sn}∞n=0 generated from a continuous distribution,

P (A+,n = k) =

(
2k
k

)(
2n−2k
n−k

)
22n

, k = 0, 1, . . . , n.
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Thus, (65) not only holds for the SSRW on Z, but also for general symmetric random walks on R. Theorem

12.2 was first proved by Sparre-Andersen in 1949 [6]. The very complicated original proof has since been very

much simplified by combinatorial arguments. This simplification is an example par excellence of the use of

combinatorial tools to prove probabilistic results. Our exposition is a streamlined version of the proof in [27].

For a somewhat different approach, see [41].

A combinatorial lemma will show that Theorem 12.2 is equivalent to the following result, of independent

interest.

Theorem 12.3. Let {Sn}∞n=0 be a symmetric random walk on R generated by a continuous distribution. Let

Ln denote the index (that is, location) of the first maximum of {S0,S1, . . . ,Sn). (Actually, by the continuity

assumption, the maximum almost surely occurs at only one location.) Then

P (Ln = k) =

(
2k
k

)(
2n−2k
n−k

)
22n

, k = 0, 1, . . . , n.

Remark. Thus,

lim
n→∞

P (
1

n
Ln ≤ x) =

2

π
arcsin

√
x, x ∈ [0, 1].

Proof of Theorem 12.3. We write the event {Ln = k} as

{Ln = k} = Ak ∩Bn−k, k = 0, . . . , n,

where

Ak = {Sk > S0, . . . ,Sk > Sk−1}, k = 1, . . . , n

and

Bn−k = {Sk ≥ Sk+1, . . . ,Sk ≥ Sn}, k = 0, . . . , n− 1,

and A0 and B0 are equal to the entire probability space, so P (A0) = P (B0) = 1. The events Ak and Bn−k are

independent since Ak depends only on {Xj}kj=1 and Bn−k depends only on {Xj}nj=k+1. Thus,

P (Ln = k) = P (Ak)P (Bn−k), k = 0, . . . , n. (66)

From the equidistribution of the {Xn}∞n=1 and the continuity and symmetry of the distribution, it follows that

P (Ak) = qk, k = 1, . . . , n;

P (Bn−k) = qn−k, k = 0, . . . , n− 1,
(67)

where

qn = P (S1 > 0, . . . ,Sn > 0), n = 1, 2, . . . . (68)

Define q0 = 1 and let H(s) be the generating function for {qn}∞n=0:

H(s) =

∞∑
n=0

qns
n.

From (66) and (67) we have

1 =

n∑
k=0

P (Ln = k) =

n∑
k=0

qkqn−k,

from which we obtain H2(s) = (1− s)−1. Thus,

H(s) = (1− s)− 1
2 .

One has
dnH

dsn
(0) =

(2n)!

n!22n
, n ≥ 0.

Thus,

qn =
1

22n

(
2n

n

)
, n ≥ 0. (69)

Theorem 12.3 follows from (66), (67) and (69). �

From (68) and(69) we obtain the following corollary of interest, which is not needed for the proof of Theorem

12.2.
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Corollary 12.1. We have

P (S1 > 0, . . . ,Sn > 0) =
1

22n

(
2n

n

)
, n ≥ 1.

We now turn to the combinatorial lemma. Let n ∈ N, let {xj}nj=1 be real numbers, denote their partial sums

by {sj}nj=1, and let s0 = 0. We say that the first maximum among the partial sums occurs at j ∈ {0, . . . , n} if

sj > si, for i = 0, . . . , j − 1, and sj ≥ si, for i = j + 1, . . . , n. For each permutation σ ∈ Sn, let sσ0 = 0 and

sσj =
∑j
i=1 xσi , j = 1, . . . , n, denote the partial sums of the permuted sequence {xσj}nj=1.

Combinatorial Lemma. Let r be an integer satisfying 0 ≤ r ≤ n. The number Ar of permutations σ ∈ Sn
for which exactly r of the partial sums are strictly positive is equal to the number Br of permutations σ ∈ Sn
for which the first maximum among these partial sums occurs at position r.

Proof. We prove the lemma by induction. The result is true for n = 1. Indeed, if x1 > 0, then A1 = B1 = 1

and A0 = B0 = 0, while if x1 ≤ 0, then A1 = B1 = 0 and A0 = B0 = 1. Now let n ≥ 2 and assume that

the result is true for n− 1. Denote by A
(k)
r and B

(k)
r the values corresponding to Ar and Br when the n-tuple

(x1, . . . , xn) is replaced by the (n− 1)-tuple obtained by deleting xk. By the inductive hypothesis, A
(k)
r = B

(k)
r ,

for k = 1, . . . , n and r = 0, . . . , n− 1. This is also true for r = n since trivially A
(k)
n = B

(k)
n = 0.

We break up the rest of the proof into two cases. The first case is when
∑n
k=1 xk ≤ 0. We construct the n!

permutations of (x1, . . . , xn) by first selecting k ∈ [n] and placing xk in the last position, and then permuting

the remaining n − 1 numbers in the first n − 1 positions. Since the nth partial sum for every permutation is

equal to
∑n
k=1 xk, which is non-positive, it is clear that the number of positive partial sums and the index of

the first maximal partial sum depend only on the numbers in the first n− 1 positions. Thus, Ar =
∑n
k=1A

(k)
r

and Br =
∑n
k=1B

(k)
r , and consequently, Ar = Br by the inductive hypothesis.

The second case is when
∑n
k=1 xk > 0. In this case, the nth partial sum is positive, and thus the previous

argument shows that Ar =
∑n
k=1A

(k)
r−1, for r = 1, . . . , n, and A0 = 0. To obtain an analogous formula for Br,

construct the n! permutations of (x1, . . . , nn) by first selecting k ∈ [n] and placing xk in the first position, and

then permuting the remaining n − 1 numbers in the last n − 1 positions. Such a permutation is of the form

(xk, xj1 , . . . , xjn−1
). Since the nth partial sum is positive for every permutation, it follows that sσ0 = 0 is not

a maximal partial sum for any permutation σ, so B0 = 0. Thus, A0 = B0. Clearly, the first maximal partial

sum for the permuted order (xk, xj1 , . . . , xjn−1) occurs at index r ∈ [n] if and only if the first maximum of the

partial sums of (xj1 , . . . , xjn−1) occurs at r − 1. Thus, Br =
∑n
k=1B

(k)
r−1, for r = 1, . . . , n. By the inductive

hypothesis, it then follows that Ar = Br.

We now prove Theorem 12.2 using the Combinatorial Lemma and Theorem 12.3.

Proof of Theorem 12.2. For n ∈ N, label the permutations in Sn from 1 to n!, with the first one being the

identity permutation. Consider the random variables {Xk}nk=1 and their partial sums {Sk}nk=1. Denote the

partial sums for the jth permutation of {Xk}nk=1 by {S(j)
k }nk=1; thus, S(1)

k = Sk. For a fixed integer r satisfying

0 ≤ r ≤ n, let Z
(j)
n,r be the indicator random variable equal to 1 if permutation number j has exactly r positive

sums, and equal to 0 otherwise. By symmetry, the random variables {Z(j)
n,r}n!

j=1 have the same distribution.

Thus, we have

P (A+,n = r) = P (Z(1)
n,r = 1) = EZ(1)

n,r =
1

n!
E

n∑
k=1

Z(k)
n,r . (70)

Similarly, let W
(j)
n,r be the indicator random variable equal to 1 if for permutation number j, the first maximal

partial sum has index r, and equal to 0 otherwise. By symmetry, the random variables {W (j)
n,r}n!

j=1 have the

same distribution. Thus, we have

P (Ln = r) = P (W (1)
n,r = 1) = EW (1)

n,r =
1

n!
E

n∑
k=1

W (k)
n,r , (71)

where Ln is as in Theorem 12.3. By the Combinatorial Lemma,
∑n
k=1 Z

(k)
n,r =

∑n
k=1W

(k)
n,r , for every realization of

{Xj}nj=1. Thus, the right-hand sides of (70) and (71) are equal. Thus P (A+,n = r) = P (Ln = r), r = 0, . . . , n,

which in conjunction with Theorem 12.3 proves Theorem 12.2. �
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The material in this section is one of the cornerstones of a larger subject which includes path decomposition

and the Wiener-Hopf factorization for random walks and for Lévy processes. See [26] for some basic material

on Wiener-Hopf factorization. For more modern and more comprehensive work, see for example [20,44,62] and

references therein. The exploitation of symmetries, of which the proofs of Theorems 12.2 and 12.3 are examples,

is an important recurring theme in probability theory; see for example [42].

13. The probabilistic method

I cannot imagine a survey of the bridge between combinatorics and probability that does not include the

probabilistic method, popularized by Erdős beginning in the 1940s. The method gives only a one-sided bound,

and that bound is usually not tight, yet frequently it is the only known method to yield a non-trivial result.

Almost every combinatorialist is familiar with Erdős’ use of the method to get a lower bound on the Ramsey

number R(s, s). A small tweaking of the most basic use of the method [4, 55] gives the lower bound R(k, k) ≥
(1 + o(1)) k√

2e
2
k
2 , leaving a wide gap with the best known upper bound which is around 4k. We illustrate the

probabilistic method with two other examples, one entirely straightforward and simplistic, the other a bit more

creative. For much more on the probabilistic method, see [4].

Two-colorings with no monochromatic sets. Consider N sets of objects, not necessarily disjoint, each of

size k, with N, k ≥ 2. Then the total number of distinct objects in the union of the sets is at least k and at

most Nk. Given k, how large can N be so that no matter what the configuration of the objects, it is always

possible to assign one of two colors to each object in such a way that none of the N sets is monochromatic?

Example. Let N = 3 and k = 2. Consider three objects, labelled 1,2 and 3, and define three sets of size two by

{1, 2}, {1, 3}, {2, 3}. Then every two-coloring will produce a monochromatic set.

Proposition 13.1. Consider N sets of not necessarily disjoint objects, where each set contains k objects. If

N(
1

2
)k−1 < 1,

then it is always possible to choose a two-coloring of the objects in such a way that none of the N sets is

monochromatic.

Proof. Call the two colors black and white. To use the probabilistic method, one colors all the objects indepen-

dently and at random so that each object is colored black or white with equal probabilities 1
2 . Let Aj be the

event that the jth set is monochromatic. Then P (Aj) = ( 1
2 )k + ( 1

2 )k = ( 1
2 )k−1. Let A = ∪Nj=1Aj be the event

that at least one of the N sets is monochromatic. Then P (A) ≤
∑N
j=1 P (Aj) = N( 1

2 )k−1. If N( 1
2 )k−1 < 1, then

P (A) < 1, which guarantees that Ac 6= ∅.

Maximal antichains and Sperner’s Theorem. Let n ∈ N. Recall that a family Fn of subsets of [n] is called

an antichain in [n] if no set belonging to Fn is contained in another set belonging to Fn.

Theorem 13.1. Let Fn be an antichain in [n]. Then∑
A∈Fn

1(
n
|A|
) ≤ 1. (72)

As a corollary of Theorem 13.1, we obtain Sperner’s Theorem.

Corollary 13.1. Let Fn be an antichain in [n]. Then

|Fn| ≤
(
n

bn2 c

)
.

Proof of Corollary. The function a→
(
n
a

)
is maximized at a = bn2 c. Thus, from (72), we have |Fn| 1

( n
bn

2
c)
≤ 1. �

Sperner’s theorem originally appeared in [69]. See [3] for a short non-probabilistic proof.
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Proof of Theorem 13.1. We follow the argument in [4]. Fix an antichain Fn in [n]. For each permutation σ ∈ Sn,

define the family Cσ of subsets of [n] by

Cσ =
{
{σi : 1 ≤ i ≤ j} : 1 ≤ j ≤ n

}
.

Let Xn(σ) = |Fn ∩ Cσ| denote the number of subsets of [n] common to both Fn and Cσ. We now consider Sn

with the uniform probability measure Pn; this turns Xn = Xn(σ) into a real-valued random variable and C = Cσ
into a family-of-sets-valued random variable on the probability space (Sn, Pn). We represent Xn as a sum of

indicator random variables. For A ∈ Fn, let IA equal 1 if A ∈ C and 0 otherwise. Then

Xn =
∑
A∈Fn

IA

and

EnXn =
∑
A∈Fn

EnIA =
∑
A∈Fn

Pn(A ∈ C). (73)

The random family C of subsets of [n] contains exactly one subset of size |A|. Since σ is a uniformly random

permutation, this one subset of size |A| is distributed uniformly over all subsets of size |A|. Thus,

Pn(A ∈ C) =
1(
n
|A|
) .

By construction, for any σ ∈ Sn, the family of subsets Cσ forms a chain; that is for A,B ∈ Cσ, either A ⊂ B

or B ⊂ A. Thus, since Fn is an antichain, it follows that Xn(σ) = |Fn ∩ Cσ| ≤ 1, for all σ ∈ Sn. In particular

then,

EnXn ≤ 1. (74)

The theorem follows from (73)-(74). �
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