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1. Introduction

Let S be a finite subset of Zn ⊂ Rn. When S has a combinatorial definition, there has been a lot of interest in
understanding the convex hull P = conv(S) in Rn. We can ask for such information as the f -vector of P (which
encodes the number of faces of each dimension), the volume, the Ehrhart polynomial (which counts integer
points in the dilation mP where m is a positive integer), the toric h-vector, etc. A prototypical example is given
by taking S to consist of all permutations (a1, a2, . . . , an) of 1, 2, . . . , n. Then conv(S) is the permutohedron,
greatly generalized by Postnikov [2].

Here we take S to consist of all parking functions of length n. Let α = (a1, a2, . . . , an) be a sequence of
positive integers ai ∈ {1, 2, . . . , n}, and let b1 ≤ b2 ≤ · · · ≤ bn be the increasing rearrangement of α. We call
α a parking function if bi ≤ i for all i ∈ {1, 2, . . . , n}. There is a vast literature on parking functions and their
connections with other areas of mathematics. For an introduction, see Yan [6].

We introduce an n-dimensional polytope Pn, defined as the convex hull in Rn of all parking functions of
length n. This will be the central mathematical object of this paper. In particular, we will determine the
f -vector, the volume, and the number of integer points of this polytope. See Figure 1 for a projection (Schlegel
diagram) of P3. It is combinatorially equivalent to “half a 3-cube,” i.e., cut a 3-cube in half by a hyperplane
whose intersection with the cube is a regular hexagon.
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Figure 1: The polytope P3

This paper arose from a problem proposed by Stanley in [5], which asks to determine

(a) the number of vertices of Pn,

(b) the number of (n− 1)-dimensional faces, i.e., facets, of Pn,
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(c) the number of integer points in Pn, i.e., the number of elements of Zn ∩ Pn,

(d) the n-dimensional volume of Pn.

Definition 1.1. We call F a face of a polytope P if

F = P ∩ {x : c · x = d}

for some c ∈ Rn, d ∈ R such that for all x ∈ P, c · x ≤ d where the dot · means dot product. We call a face a
vertex if it has dimension 0, an edge if it has dimension 1, and a facet if it has dimension n − 1 given that P
has dimension n.

In a private communication with the authors, Stanley proved that the vertices of Pn are the permutations
of

(1, . . . , 1︸ ︷︷ ︸
k ones

, k + 1, k + 2, . . . , n),

for 1 ≤ k ≤ n. This is proven in two parts. First, consider a parking function α = (a1, . . . , an) for which there
is a term ai > 1 such that (a1, . . . , ai−1, ai + 1, ai+1, . . . , an) is also a parking function. It can be seen that α is
a convex combination of two other parking functions. Second, if α = (1, . . . , 1, k + 1, k + 2, . . . , n) is a convex
combination of β, γ ∈ Pn, then by properties of parking functions, β = γ = α, meaning α is a vertex of Pn.

From these observations, the number of vertices of Pn is

n!

(
1

1!
+

1

2!
+ · · ·+ 1

n!

)
.

Stanley also showed that the defining inequalities of Pn are

1 ≤xi ≤ n, 1 ≤ i ≤ n
xi + xj ≤ (n− 1) + n, i < j

xi + xj + xk ≤ (n− 2) + (n− 1) + n, i < j < k

...

xi1 + xi2 + · · ·+ xin−2 ≤ 3 + 4 + · · ·+ n, i1 < i2 < · · · < in−2

x1 + x2 + · · ·+ xn ≤ 1 + 2 + · · ·+ n.

Thus, the number of facets is the number of these inequalities, which is equal to 2n − 1.
From these findings arose the curiosity to find the number of faces of specified dimensions other than 0

(i.e., vertices) and n − 1 (i.e., facets). In particular, we want to find the number of 1-dimensional faces, i.e.,
edges, and more generally, the number of i-dimensional faces for 0 ≤ i ≤ n− 1. These numbers constitute Pn’s
f -vector. We define the f -vector of an n-dimensional polytope as the vector (f0, f1, . . . , fn−1), where fi is the
number of i-dimensional faces of the polytope.

Organization of the paper

In Section 2, we find the number of edges of Pn by understanding which pairs of vertices create an edge and
using the formula of the number of vertices of Pn mentioned above. In Section 3, we consider the general case
of d-dimensional faces of Pn, determine their structure, and derive a formula for their number which involves
Stirling numbers of the second kind. In Section 4, we prove that the sequence {Vn} of volumes of Pn satisfies
a nice recurrence relation, and then use it to find the exponential generating function of this sequence. Lastly,
in Section 5, we show that the set of lattice points of Pn can be divided into sets of lattice points of several
permutohedrons, which have a formula given by Postnikov in [2].
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2. Edges

Theorem 2.1. The number of edges of Pn is equal to

n · n!

2

(
1

1!
+

1

2!
+ · · ·+ 1

n!

)
.

Definition 2.1. Let x be a parking function which is a vertex of Pn. Then it is a permutation of (1, . . . , 1, k+
1, k + 2, . . . , n) for some unique 1 ≤ k ≤ n. We say that x is on layer n − k. For x = (1, 1, . . . , 1) we say that
it is on layer 0.

Proposition 2.1. If v and u are two vertices of Pn such that vu is an edge, then v and u are either from
neighboring layers (differing by 1) or from the same layer.

Proof. Let c · x be the dot product c1x1 + · · ·+ cnxn of vectors c, x ∈ Rn. If vu is an edge, then there exists c
such that c ·v = c ·u > c ·w for any vertex w of Pn distinct from v and u. Since Pn is invariant under coordinate
permutation, without loss of generality, we may assume c1 ≤ · · · ≤ cn.

Suppose v and u are t ≥ 2 layers apart from each other, so let v be a permutation of (1, . . . , 1, k, k+1, . . . , n)
and let u be a permutation of (1, . . . , 1, k + t, k + t + 1, . . . , n), where 1 ≤ k < k + 2 ≤ k + t ≤ n. Since v
and u are the unique permutations of (1, . . . , 1, k, k + 1, . . . , n) and (1, . . . , 1, k, k + 1, . . . , n), respectively, that
maximize c · x, then, by the rearrangement inequality,

v = (1, . . . , 1, k, k + 1, . . . , n), u = (1, . . . , 1, k + t, k + t+ 1, . . . , n),

and ck−1 < ck < · · · < cn. If ck+t−1 ≥ 0, then for w = (1, . . . , 1, k + t − 1, k + t . . . , n) ∈ Pn which is distinct
from v and u, we have c ·w ≥ c ·u, a contradiction. Otherwise, if ck+t−1 < 0, we have ck < · · · < ck+t−1 < 0, so

c · v − c · u = ck(k − 1) + ck+1k + · · ·+ ck+t−1(k + t− 2) < 0,

meaning c · v < c · u, a contradiction. Thus, v and u are at most one layer apart from each other.

Proposition 2.2. For each vertex v of Pn, there are exactly n edges of Pn with v as one of the vertices.
Equivalently, Pn is a simple polytope.

Proof. Suppose v is on layer n − k. Since Pn is invariant under coordinate permutation, without loss of
generality, we may assume v = (1, . . . , 1, k + 1, . . . , n). Let vu be an edge of Pn, then there exists c ∈ Rn

such that c · v = c · u > c · w for any vertex w of Pn distinct from v and u. By the rearrangement inequality,
ci ≤ ck+1 ≤ · · · ≤ cn for any 1 ≤ i ≤ k.

If u is on the same layer as v, then u is a permutation of (1, . . . , 1, k+ 1, . . . , n) distinct from v. If ck+1 ≤ 0,
then changing the (k+1)-st coordinate of v from k+1 to 1 will give another vertex w of Pn for which c ·w ≥ c ·v,
a contradiction. Thus, 0 < ck+1 ≤ · · · ≤ cn. If 2 ≤ k ≤ n and ci ≥ 0 for some 1 ≤ i ≤ k, then changing the
i-th coordinate of v from 1 to k will give another vertex w of Pn for which c · w ≥ c · v, a contradiction. Thus,
ci < 0 for 1 ≤ i ≤ k if k ≥ 2. This means for k ≥ 2, we have u1 = · · · = uk = 1.

Also, we have at most one pair of equal coefficients among ck, . . . , cn. Otherwise, by interchanging the
corresponding coordinate values of v we would get a total of ≥ 3 distinct vertices x of Pn (including v) for
which cx = cv = cu, a contradiction. At the same time if we have no such pairs, then ck < ck+1 < · · · < cn,
and then cv > cu, a contradiction. Therefore, we have exactly one pair of equal coefficients among ck, . . . , cn,
and since ck ≤ · · · ≤ cn, they have to be neighboring. This means u differs from v by exactly one swap of two
neighboring coordinates (j, j + 1) where k + 1 ≤ j ≤ n− 1 for 2 ≤ k ≤ n− 1, and k = 1 ≤ j ≤ n− 1 for k = 1.
Hence, there are at most n − k − 1 same layer edges with v if 2 ≤ k ≤ n − 1, at most n − 1 same layer edges
with v if k = 1, and 0 same layer edges with v if k = n.

In fact, each of these edges can be achieved by choosing c the following way. For k = 1, let

0 < c1 < · · · < cj = cj+1 < · · · < cn for some k = 1 ≤ j ≤ n− 1.

For k ≥ 2, let

c1 = · · · = ck < 0 < ck+1 < · · · < cj = cj+1 < · · · < cn for some k + 1 ≤ j ≤ n− 1.

Suppose u is 1 layer apart from v. Then x = v is the only permutation of (1, . . . , 1, k+ 1, . . . , n) maximizing
c · x. Then ci < ck+1 < · · · < cn for any 1 ≤ i ≤ k. Therefore, if k ≥ 2 and u is a permutation of
(1, . . . , 1, k, k+ 1, . . . , n), then (uk+1, . . . , un) = (k+ 1, . . . , n) and thus (u1, . . . , uk) is one of the k permutations
of (1, . . . , 1, k). Hence, there are at most k edges vu with u one layer above v (i.e., on layer n− k+ 1) for k ≥ 2.
In fact, each of these edges can be achieved by choosing c such that ci < 0 for indices 1 ≤ i ≤ k with ui = 1,
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ci = 0 for the index 1 ≤ i ≤ k with ui = k, and 0 < ck+1 < . . . cn. Note that if k = 1, then v is on the highest
layer (layer n− 1), so there are no edges uv such that u is 1 layer above v.

Again, since ci < ck+1 < · · · < cn, for any 1 ≤ i ≤ k, we have that if k < n and u is a permutation of
(1, . . . , 1, k + 2, . . . , n) then it has to be exactly (1, . . . , 1, k + 2, . . . , n). Hence, there is at most 1 edge vu such
that u is one layer below v (i.e. on layer n− k − 1) for k < n. In fact, this edge can be achieved by choosing c
such that ci < 0 for 1 ≤ i ≤ k and ck+1 = 0. Note that if k = n, then v is on the lowest layer (layer 0), so there
are no edges uv such that u is 1 layer below v.

Thus, adding up u-on-same-layer, u-layer-above, and u-layer-below edges vu, we get that for 2 ≤ k ≤ n− 1,
there are (n− k − 1) + k + 1 = n edges with v as one of the vertices. For k = 1, there are (n− k) + 0 + 1 = n
edges with v as one of the vertices. For k = n, there are 0 + k + 0 = n edges with v as one of the vertices.

Proof of Theorem 2.1. By Proposition 2.2, the graph of Pn is an n-regular graph with

V = n!

(
1

1!
+

1

2!
+ · · ·+ 1

n!

)
vertices. Therefore, Pn has nV

2 edges.

3. Faces of higher dimensions

In this section, we generalize this approach to understand the nature of faces of higher dimension. More
specifically, we will prove the following theorem.

Theorem 3.1. Let fn−s be the number of (n− s)-dimensional faces of Pn for s from 0 to n. Then,

fn−s =

s∑
m=0,m 6=1

(
n

m

)
· (s−m)! · S(n−m+ 1, s−m+ 1),

where S(n, k) are the Stirling numbers of the second kind.

For each c ∈ Rn, let Fc be the set of points x ∈ Pn such that c · x is maximized (for x ∈ Pn). Each face of
Pn is equal to Fc for some c ∈ Rn. Also, denote the set of vertices of Pn lying in Fc by V (Fc).

For each c, define an ordered partition (B−1, B0, . . . , Bk) of {1, 2, . . . , n}, where B−1 is the set of indices i
such that ci < 0, B0 is the set of indices i such that ci = 0, and Bj is the set of indices i such that ci is the j-th
smallest positive value among the coordinates of c. Let lj = |Bj | for j = −1, 0, 1, . . . , k.

Lemma 3.1. The face Fc is determined by the ordered partition (B−1, B0 . . . , Bk) described above. Each face
of Pn can be uniquely defined by an ordered partition (B−1, B0, · · · , Bk) that does not satisfy l−1 = 0, l0 = 1 or
l−1 = 0, l0 = 0, l1 = 1.

Proof. Consider a vertex v of Pn that maximizes c · v. By the rearrangement inequality and the structure of
vertices of Pn, it is clear that vi = 1 for i ∈ B−1. Also, (vi)i∈B0

is a permutation of (1, . . . 1, j + 1, . . . , l−1 + l0)
for some j ∈ [l−1, l−1 + l0], and (vi)i∈Bi

is a permutation of (l−1 + l0 + · · · + li−1 + 1, l−1 + l0 + · · · + li−1 +
2, . . . , l−1 + l0 + · · ·+ li−1 + li) for each i from 1 to k.

From this conclusion, if l−1 = 0 and l0 = 1, we can change the zero coordinate of c to −1, and the set V (Fc)
will not change. Also, if l−1 = 0, l0 = 0, and B1 = {i}, we can change the value of ci to −1, and V (Fc) will
not change. So we do not consider (B−1, B0, . . . , Bk) with l−1 = 0 and l0 = 1 or l−1 = 0, l0 = 0, and l1 = 1.
Other than that, from the conclusion of the previous paragraph, different ordered partitions define different
V (Fc)’s.

Lemma 3.2. The dimension of Fc is equal to n− k − l−1.

Proof. Let d be the dimension of Fc. Then d = dim(aff(V (Fc))). If d = n then clearly Fc = Pn and c = 0, so
indeed n − k − l−1 = n = d. Now suppose d < n. Then 0 /∈ aff(V (Fc)), so dim(aff(V (Fc) ∪ {0})) = d + 1.It
is clear that dim(aff(V (Fc) ∪ {0})) is the dimension of the vector space W spanned by the vectors from 0 to
points in V (Fc).

For each j from 1 to k, consider Bj = {i1, i2, . . . , ilj}. Let Vj be the set of lj − 1 vectors v in Rn which are
the permutations of (1,−1, 0, . . . , 0) having vik = 1, vik+1

= −1, for some 1 ≤ k ≤ lj − 1. Also, let V0 be the
set of l0 vectors ei in Rn which are the permutations of (1, 0, 0, . . . , 0) having value 1 at one of the coordinates
with index i ∈ B0.

Take a vector w from 0 to some point of V (Fc). Consider the set S =
(⋃k

i=0 Vi

)
∪ w of

l0 +

k∑
i=1

(li − 1) + 1 =

k∑
i=0

li − k + 1 = n− l−1 − k + 1
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vectors. We will prove that S spans W .
For any x ∈ V (Fc), consider the vector a = x−w−

∑
i∈B0

(xi−wi)ei. Clearly, ai = 0 for i ∈ B−1 ∪B0, and

for each 0 < j ≤ k, if Bj = {i1, i2, . . . , ilj}, then
∑lj

m=1 aim = 0. Then (ai1 , ai2 , . . . , ailj ) is a linear combination

of
(1,−1, 0, . . . , 0), (0, 1,−1, 0, . . . , 0), . . . , (0, . . . , 0, 1,−1).

Therefore, a is a linear combination of vectors in
⋃k

i=1 Vi. Thus, x = a + w +
∑

i∈B0
(xi − wi)ei is a linear

combination of vectors in S, so S spans W .
Also, S is linearly independent. If it is not, then there is a linear combination β of vectors in S such that

β = bw +
∑

v∈S\{w}

bvv = 0

and not all of the bv and b are zero. If l−1 > 0, then for all i ∈ B−1, we have 0 = βi = bwi, so b = 0. If k > 0,
then B1 is nonempty, so

0 =
∑
i∈B1

βi

=
∑
i∈B1

bwi +
∑

v∈S\{w}

bvvi


= b

∑
i∈B1

wi +
∑
i∈B1

∑
v∈S\{w}

bvvi

= b
∑
i∈B1

wi +
∑

v∈S\{w}

bv
∑
i∈B1

vi

= b
∑
i∈B1

wi +
∑

v∈S\{w}

bv · 0

= b
∑
i∈B1

wi.

Therefore, b = 0. Since d < n, we have l0 < n, so either l−1 > 0 or k > 0. In both cases b = 0. But then

(b1, . . . , bn−l−1−k) 6= 0, so
⋃k

i=0 Vi is linearly dependent, which is clearly not true.
Thus, S spans W and is linearly independent, which means it is a basis of W . Thus d + 1 = dim(W ) =

|S| = n− l−1 − k + 1, so d = n− k − l−1.

Proof of Theorem 3.1. To find the number fn−s of (n − s)-dimensional faces we need to find the number of
different ordered partitions (B−1, B0, . . . , Bk) of {1, . . . , n} such that li > 0 for i ≥ 1 and n− s = n− k − l−1,
i.e., s = k + l−1, not satisfying l−1 = 0, l0 = 1 or l−1 = 0, l0 = 0, l1 = 1. For convenience, we will denote l−1 by
m in further computations. We have s = k +m, so m takes values from 0 to s.

For each m from 0 to s, we first choose m elements for B−. Then, if l0 = 0, we partition the remaining
n − m elements into k = s − m nonempty ordered groups. If l0 ≥ 1, we partition the remaining n − m
elements into k + 1 = s −m + 1 nonempty ordered groups. Thus we have the corresponding Stirling numbers
of the second kind multiplied by the number of permutations of the groups because those are ordered. Note
that since we do not consider c with m = l−1 = 0 and l0 = 1 or m = l−1 = 0, l0 = 0, and l1 = 1, we
need to subtract the number of such partitions. So we subtract n · k! · S(n − 1, k) =

(
n
1

)
· s! · S(n − 1, s) and

n · (k − 1)! · S(n− 1, k − 1) =
(
n
1

)
· (s− 1)! · S(n− 1, s− 1). Therefore,

fn−s =

s∑
m=0,m 6=1

(
n

m

)
· ((s−m)! · S(n−m, s−m) + (s−m+ 1)! · S(n−m, s−m+ 1))

=

s∑
m=0,m 6=1

(
n

m

)
· (s−m)! · S(n−m+ 1, s−m+ 1).

To use this formula to find the number of edges of Pn, we take n − s = 1, so s = n − 1. Then since

S(a, a− 1) = a(a−1)
2 for any positive integer a,

f1 =

n−1∑
m=0,m 6=1

(
n

m

)
· (n−m− 1)! · S(n−m+ 1, n−m)
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=

n−1∑
m=0,m 6=1

(
n

m

)
· (n−m− 1)! · (n−m+ 1)(n−m)

2

=

n−1∑
m=0,m 6=1

n! · (n−m+ 1)

2m!

=

n−1∑
m=1

n! · n
2m!

−
n−1∑
m=2

n!

2(m− 1)!
+

n−1∑
m=1

n!

2m!

=
n

2

(
n−1∑
m=1

n!

m!

)
−

n−2∑
m=1

n!

2m!
+

n−1∑
m=1

n!

2m!

=
n

2
(V − 1) +

n!

2(n− 1)!

=
nV

2
,

where V is the number of vertices of Pn and is equal to n!
(
1
1! + 1

2! + · · ·+ 1
n!

)
. This again proves Theorem 2.1.

4. Volume

To find the volume of Pn, we split the polytope into n-dimensional pyramids with facets of Pn not containing
I = (1, . . . , 1) as base and point I as vertex. There are 2n−n−1 such pyramids. Now we will derive a recursive
formula for the volume of Pn as a sum of volumes of these pyramids.

Theorem 4.1. Define a sequence {Vn}n≥0 by V0 = 1 and Vn = Vol (Pn) for all positive integers n. Then

Vn =
1

n

n−1∑
k=0

(
n

k

)
(n− k)n−k−1(n+ k − 1)

2
Vk

for all n ≥ 2.

In the proof of this theorem we will use the following “decomposition lemma”.

Proposition 4.1 ([1, Proposition 2]). Let K1, . . . ,Kn be some convex bodies of Rn and suppose that
Kn−m+1, . . . ,Kn are contained in some m-dimensional affine subspace U of Rn. Let MVU denote the mixed
volume with respect to the m-dimensional volume measure on U , and let MVU⊥ be defined similarly with respect
to the orthogonal complement U⊥ of U . Then the mixed volume of K1, . . . ,Kn

MV (K1, . . . ,Kn−m,Kn−m+1, . . . ,Kn) =

1(
n
m

)MVU⊥(K ′1, . . . ,K
′
n−m)MVU (Kn−m+1, . . . ,Kn),

where K ′1, . . . ,K
′
n−m denote the orthogonal projections of K1, . . . ,Kn−m onto U⊥, respectively.

Proof of Theorem 4.1. Each pyramid has a base which is a facet F with points of Pn satisfying the equation

xi1 + xi2 + · · ·+ xik = (n− k + 1) + (n− k + 2) + · · ·+ (n− 1) + n

for some k ∈ {1, 2, . . . , n− 2, n} and distinct i1 < · · · < ik.
Let {j1, j2, . . . , jn−k} = {1, 2, . . . , n} − {i1, i2, . . . , ik}. Let P ′n−k be the polytope containing all points x′

such that x′p = 0 for all p ∈ {i1, i2, . . . , ik} and for some x ∈ F , x′p = xp for all p ∈ {j1, j2, . . . , jn−k}. Then
P ′n−k is an (n− k)-dimensional polytope with the following defining inequalities:

1 ≤x′jp ≤ n− k, 1 ≤ p ≤ n− k
x′jp + x′jq ≤ (n− k − 1) + (n− k), 1 ≤ p < q ≤ n− k

x′jp + x′jq + x′jr ≤ (n− k − 2) + (n− k − 1) + (n− k), 1 ≤ p < q < r ≤ n− k
...

x′jp1 + x′jp2 + · · ·+ x′jpn−k−2
≤ 3 + 4 + · · ·+ (n− k), 1 ≤ p1 < p2 < · · · < pn−k−2 ≤ n− k

x′jp1 + x′jp2 + · · ·+ x′jpn−k
≤ 1 + 2 + 3 + 4 + · · ·+ (n− k).
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This means P ′n−k is congruent to Pn−k, so Voln−k(P ′n−k) = Voln−k(Pn−k) = Vn−k.
Let Qk be the polytope containing all points x′ such that for all p ∈ {j1, j2, . . . , jn−k}, we have x′p = 0, and

for some x ∈ F , we have x′p = xp for all p ∈ {i1, i2, . . . , ik}. Then the coordinate values (x′i1 , x
′
i2
, . . . , x′ik) of

vertices of Qk are the permutations of (n−k+1, n−k+2, . . . , n), meaning Qn is a (k−1)-dimensional polytope
congruent to the permutohedron of order k which has (k − 1)-dimensional volume kk−2

√
k.

Thus, F is a Minkowski sum of two polytopes P ′n−k and Qk which lie in two orthogonal subspaces of Rn.
Therefore, by Proposition 4.1, the (n− 1)-dimensional volume of F is equal to

2∑
p1,...,pn=1

MV (Kp1
,Kp2

, . . . ,Kpn
) = Vn−k · kk−2

√
k,

where K1 = P ′n−k and K2 = Qk. Then the volume of Pyr(I, F ), the pyramid with F as a base and I as a
vertex, is equal to

1

n
hkVol(F ) =

1

n
hkVn−k · kk−2

√
k,

where

hk =
|1 + · · ·+ 1− ((n− k + 1) + (n− k + 2) + · · ·+ (n− 1) + n)|√

1 + · · ·+ 1
=
k(2n− k − 1)

2
√
k

is the distance from point I to the face F . Thus,

Vol(Pyr(I, F )) =
1

n
· k(2n− k − 1)

2
√
k

Vn−k · kk−2
√
k =

1

n
· k(2n− k − 1)

2
kk−2Vn−k.

Since V0 = 1 and V1 = 0, we get for n ≥ 2,

Vn =
1

n

(
n−2∑
k=1

(
n

k

)
k(2n− k − 1)

2
kk−2Vn−k

)
+

1

n
· n(n− 1)

2
nn−2

=
1

n

(
n−1∑
k=2

(
n

n− k

)
(n− k)(n+ k − 1)

2
(n− k)n−k−2Vk

)
+

1

n
· n

n−1(n− 1)

2

=
1

n

n−1∑
k=0

(
n

k

)
(n− k)n−k−1(n+ k − 1)

2
Vk.

For n = 1, 2, . . . , 8 this formula gives the volume values 0, 12 , 4, 159
4 , 492, 58835

8 , 129237, 41822865
16 .

Proposition 4.2. Let f(x) =
∑

n≥0
Vn

n! x
n be the exponential generating function of {Vn}n≥0. Let g(x) =∑

n≥1
nn−1

n! xn be the exponential generating function of {nn−1}n≥1. Then

f(x) = e
∫ x(g′(x))2

2 .

Proof. It is known that g(x) = xeg(x), so

g′(x) = eg(x) + xg′(x)eg(x) =
g(x)

x
+ g(x)g′(x). (∗)

From Theorem 4.1,

n · Vn
n!

=

n−1∑
k=0

(n− k)n−k−1(n+ k − 1)

2(n− k)!
· Vk
k!

=

n−1∑
k=0

(n− k)n−k−1(n− k + 2k − 1)

2(n− k)!
· Vk
k!

=

n−1∑
k=0

1

2
· (n− k)n−k

(n− k)!
· Vk
k!

+

n−1∑
k=0

(n− k)n−k−1k

(n− k)!
· Vk
k!
−

n−1∑
k=0

1

2
· (n− k)n−k−1

(n− k)!
· Vk
k!
.

Therefore,

f ′(x) =
1

2
g′(x)f(x) + g(x)f ′(x)− 1

2x
g(x)f(x).
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Then

f ′(x)(1− g(x)) =
1

2x
(xg′(x)− g(x))f(x) =

by (∗)

1

2x
xg(x)g′(x)f(x) =

1

2
g(x)g′(x)f(x),

so

f ′(x) =
g(x)g′(x)f(x)

2(1− g(x))
=

by (∗)

g(x)g′(x)f(x)

2
(

g(x)
xg′(x)

) =
x(g′(x))2

2
f(x).

Thus, f(x) = ce
∫ x(g′(x))2

2 . It is clear that c = 1, so f(x) = e
∫ x(g′(x))2

2 .

5. Lattice Points

In this section we determine the number of integer points in Pn.

Proposition 5.1. Let Pn,S be the set of points x in Pn satisfying x1 + · · ·+ xn = S. For each integer S from

n+ 1 to n(n−1)
2 there is a unique pair of positive integers (r, k) such that 2 ≤ r ≤ k + 1,

1 + · · ·+ 1︸ ︷︷ ︸
k ones

+r + (k + 2) + · · ·+ n = S,

and the set of vertices of Pn,S is the set of permutations of (1, . . . , 1, r, k + 2, . . . , n). For the case S = n, the
set of vertices of Pn,n is just one vertex (1, . . . , 1).

Proof. It is clear that if S = n, then the only point x in Pn,S satisfies x1 = · · · = xn = 1. For this case we can
say k = n and r is unnecessary.

Since 1 + · · ·+ 1 < 1 + · · ·+ 1 + n < · · · < 1 + 2 + · · ·+ n, for each S from n+ 1 to n(n−1)
2 there is a unique

k ≤ (n− 1) such that

1 + · · ·+ 1 + (k + 2) + · · ·+ n < S ≤ 1 + · · ·+ 1 + (k + 1) + · · ·+ n.

Then 0 < S − (1 + · · ·+ 1 + (k + 2) + · · ·+ n) ≤ k, so take

r = 1 + S − (1 + · · ·+ 1 + (k + 2) + · · ·+ n)

for which 1 < r ≤ k + 1. Then indeed 1 + · · ·+ 1 + r + (k + 2) + · · ·+ n = S.
Suppose there is another (r′, k′) such that 1 + · · ·+ 1 + r′ + (k′ + 2) + · · ·+ n = S. If k < k′, then

1 + · · ·+ 1 + r′ + (k′ + 2) + · · ·+ n ≤ 1 + · · ·+ 1 + (k′ + 1) + (k′ + 2) + · · ·+ n

≤ 1 + · · ·+ 1 + (k + 2) + · · ·+ n

< 1 + · · ·+ 1 + r + (k + 2) + · · ·+ n,

a contradiction. Thus, k ≥ k′. Similarly, k′ ≥ k, so k = k′, from where it is clear that r = r′.
Now we will prove that set of vertices of Pn,S is the set of permutations of (1, . . . , 1, r, k + 2, . . . , n). Let

a = (a1, . . . , an) be a vertex of Pn,S . Since Pn,S is invariant under coordinate permutation, we may assume
a1 ≤ · · · ≤ an.

If there is no 1 ≤ k ≤ n such that ak < k, then clearly ai = i for all 1 ≤ i ≤ n. In this case k = 1, r = 2, and
a is indeed a permutation of (1, . . . , 1, r, k + 2, . . . , n) = (1, 2, . . . , n). Otherwise, take the greatest 1 ≤ k ≤ n
such that ak < k. Then a = (a1, . . . , ak, k + 1, . . . , n).

Case 1: ak = ak−1. Suppose c = am = · · · = ak ≤ k − 1 and am−1 6= c. Then

c =
am + · · ·+ ak
k −m+ 1

≤ m+ · · ·+ k

k −m+ 1
=
m+ k

2
.

Suppose c > 1. Then there exists ε > 0 such that ε ≤ j−m
2 (k − j + 1) for each j from m+ 1 to k. Consider

x = (a1, . . . , am−1, am − ε, am+1, . . . , ak−1, ak + ε, ak+1, . . . , an).

For any m+ 1 ≤ j ≤ k,

aj + · · ·+ ak + ε = c(k − j + 1) + ε ≤ m+ k

2
(k − j + 1) +

j −m
2

(k − j + 1) =
j + k

2
(k − j + 1)

= j + · · ·+ k.
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This means x satisfies all the defining inequalities of Pn, so x ∈ Pn,S . Therefore,

x′ = (a1, . . . , am−1, am + ε, am+1, . . . , ak−1, ak − ε, ak+1, . . . , an)

is also in Pn,S since it is just a permutation of x. But then a = 1
2x+ 1

2x
′, so a is not a vertex of Pn,S if c > 1.

Therefore, c = 1, and since 1 ≤ a1 ≤ · · · ≤ ak = c = 1, we have a1 = · · · = ak = 1 and S =
1 + · · ·+ 1 + (k + 1) + · · ·+ n, so (r, k) = (k + 1, k) and a is indeed a permutation of (1, . . . , 1, r, k + 2, . . . , n).

Case 2: ak > ak−1. Then, since ak−1 ≥ 1, we have ak ≥ 2. Suppose c = am = · · · = ak−1 < ak ≤ k − 1 and
am−1 6= c. Then

c =
am + · · ·+ ak−1

k −m
=
am + · · ·+ ak−1 + ak − ak

k −m

≤ m+ · · ·+ k − ak
k −m

=
1
2 (m+ k)(k −m+ 1)− ak

k −m
.

Suppose c > 1. For any j from m+ 1 to k,

(j + · · ·+ k)− (aj + · · ·+ ak) =
1

2
(j + k)(k − j + 1)− c(k − j)− ak

≥ 1

2
(j + k)(k − j + 1)− (k − j)

1
2 (m+ k)(k −m+ 1)− ak

k −m
− ak

=
1

2
(j + k)(k − j + 1)− (k − j)

1
2 (m+ k)(k −m+ 1)

k −m
+ ak

(
m− j
k −m

)
>

1

2
(j + k)(k − j + 1)− (k − j)

1
2 (m+ k)(k −m+ 1)

k −m
+
k(m− j)
k −m

=
(k − j)(j −m)

2
≥ 0.

Then there exists ε > 0 such that ε < (j + · · ·+ k)− (aj + · · ·+ ak) for each j from m+ 1 to k. Consider

x = (a1, . . . , am−1, am − ε, am+1, . . . , ak−1, ak + ε, ak+1, . . . , an).

For any m+ 1 ≤ j ≤ k, aj + · · ·+ ak + ε < j+ · · ·+ k. This means x satisfies all the defining inequalities of Pn,
so x ∈ Pn,S . Also,

x′ = (a1, . . . , am−1, am + ε, am+1, . . . , ak−1, ak − ε, ak+1, . . . , an)

is also in Pn,S . But then a = 1
2x+ 1

2x
′, so a is not a vertex of Pn,S if c > 1.

Therefore, c = 1 and since 1 ≤ a1 ≤ · · · ≤ ak−1 = c = 1, we have a1 = · · · = ak−1 = 1. Then S =
1+· · ·+1+ak+(k+1)+· · ·+k, where 2 ≤ r = ak < k, so a is indeed a permutation of (1, . . . , 1, r, k+1, . . . , n).

Thus, we have that Pn,S is a permutohedron with permutations of (1, . . . , 1, r, k+2, . . . , n) as its vertices. In
the case S = n, Pn,S is a permutohedron consisting of one point (1, . . . , 1). In other words, Pn,S is the convex
hull of all permutations of vector (x1, . . . , xn), where

(x1, . . . , xn) =

{
(1, . . . , 1, r, k + 2, . . . , n) if S > n,

(1, . . . , 1) if S = n.

Let N(P ) denote the number of integer points in a polytope P . Then,

N(Pn) =

n(n−1)
2∑

S=n

N(Pn,S).

From [2, Section 4], Pn,S is a generalized permutohedron Pn−1(Y) with YI = y|I| for any I ⊂ [n] and

y1 = x1

y2 = x2 − x1
y3 = x3 − 2x2 + x1

...

yn =

(
n− 1

0

)
xn −

(
n− 1

1

)
xn−1 + · · · ±

(
n− 1

n− 1

)
x1.

Therefore by [2, Theorem 4.2], we have proved the following result.
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Theorem 5.1. We have N(Pn) =
∑n(n−1)

2

S=n N(Pn,S), where

N(Pn,S) =
1

(n− 1)!

∑
(S1,...,Sn−1)

{
YS1
· · ·YSn−1

}
.

The summation is over ordered collections of subsets S1, . . . , Sn−1 ⊂ [n] such that for any distinct i1, . . . , ik, we
have |Si1 ∪ · · · ∪ Sik | ≥ k + 1, and{∏

I

Y aI

I

}
:= (Y[n] + 1){a[n]}

∏
I 6=[n]

Y
{aI}
I , where Y {a} = Y (Y + 1) . . . (Y + a− 1).

The numbers N(Pn) for 1 ≤ n ≤ 8 are given by (1, 3, 17, 144, 1623, 22804, 383415, 7501422).

6. Further questions

What other properties of Pn might be worth investigating? Here are two possibilities.

(a) Because Pn is a simple polytope (Proposition 2.2), its dual P∗n is simplicial. Thus P∗n has an h-vector
(h0, h1, . . . , hn) which is a symmetric (hi = hn−i), unimodal sequence of positive integers satisfying

n∑
i=0

hi = n!

(
1

1!
+

1

2!
+ · · ·+ 1

n!

)
,

the number of facets of P∗n (or vertices of Pn) [3]. Is there a simple generating function, combinatorial
formula, etc., for the numbers hi?

(b) Is there a formula for the Ehrhart polynomial (e.g., [4, §4.6.2]) i(Pn,m) generalizing Theorem 5.1 (the
case m = 1)?
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