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Abstract: Given a general multisetM = {1m1 , 2m2 , . . . , nmn}, where i appears mi times, a multipermutation
π ofM is called quasi-Stirling, if it contains no subword of the form abab with a 6= b. We designate exactly one
entry of π, say k ∈M, which is not the leftmost entry among all entries with the same value, by underlining it in
π, and we refer to the pair (π, k) as a quasi-Stirling multipermutation ofM rooted at k. By introducing certain
vertex and edge labeled trees, we give a new bijective proof of an identity due to Yan, Yang, Huang, and Zhu,
which links the enumerator of rooted quasi-Stirling multipermutations by the numbers of ascents, descents, and
plateaus, with the exponential generating function of the bivariate Eulerian polynomials. This identity can be
viewed as a natural extension of Elizalde’s result on k-quasi-Stirling permutations, and our bijective approach
to proving it enables us to

• prove bijectively a Carlitz type identity involving quasi-Stirling polynomials on multisets that was first
obtained by Yan and Zhu.

• confirm a recent partial γ-positivity conjecture due to Lin, Ma, and Zhang, and find a combinatorial inter-
pretation of the γ-coefficients in terms of two new statistics defined on quasi-Stirling multipermutations
called sibling descents and double sibling descents.
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1. Introduction

Let Sn denote the set of permutations of [n] := {1, 2, . . . , n}. For any π = π1π2 · · ·πn ∈ Sn, we call position i,
1 ≤ i ≤ n, a descent of π, provided that πi > πi+1, where πn+1 = π0 = 0, a convention that we follow in this
paper. Denote des(π) the total number of descents of π. The polynomials A0(t) = 1, and

An(t) :=
∑
π∈Sn

tdes(π) =

n∑
i=1

An,it
i, (1)

for n ≥ 1, are the well known Eulerian polynomials, whose coefficient An,i is called the Eulerian number and
gives the number of permutations π ∈ Sn having exactly i descents. The following relation is called the Carlitz
identity in Petersen’s book [17] and was known to Euler (see e.g. [5]). It can be used as an alternative definition
of Eulerian polynomials.

∞∑
m=0

mntm =
An(t)

(1− t)n+1
. (2)

Euler also derived the exponential generating function

A(t, u) :=

∞∑
n=0

An(t)
un

n!
=

1− t
1− te(1−t)u . (3)
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When mn is replaced by the Stirling number of the second kind, say S(m+n,m), in (2), a formula analogous
to (2) can be derived as

∞∑
m=0

S(m+ n,m)tm =
Qn(t)

(1− t)2n+1
, (4)

whose numerator polynomial Qn(t) together with its combinatorial interpretation, were introduced and studied
by Gessel and Stanley [8] via the notion of Stirling permutations. Namely, the set of Stirling permutations
of order n, denoted as Qn, is the collection of permutations π = π1π2 · · ·π2n of the multiset {12, 22, . . . , n2},
subject to the condition that if i < j < k and πi = πk, then we must have πj > πi. Two words u = u1 · · ·um
and v = v1 · · · vm are said to be order isomorphic, if we have ui > uj (resp. ui = uj , ui < uj) if and only if
vi > vj (resp. vi = vj , vi < vj) for all 1 ≤ i < j ≤ m. Using this notion of order isomorphism, π is a Stirling
permutation precisely when it contains no subword that is order isomorphic to 212. Along this line, it seems
natural to consider permutations avoiding further patterns besides 212, i.e., restricted Stirling permutations.
This has been done by Callan, Ma, and Mansour [3]; see also [15] and the references in these two papers. Qn(t)
can now be interpreted as the generating function over Qn by the number of descents, and it will be referred to
as the Stirling polynomial in the sequel.

There is a natural bijection, the so-called Koganov-Janson correspondence [4,9,10], between Stirling permu-
tations and labeled increasing plane trees. In a recent work [1], Archer et al. considered lifting the increasing
restriction on the tree side and finding the counterpart on the permutation side via the aforementioned corre-
spondence. They called this bigger set of permutations the quasi-Stirling permutations, which are permutations
π of {12, 22, . . . , n2} such that there exists no subword of π that is order isomophic to 1212 or 2121. We de-
note the set of quasi-Stirling permutations of order n as Qn, and let Qn(t) =

∑
π∈Qn

tdes(π) be its descent
polynomial (called quasi-Stirling polynomial in what follows), where for des(π) we assume the same convention
π0 = π2n+1 = 0.

Motivated by those classical results in the literature for Eulerian polynomials and Stirling polynomials,
Elizalde successfully developed in his recent work [4] several parallels or new results for quasi-Stirling polyno-
mials, such as

(n+ 1)Qn(t) = n![un]A(t, u)n+1, and (5)
∞∑
m=0

mn

(
m+ n

m

)
tm =

(n+ 1)Qn(t)

(1− t)2n+1
. (6)

Remark 1.1. Note that in Elizalde’s original formulation, the factor (n+ 1) has been divided from both sides
of equations (5) and (6). Putting them in the present form, we are naturally led to consider the notion of rooted
quasi-Stirling permutations, which we will introduce in the next section.

Elizalde derived (5) by first establishing an implicit equation satisfied by the generating functions and then
extracting the coefficients. He next utilized (5) to deduce (6), a nice analogue for quasi-Stirling polynomials
Qn(t) of (2) for An(t) and (4) for Qn(t). He ended his paper [4] by raising the problem of giving a combinatorial
proof of (6) that is reminiscent of Gessel and Stanley’s second proof of (4). This in turn has motivated Yan
and her collaborators to work out three papers [22–24]. Among the results derived by Yan et al., we would like
to highlight the following two identities (7) and (8). Some definitions are needed to state these results.

Let A, a subset of Z>0, be our alphabet. For a word w = w1 · · ·wn ∈ An, an index i, 0 ≤ i ≤ n, is an ascent
(resp. a plateau) of w if wi < wi+1 (resp. wi = wi+1), where we use the same convention that w0 = wn+1 = 0.
In particular, the empty word ε has one plateau coming from the initial and final 0s that we have appended to
ε by convention. The number of ascents (resp. plateaus) of w will be denoted as asc(w) (resp. plat(w)).

Note that two order isomorphic words are indistinguishable when we enumerate them with respect to various
statistics such as des, asc, plat, etc. It is convenient to introduce the reduction map “red”. Namely, for any
word w consisted of integers, we obtain the unique word red(w) of the same length by replacing the i-th smallest
letter in w by i. For instance, red(31355) = 21233. It is evident that two words w and v are order isomorphic,
if and only if red(w) = red(v).

The notion of quasi-Stirling permutations can be extended to any multiset M = {1m1 , . . . , nmn}. In view
of the reduction map, we always assume without the loss of generality that each mi ≥ 1. Denote by QM the
set of all quasi-Stirling permutations of M. We shall consider the trivariate enumerator

QM(x, y, z) =
∑

π∈QM

xdes(π)yasc(π)zplat(π).

Let A(x, y, u) =
∑
n≥0An(x, y)u

n

n! be the generating function of the bivariate Eulerian polynomial
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An(x, y) =
∑
π∈Sn

xdes(π)yasc(π).

Yan, Yang, Huang and Zhu derived in [23, Coro. 1.5] the following identity connecting QM(x, y, z) with
A(x, y, u).

Theorem 1.1. Let M = {1m1 , 2m2 , . . . , nmn} with M = m1 + · · ·+mn. We have

(M − n+ 1)QM(x, y, z) = n![un](A(x, y, u)− 1 + z)M−n+1. (7)

Note that setting m1 = m2 = · · · = mn = k in (7) recovers Elizalde’s result [4, Eq. (22)] for k-quasi-
Stirling permutations, which further reduces to (5) in the case of k = 2. Moreover, we remark again that the
original form of (7) in [23] (as well as the form of (8) below in [24]) divides the factor M − n + 1 from both
sides of the equation. This distinction, albeit cosmetic when viewed algebraically, leads us to a completely
different combinatorial approach from that of [23]. Relying on the insight we gained from this new bijective
proof of Theorem 1.1, we are able to give a new bijective proof of the following Carlitz type identity for
QM(t) := QM(t, 1, 1), which first appeared as Theorem 1.2 in Yan and Zhu’s paper [24].

Theorem 1.2. Let M = {1m1 , 2m2 , . . . , nmn} with M = m1 + · · ·+mn. We have

∑
m≥0

(
M − n+m

m

)
mntm =

(M − n+ 1)QM(t)

(1− t)M+1
. (8)

The third main result of this paper, which also follows from our proof of (7), is the following partial γ-positive
expansion for QM(x, y, z).

Theorem 1.3. For any multisetM = {1m1 , 2m2 , . . . , nmn} with M = m1+· · ·+mn, the polynomial QM(x, y, z)
is partial γ-positive and has the expansion

QM(x, y, z) =

M−n∑
i=0

zi
bM+1−i

2 c∑
j=1

γM,i,j(xy)j(x+ y)M+1−i−2j , (9)

where

γM,i,j = #{π ∈ QM : plat(π) = i, sd(π) = j, dsd(π) = 0}. (10)

Note that the nonnegativity of the coefficients γM,i,j was previously conjectured by Lin, Ma, and Zhang [11],
and was first confirmed by Yan, Huang, and Yang [22]. In that same paper, Yan et al. also provided a
combinatorial interpretation of γM,i,j that is different from the one we give here in (10). The meaning of partial
γ-positivity and the definitions of the sibling descent and double sibling descent (denoted respectively as sd and
dsd in (10)) will be introduced in the final section, where Theorem 1.3 will be proved as well.

For the rest of the paper, we first introduce in section 2 certain vertex and edge labeled trees, as well as the
notion of rooted quasi-Stirling permutations of general multisets. These two kinds of combinatorial objects are
in natural bijection with each other. Building on this bijection, we present new bijective proofs of Theorems
1.1 and 1.2 in section 3.

2. VE-labeled trees

Recall that the Koganov-Janson correspondence mentioned in the introduction links Stirling permutations with
labeled increasing plane trees, where the labels are placed on every edge. On the other hand, Yan et al. utilized
certain vertex-labeled plane trees in both of their papers [23, 24]. For our purpose, it is convenient to consider
certain plane rooted trees where both vertices and edges are labeled. The main goal of this section is to introduce
this new tree model and the rooted quasi-Stirling multipermutations. We should remark that the use of this
tree model could be bypassed entirely, but we believe that making use of it enhances the readability and makes
several terminologies self-explanatory.

All the trees considered in this paper (ordered or unordered) will be rooted. Each non-root vertex, say v,
in a tree T has a unique vertex connected to it that is the closest vertex to v on the path from v to the root
of T . We call this unique vertex the parent of v, and denote it as pT (v), or simply p(v) when the tree (or the
graph) under consideration is clear from the context. v is then called a child of p(v). Two vertices are called
siblings if they share the same parent, and the two edges connecting them to this parent are said to be sibling
edges of each other as well. Take the tree in Fig. 1 for example, the labeled vertices 10 and 11 are siblings with
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the vertex 8 being their common parent. The vertices 9 and s6 are also siblings of each other, where the use of
s6 will be explained in Definition 2.1. All edges in a tree are thought of as pointing towards the root so that
the edge −→uv is said to be starting at u and ending at v, and the tree itself is viewed as a directed graph. For
instance, the edge labeled 2 in Fig. 1 starts at vertex 1 and ends at vertex 9. We are now ready to give the first
key definition of this paper. Recall that χ(S) = 1 if the statement S is true and χ(S) = 0 otherwise.

Definition 2.1. Given any multiset M = {1m1 , . . . , nmn} with M = m1 + · · ·+mn, we denote TM the set of
vertex and edge labeled trees (abbreviated as VE-labeled trees in what follows) over M. These are plane rooted
trees with M −

∑
1≤i≤n χ(mi > 1) edges that satisfy the following conditions.

1. The labels of vertices are all distinct and form precisely the set [M − n]0
⋃
SM, where

[M − n]0 := {0, 1, 2, . . . ,M − n}, and SM := {si : mi = 1}.

We use letter s with subscript i, so that the label i from [M − n]0 and the singleton i ∈ M could be
distinguished.

2. SM is called the set of singletons of M. A vertex receives a label si ∈ SM if and only if it is a leaf which
starts an edge that has label i.

3. Every edge receives a unique label form the multiset M\ {i ∈ [n] : mi > 1}. Edges with the same label
must be adjacent sibling edges.

4. The integer-labeled vertices and the labels of edges starting at them are compatible in the following sense.
For edges with the same label, their starting vertices are increasingly labeled from left to right. For two
edges labeled e1 and e2 (6= e1) that start at vertices with integer labels v1 and v2 respectively, we must have
that e1 < e2 if and only if v1 < v2.

The trees in TM whose roots are labeled as 0 are said to be regular. They form a subset which we denote as T 0
M.

The reader is encouraged to use the tree in Fig. 1, whose labels of all the vertices have been colored blue, to
check all the conditions in Definition 2.1.

Remark 2.1. It should be pointed out that as a consequence of condition (4), once we fix the label of the root,
the labeling of all the edges implies uniquely the eligible labeling for the vertices and vice versa. Especially in the
case of M = {12, 22, . . . , n2}, i.e., the original quasi-Stirling permutations as introduced by Archer et al. [1],
there is a one-to-one correspondence between the vertex-labels and edge-labels (although an obvious shift of values
is needed when the root is not at 0). In that case, the labels of vertices are indeed redundant and once they are
dropped we get back to the edge-labeled trees used by Elizalde [4]. However, in our situation with general multiset
M, it makes our later constructions of bijections easier by labeling vertices as well.

•

•

•

•

•

•

•

•

•

• •

• •

•

7 7 7

s1

1
1

2
9

8
6

6

s6

0

7
4

4

8

10
11

9 9

3 3

2 3
5

5

Figure 1: The VE-labeled tree T corresponding to φ(T ) = 78212867447993355397

Definition 2.2. Given a tree T ∈ TM whose root is labeled r, we call the correspondence between edge labels
and vertex labels the r-coding of the multiset M. More generally, any graph whose edge labels and vertex labels
are linked in the same way as r-coding is said to be consistent with r-coding.

This r-coding can be described explicitly. Namely, we first line up integers inM increasingly from left to right
(integers of the same value are distinguished by the subscripts), and encode them one-by-one as 0, 1, . . . , r −
1, r + 1, . . . ,M − n, skipping the first copy of each integer (including those singletons), then we encode the
singleton i by si. For the multiset associated with the tree in Fig. 1, its 0-coding is presented in Table 1. We
usually refer to 0-coding as the standard coding of the multiset M and denote it as c, while the r-coding with
r ≥ 1 is said to be shifted and denoted as cr.
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Definition 2.3. Two vertices having the same preimage under the map cr are said to be congruent with respect
to r-coding.

For example in Table 1, vertices labeled 6, 7, 8 are all congruent with respect to 0-coding.

i 1 21 22 31 32 33 41 42 51 52 6 71 72 73 74 81 82 91 92 93

c(i) s1 1 2 3 4 5 s6 6 7 8 9 10 11

Table 1: The 0-coding of the multiset M = {1, 22, 33, 42, 52, 6, 74, 82, 93}.

According to Definition 2.1, each integer in [M − n]0 could be used as the root label. Aside from 0, these
are precisely the images of the non-first copies of non-singletons in M, under the standard coding function c.
This observation gives rise to the following definition, which defines the object in the title of this paper.

Definition 2.4. Given any multiset M = {1m1 , . . . , nmn} with M = m1 + · · · + mn, we denote RM the set
of pairs (π, kj), where π ∈ QM and either kj = 0, or kj is the j-th copy of k for certain 1 ≤ k ≤ n and
2 ≤ j ≤ mk. We call the pair (π, kj) a quasi-Stirling multipermutation of M rooted at kj, and it can be
succinctly represented by underlining the j-th (counting from left to right) copy of k in π. The special case of
kj = 0 can be thought of as either unrooted or rooted at πM+1 = 0.

Remark 2.2. It is clear that QM can be naturally embedded in RM, corresponding to those pairs with kj = 0.
Further note that due to the condition 2 ≤ j ≤ mk, there are exactly M − n + 1 (including the choice of 0)
choices for kj, once the permutation π is given. Thus we see immediately that

|RM| = (M − n+ 1)|QM|, (11)

which is precisely the sum of coefficients for the left hand side of (7).

Note that underlining an entry of π does not affect the numbers of descents, ascents, and plateaus of π, so
these three statistics extend to the pair (π, kj). In order to enumerate rooted quasi-Stirling multipermutations
with respect to the statistics des, asc, and plat using VE-labeled trees, we recall the following definitions from [4].

Define the number of cyclic descents and cyclic ascents of a sequence of nonnegative integers π = π1π2 . . . πr
to be

cdes(π) = |{i ∈ [r] : πi > πi+1}|, and casc(π) = |{i ∈ [r] : πi < πi+1}|,

respectively, with the convention πr+1 = π1 (not the usual convention πr+1 = 0). So for example cdes(31221) = 2
while des(31221) = 3.

Let T ∈ TM and let v be a vertex of T . Suppose the edges between v and its children are labeled a1, a2, . . . , ad
from left to right, and the edge between v and its parent, if any, is labeled as b. If v is the root, define cdes(v)
(resp. casc(v)) to be des(a1 . . . ad) (resp. asc(a1 . . . ad)). Otherwise, cdes(v) = cdes(ba1 . . . ad) (resp. casc(v) =
casc(ba1 . . . ad)). Next, define the numbers of cyclic descents and cyclic ascents of T to be

cdes(T ) =
∑
v

cdes(v), and casc(T ) =
∑
v

casc(v),

respectively, where both sums range over all the vertices v of T . Finally, define leaf∗(T ) to be the number of
integer-labeled leaves of T .

We are now ready for the main result of this section, which can be viewed as the first step towards proving
(7) bijectively. The reader is invited to use the tree in Fig. 1 as one example of the bijection φ constructed
below.

Theorem 2.1. There exists a bijection φ : TM → RM, which induces a bijection between T 0
M and QM.

Moreover, if (π, kj) = φ(T ), then we have

cdes(T ) = des(π), (12)

casc(T ) = asc(π), (13)

leaf∗(T ) = plat(π). (14)

Proof. Given a tree T ∈ TM, we explain how to construct its image (π, kj) under φ. We consider two cases
according to the label of the root of T .

ECA 2:2 (2022) Article #S2R16 5



Shishuo Fu and Yanlin Li

Case I. T ∈ T 0
M, i.e., the root of T is labeled 0. In this case, let the image be φ(T ) = (π, 0), where the

multipermutation π is constructed as follows. We traverse the edges of T by following a depth-first walk
from left to right (also known as the preorder traversal). Namely, starting from the root, we go to the
leftmost child and explore that branch recursively, return to the root, then move on to the next child,
and so on (see [19, Fig. 5-14] for a pictorial illustration). Recording the edge labels as they are traversed
produces a word w, which is not our final output π yet. For each consecutively repeated pair aa in w, we
make the following adjustments accordingly.

i If this pair records labels from two edges that were tranversed consecutively (these two edges must
be ending at the same vertex), replace aa with a.

ii If this pair records the same edge being tranversed twice consecutively, and this edge starts at a
singleton-labeled leaf, replace aa with a.

iii If this pair records the same edge being tranversed twice consecutively, and this edge starts at an
integer-labeled leaf, keep aa as is.

The new word we get after these adjustments is taken to be the multipermutation π. Recall that the tree T
has M−

∑
1≤i≤n χ(mi > 1) edges. The following calculation of the length of π reflects the adjustments and

verifies that π indeed is a permutation of the multiset M. The fact that π is quasi-Stirling is guaranteed
by the condition (3) in Definition 2.1.

2(M −
∑

1≤i≤n

χ(mi > 1))−
∑

1≤i≤n

χ(mi = 1)−
∑

1≤i≤n

(mi − 2)χ(mi > 1)

= 2M −
∑

1≤i≤n

mi = M.

Case II. The root of T is labeled r ∈ [M − n]. Apply the same preorder traversal of the edges of T as in case I to
get the multipermutation π. Next, set kj = c−1(r), the preimage of r under the standard coding function
c of M. This gives us the image φ(T ) = (π, kj).

Conversely, if we are given a rooted quasi-Stirling multipermutation (π, kj), we first reverse the tree traversal
process to get the edge labeled tree T from π, then use the standard coding function to get the root label c(kj).
This root label, together with the edge labels of T , is sufficient for us to deduce the remaining vertex labels for
T (see Remark 2.1). Hence φ is seen to be a bijection.

Next, to verify (12) and (13), we carry out a case-by-case discussion on the types of descents (resp. ascents)
appearing in π, analogous to the proof of Lemma 2.1 in [4]. The details are omitted.

Finally, (14) follows from the discussion of three cases i, ii, iii of pair aa in the transition from w to π in
Case I above, since the only situation that a plateau is preserved as we adjust w to get π, is the case iii, which
happens exactly when an integer-labeled leaf is traversed.

3. Bijective proofs of Theorems 1.1 and 1.2

In this section, we give a new bijective proof of Theorem 1.1. This approach is also applicable to (8), giving us
a unified treatment of both Theorems 1.1 and 1.2.

We begin by analyzing the right hand side of (7). For a vector a = (a1, a2, . . . , al) ∈ Nl consisting of l
nonnegative integers, we define the following two statistics:

|a| = a1 + a2 + · · ·+ al,

|a|0 = |{1 ≤ i ≤ l : ai = 0}|.

Denoting k := M − n+ 1 in the right hand side of (7), we have

n![un](A(x, y, u)− 1 + z)k =
∑

a∈Nk, |a|=n

(
n

a1, . . . , ak

)
z|a|0

∏
1≤i≤k, ai>0

Aai(x, y)

=
∑

Π∈Bn,k

xdes(Π)yasc(Π)zemp(Π), (15)

where Bn,k is the set of partitions Π of [n] into k (possibly empty) blocks, such that each block itself is written
as a permutation of the integers it contains. Moreover, the permutation statistics des, asc, and plat naturally
extend to Bn,k. Namely, for Π = (π(0), . . . , π(k−1)), we let

des(Π) =

k−1∑
i=0

des(π(i)), asc(Π) =

k−1∑
i=0

asc(π(i)), emp(Π) =

k−1∑
i=0

plat(π(i)).
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Recalling the convention that only the empty permutation ε has one plateau, we see that emp(Π) is effectively
the number of empty blocks in Π.

Combining (11), Theorem 2.1, and (15), it is clear that Theorem 1.1 is equivalent to the following identity:∑
T∈TM

xcdes(T )ycasc(T )zleaf∗(T ) =
∑

Π∈Bn,k

xdes(Π)yasc(Π)zemp(Π). (16)

Ideally, one would expect a bijection from TM to Bn,k which transforms the triple statistics (cdes, casc, leaf∗)
over trees to (des, asc, emp) over partitions. This is unfortunately not the case with our bijection Ψ constructed
in the next theorem. For instance, the tree T in Fig. 1 has cdes(T ) = 8, while its image Ψ(T ) = Π has
des(Π) = 9. Nonetheless, this bijection works well when we consider trees and partitions in their equivalence
classes, not individually.

Two VE-labeled trees T and T ′ in TM are said to be equivalent, denoted as T ∼ T ′, if for each vertex label
0 ≤ i ≤ k− 1 = M −n, the (labeled) edges ending at i in T ′ are just rearrangements of the edges ending at i in
T . All trees equivalent to a given tree T form an equivalence class, denoted as [T ]. Analogously, two partitions
Π,Π′ ∈ Bn,k are said to be equivalent, if the i-th block (written as a permutation) in Π′ is a rearrangement of
the i-th block in Π, for 0 ≤ i ≤ k − 1. The equivalence class containing Π is denoted as [Π].

Theorem 3.1. Let M = {1m1 , . . . , nmn} with M = m1 + · · · + mn and k = M − n + 1. There is a bijection
Ψ : TM → Bn,k, such that if Π = Ψ(T ), then we have∑

T ′∈[T ]

xcdes(T ′)ycasc(T ′)zleaf∗(T ′) =
∑

Π′∈[Π]

xdes(Π′)yasc(Π′)zemp(Π′). (17)

Consequently, equations (16) and (7) hold in turn.

As it turns out, the construction of the bijection Ψ is irrelevant to either the orders between sibling edges
of the trees in TM, or the orders between integers inside the same block of the partitions in Bn,k. The proof
of Theorem 3.1 thus hinges on its unordered version. We make this precise by first giving the following two
definitions.

Definition 3.1. For any given multiset M, let UTM denote the set of unordered VE-labeled trees over M.
These are trees satisfying all conditions (1)–(4) in Definition 2.1, except that we ignore the orders between
sibling edges. Similarly, let UBn,k denote the set of usual set partitions of [n] into k (possibly empty) blocks,
i.e., each block is viewed as a subset, not a permutation as in Bn,k.

Definition 3.2. For any given multisetM = {1m1 , . . . , nmn}, let GM denote the set of regular graphs overM.
These are directed and VE-labeled plane graphs satisfying all the labeling conditions (1)–(4) in Definition 2.1,
and vertex 0 has outdegree 0, while all other vertices have outdegree 1. The unordered (i.e., ignoring the orders
between sibling edges) regular graphs over M form a set denoted as UGM.

Remark 3.1. Note that TM ∩ GM = T 0
M. Moreover, a key feature of the regular graphs over M, is that they

are consistent with the 0-coding ofM. Therefore, for the sake of simplicity, we shall only label the vertices when
we draw a regular graph (such as the graph in Fig. 2 and the third graph in Fig. 3), as long as the underlying
multiset M is given.

Theorem 3.2. Let M = {1m1 , . . . , nmn} with M = m1 + · · ·+ mn and k = M − n + 1. There is a three-way
correspondence

UTM
ψ1−→ UGM

ψ2−→ UBn,k, (18)

where both ψ1 and ψ2 are bijections. Moreover, suppose T ∈ UTM, G = ψ1(T ) ∈ UGM, and Π = ψ2(G) ∈
UBn,k, then for each i ∈ [M − n]0, the following three sets are equinumerous:

1. the edges with distinct labels ending at vertex labeled i in T ;

2. the edges with distinct labels ending at vertex labeled i in G;

3. the integers contained in the block π(i) of Π.

Proof. We start with the easier map ψ2 : UGM → UBn,k. For any function, say f : A → B, with A and B
being finite sets, there are two natural ways of representing f , other than listing out f(i) for each i ∈ A. The
first way is to draw the graph of f , say Gf , which is a directed graph with vertex set A ∪ f(A) and directed
edges i→ f(i). The second way is to write out all the preimages f−1(j) for each j ∈ B, as a set partition, say
Πf , of A into |B| blocks. For our purpose, the function playing this pivotal role is the parent function

p = pG : [M − n] ∪ SM → [M − n]0
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associated with any given regular graph G, which sends every vertex labeled either as integers from [M − n] or
as singletons from SM, to its uniquely found parent (since G is regular, every nonzero vertex has outdegree 1)
whose label is from [M − n]0. Now we can define the map ψ2 as the composition of the following three maps.
Take any G ∈ UGM, we have

G→ p→ Πp → Π := ψ2(G),

where the first map sends G to its associated parent function p, and the second map represents p as a set
partition Πp, the third map then uses the 0-coding of M to rewrite the integers contained in each block of Πp

as their preimages under c (repeated edge labels written only once), giving us a unique partition Π of [n] into
k blocks. An example of the map ψ2 showing all three intermediate maps can be found in Fig. 2, where empty
blocks are denoted by ε and blocks are separated by /. Since each step is invertible, ψ2 is indeed a bijection.
The equinumerosity between sets (2) and (3) should be clear from the construction of ψ2.

•

•

• •

•

1 2

0

s2

3
i
p(i)

1

0

2

0

3

3

s2

3
1, 2 / ε / ε / s2, 3 1 / ε / ε / 2, 3G = → → → = ψ2(G)

Figure 2: The transformation from G to ψ2(G) with the given multiset M = {13, 2, 32}

Next, we proceed to construct ψ1. Given a tree T ∈ UTM, if its root is labeled 0, then it is already regular,
in which case the map ψ1 is the identity map, i.e., ψ1(T ) := T . Otherwise, suppose the root of T is labeled
r, for certain 1 ≤ r ≤ M − n. We transform T to a regular graph G, whose features in contrast with T are
summarized in the following table. For each singleton vertex, say si ∈ SM, it is fixed throughout the whole
construction of G, meaning that the parent of si in T remains the parent of si in G. For a non-singleton vertex,
its parents in T and in G may or may not be the same. The details are contained in the following two main
steps.

consistent with outdegree of vertex 0 outdegree of vertex r

T r-coding 1 0
G 0-coding 0 1

Table 2: The comparison between T and ψ1(T ) = G

Step 1) In this step, we construct an intermediate graph G̃. The idea is to choose a unique representative, called
the anchor, from each congruence class (see Definition 2.3) of vertices in T with respect to r-coding. Going
from T to G̃, the anchor vertices are all fixed, while other vertices may have to change their parents. More
precisely, let

AT := {i ∈ [M − n]0 : if j is congruent to i with respect to r-coding, then i ≤ j} ∪ SM

be the set of anchor vertices of T . Note that in particular, the root vertex r is always an anchor (since
there exist no other vertices that are congruent to r), so is the vertex 0 (since it is the smallest label in
value). Moreover, each congruence class with respect to r-coding contains exactly one anchor, and there
are n + 1 anchors in total. Now let G̃ be the unique graph with the same vertex set as T , such that the
following conditions are satisfied.

(i) pG̃(si) = pT (si) for each singleton si ∈ SM, and pG̃(0) = pT (0).

(ii) The vertices of G̃ having outdegree 0 are precisely those vertices congruent to r (including r itself)
with respect to 0-coding. Note that they must be consecutively labeled, say as [`, ` + q] := {`, ` +
1, . . . , `+ q}.

(iii) For the remaining integer-labeled vertex i ∈ [M − n] \ [`, `+ q], we have

pG̃(i) = pT (j),

where j is the unique integer such that j ∈ AT and j is congruent to i with respect to 0-coding.

Conversely, to go from G̃ back to T , we first realize that r = r(T ) must be a vertex from [`, ` + q], i.e.,
those vertices in G̃ having outdegree 0. Knowing this is enough to determine the congruence classes with
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respect to r-coding for all vertices in [M − n] \ [`, ` + q]. Next, use the largest labeled vertices in each
congruence class (except [`, ` + q]) with respect to 0-coding as the anchor vertices, keep their parents
unchanged while adjusting the parents of non-anchor vertices so that vertices within the same congruence
class (r-coding) become siblings. Now observe that among all vertices in [`, `+ q], the one that should be
the root r of T is exactly the one currently having `− 1 as its descendant. The final step is to make each
vertex from [`, `+ q] \ {r} a sibling vertex of `− 1, yielding our desired tree T . Hence we see that step 1)
is indeed invertible.

Step 2) In this second step, we make some further adjustments to G̃ and derive G := ψ1(T ). Recall that if
r = c(aj) is the root of T , then there are ma− 1 vertices in G̃ having outdegree 0, as a result of condition
(ii) from Step 1). Suppose t is the one that has 0 as its descendant, and let 0 = v0 → v1 → · · · → vs = t
be the path from 0 to t in G̃. Now we

i) find and relabel the right-to-left minima of the word v0v1 · · · vs as

u0 = v0 = 0 < u1 < · · · < uj = vs = t;

ii) delete the edge ui → p(ui) for each 0 ≤ i < j;

iii) add the edge ui → p(ui−1) for each 0 < i ≤ j.

For example, the path 0 → 3 → 1 → 5 → 11 → 12 → 8 becomes 0, the cycle 3 → 1 → 3, the loop
5 → 5, and the cycle 11 → 12 → 8 → 11. This 3-step operation probably reminds the reader of Foata’s
first fundamental transformation [13, Chap. 10.2]. Finally, note that each vertex v0, v1, . . . , vs along the
original path is contained in a different congruence class with respect to 0-coding, so there is a unique
way to adjust accordingly the parents of those vertices congruent to certain ui, so as to produce a regular
graph that we denote as G. Just like Foata’s first fundamental transformation is a bijection, it should be
clear how to reverse this step 2) and uniquely recover G̃ from any given regular graph G.

In conclusion, the map ψ1 : UTM → UGM consisting of the two steps 1) and 2) above is a bijection that
ensures the equinumerosity between the sets (1) and (2). The proof is now completed.

Example 3.1. Let T be a tree in UTM with M = {12, 23, 32, 4, 53, 62, 74, 8} as shown in Fig. 3, the 0-coding
and 5-coding of the multiset M can be found in Table 3, and the set of anchor vertices corresponding to the tree
T is given by

AT = {0, 1, 3, 4, 5, 7, 8, s4, s8}.
By applying the map ψ1 and ψ2, we get a set partition Π ∈ UB8,11 as the final output in Fig. 3.

i 11 12 21 22 23 31 32 4 51 52 53 61 62 71 72 73 74 8

c(i) 1 2 3 4 s4 5 6 7 8 9 10 s8

c5(i) 0 1 2 3 s4 4 6 7 8 9 10 s8

Table 3: The 0-coding and 5-coding of the multiset M = {12, 23, 32, 4, 53, 62, 74, 8}.

The composition of the two bijections ψ1 and ψ2 constructed in Theorem 3.2 is a bijection from UTM to
UBn,k, such that for T ∈ UTM and each i ∈ [M − n]0, there are as many edges with distinct labels ending
at vertex i in T as integers contained in the block π(i) of Π := ψ2(ψ1(T )). Consequently, permuting the edges
ending at i corresponds uniquely to permuting the integers contained in the block π(i). In other words, we can
lift the composition ψ2 ◦ψ1 to a bijection Ψ : TM → Bn,k. Namely, for an ordered tree T ∈ TM, we “forget” the
relative orders between sibling edges to obtain the unique unordered tree, say T ∈ UTM, map it to the partition
Π := ψ2(ψ1(T )) ∈ UBn,k, then permute the integers inside each block π(i) of Π so that the word obtained is
order isomorphic to the word consisted of the distinct labels of the edges ending at vertex i of T . This ordered
partition is the image Π = Ψ(T ) ∈ Bn,k. The mapping Ψ defined this way is clearly a bijection and will be
used to prove Theorem 3.1. We still need to explain why the triple statistics (cdes, casc, leaf∗) are transformed
to (des, asc, emp). To this end, we first show the following lemma.

Lemma 3.1. For n ≥ 1, let A
(c)
n (x, y) :=

∑
π∈Sn

xcdes(π)ycasc(π) be the bivariate cyclic Eulerian polynomial,
then we have:

A(c)
n (x, y) = nAn−1(x, y). (19)

Proof. Note that for a fixed permutation π ∈ Sn, we always have cdes(π) + casc(π) = n and des(π) + asc(π) =
n+ 1. Thus it suffices to show the identity after we set y = 1 in (19). This univariate version is already known,
see [7, Coro. 1] and [16, Prop. 1.1] for two proofs.
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6
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0
2 2

6 7

5

8 3 4

5

7 7

1

T

→

•
•

•

•
•
• •

•
•

1

7

5

s8

4

8 9

0

10 • • •

•

2 3 s4

6

G̃

↓

•
•

•

•
•
• •

• • •
•
•

1

7

5

s8

4

8 9

2 3 s4

6

10

•
0

G = ψ1(T )

←Πp = ε/ε/ε/ε/s8/7, 8, 9, 10/2, 3, s4/1/4/ε/5, 6

↓

Π = ψ2(G) = ε/ε/ε/ε/8/6, 7/2, 4/1/3/ε/5

Figure 3: An example of the bijection ψ1 and ψ2

Proof of Theorem 3.1. We have already defined the bijection Ψ, which indeed maps the equivalence class [T ]
to [Ψ(T )]. Moreover, note that leaf∗(T ) = emp(Ψ(T )), and both statistics leaf∗ and emp are constant on an
equivalence class. Let σ = (1 2 · · ·n) be the n-cycle in Sn, we see that for a given π ∈ Sn, all permutations
πσi, i = 0, 1, . . . , n − 1, have the same number of cyclic descents and cyclic ascents. Therefore, if we let π run
over all permutations in Sn with a predetermined first letter π1, the generating function of the pair (cdes, casc)

is given by A
(c)
n (x, y)/n. Relying on this observation as well as (19), we have

∑
T ′∈[T ]

xcdes(T ′)ycasc(T ′) = Anr
(x, y)

∏
ni>0, i 6=r

A
(c)
ni+1(x, y)

ni + 1
=
∏
ni>0

Ani
(x, y) =

∑
Π′∈[Ψ(T )]

xdes(Π′)yasc(Π′),

where r is the root label of T , and ni is on one hand, the number of distinct labels of edges ending at vertex
i of T , and on the other hand, the number of integers contained in block π(i) of Ψ(T ). This proves (17) and
comletes the proof of Theorem 3.1.

We devote the rest of this section to the discussion on the proofs of Theorem 1.2. To deduce (8) from (7), the
quickest way after setting y = z = 1 in (7), is to utilize the expression (3) of the generating function A(t, u) and
follow the approach used by Elizalde [4, Thm. 2.5]. Alternatively, building on the combinatorial interpretation
of (7), we supply here a bijective proof à la Gessel and Stanley [8].

Let us first recall the notion of barred permutations (see e.g. [8]). These are sequences of integers and bars
(/) such that the integers form a word w with distinct letters, and there is at least one bar in each descent
of w. Now define Bn,k to be the set of barred partitions of [n] into k blocks, where each block is written as a
barred permutation. Note that each block π(i) = a1a2 · · · ani

provides ni + 1 spaces (inbetween aj and aj+1,
before a1, and after ani

) where bars can be inserted, giving in total n + k = n + (M − n + 1) = M + 1
such spaces. To avoid confusion, we now use the curly brackets {} to separate blocks and reserve the symbol
/ for bars inside each block. For example, ({/3//14/}, {///}, {2///5//}) is a barred partition in B5,3, while
({/3//14/}, {///}, {2///5}) is not, since in the third block there are no bars after the ending descent at 5.

Bijective proof of Theorem 1.2. Thanks to (7) and (15), we can interprete the right hand side of (8) as:

(M − n+ 1)QM(t)

(1− t)M+1
=

∑
Π∈Bn,k

tdes(Π)

(1− t)M+1
=

∑
Π∈Bn,k

tbar(Π), (20)

where bar(Π) is the total number of bars inserted in all blocks of Π.
To connect with the left-hand side of (8), for a fixed integer m we enumerate barred partitions with m bars

in another way. Firstly, we determine how many bars are contained in each block. There are k = M − n + 1
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blocks and m bars, so the number of different ways to insert bars into blocks is given by
(
M−n+m

m

)
. Once

the bars are in position, it remains to place the integers 1, 2, . . . , n. This step can be intuitively thought of as
placing n labeled balls (integers) into m labeled boxes (bars to the immediate right), with balls in the same box
aligned increasingly from left to right (since there must be at least one bar at each descent). In other words,
the relative order between the balls inside each box is irrelevant. The number of ways to accomplish this second
step is then given by mn. Thus, the coefficient of tm in (20) is

(
M−n+m

m

)
mn, as desired.

4. Partial gamma positivity and a proof of Theorem 1.3

The notion of gamma-positivity has attracted a considerable amount of interest recently, with various perspec-
tives coming from enumerative combinatorics, enumerative geometry, as well as poset homology, see the survey
by Athanasiadis [2] and the references therein. A univariate polynomial f(x) is said to be γ-positive if it has an
expansion

f(x) =

bn2 c∑
k=0

γkx
k(1 + x)n−2k

with γk ≥ 0. A bivariate polynomial g(x, y) is said to be homogeneous γ-positive, if it can be expressed as

g(x, y) =

bn2 c∑
k=0

γk(xy)k(x+ y)n−2k

with γk ≥ 0. A well-known prototype of homogeneous γ-positive polynomial is the aforementioned bivariate
Eulerian polynomial

An(x, y) =

bn+1
2 c∑

k=1

γn,k(xy)k(x+ y)n+1−2k, n ≥ 1. (21)

Here the coefficient γn,k is not only nonnegative, it has the following explicit combinatorial interpretation
which was first derived by Foata and Strehl [6] via the well-known group action called “valley-hopping”; see
also [11,12,21]. Recall that a double descent of π ∈ Sn is any index 1 ≤ i ≤ n such that πi−1 > πi > πi+1 with
the convention that π0 = πn+1 = 0. Denoting dd(π) the number of double descents of π, we have

γn,k = #{π ∈ Sn : des(π) = k, dd(π) = 0}. (22)

It is worth mentioning that in a recent work of Sun [20], another kind of bivariate Eulerian polynomial was
introduced and shown to enjoy similar but nonhomogeneous γ-positivity.

For trivariate polynomials, a notion that naturally extends homogeneous γ-positivity is partial γ-positivity,
see [11,12,14,18] for recent work on several partial γ-positive polynomials. A trivariate polynomial h(x, y, z) is
called partial γ-positive if it can be expanded as h(x, y, z) =

∑
i si(x, y)zi with si(x, y) being a homogeneous

γ-positive polynomial for every i.
In our interpretation of the gamma coefficient γM,i,j in (10), the statistics sd and dsd are undefined. We

now give their definitions.

Definition 4.1. Given a quasi-Stirling multipermutation π = π1π2 · · ·πM ∈ QM, an index i, 1 ≤ i ≤ M , is
said to be a sibling descent of π, if the following two conditions are satisfied:

1. πi is the last copy among all entries with the same value;

2. either πi+1 is the first copy of its value and πi > πi+1 (type I), or πi+1 is a non-first copy of its value
(type II).

Here we use again the convention π0 = πM+1 = 0, so that πM+1 is the second copy of 0. An index i, 2 ≤ i ≤M ,
is called a double sibling descent of π, if both i − 1 and i are sibling descents of π and i − 1 is of type I. The
number of sibling descents (resp. double sibling descents) of π is denoted as sd(π) (resp. dsd(π)).

It is worth pointing out, that although our definitions of sibling descents and double sibling descents are a
bit complicated, they do specialize to the classical statistics descents and double descents when the multisetM
is taken to be {1, 2, . . . , n}. In this case, each entry appears once in the permutation so QM reduces to Sn,
and each sibling descent, except for the ending descent, is of type I, and is actually the usual descent (since
condition (1) is now trivially true). I.e., for each π ∈ Sn, sd(π) = des(π) and dsd(π) = dd(π). So we see (10)
degenerates to (22).
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Before proving Theorem 1.3, we make a quick observation and a remark. Combining (7) with (15), and
noting that the product of two or more homogeneous γ-positive polynomials is still homogeneous γ-positive, we
see immediately that the original conjecture of Lin, Ma, and Zhang on the partial γ-positivity of QM(x, y, z)
holds true. It is the combinatorial meaning of the γ-coefficients that needs more effort to uncover. Recall that
Yan, Huang, and Yang [22] also confirmed this conjecture and provided a combinatorial interpretation for the
γ-coefficients. Their interpretation is in terms of statistics defined on certain vertex labeled trees, not directly
on quasi-Stirling multipermutations. More precisely, the set of ordered (vertex) labeled trees used in [22] is in
simple bijection with the set of regular VE-labeled trees T 0

M defined in this paper. Now let dcdes(T ) be the
number of double cyclic descents of the tree T ∈ T 0

M (see [22] for its definition), then the interpretation found
by Yan et al. [22, Thm. 3.2] can be rephrased as

γM,i,j = #{T ∈ T 0
M : leaf∗(T ) = i, cdes(T ) = j,dcdes(T ) = 0}. (23)

Comparing (23) with (10), we get

Corollary 4.1. For any multiset M = {1m1 , . . . , nmn} with M = m1 + · · · + mn, and 0 ≤ i ≤ M − n,
1 ≤ j ≤ b(M + 1− i)/2c, the two sets

{π ∈ QM : plat(π) = i, sd(π) = j,dsd(π) = 0}

and
{T ∈ T 0

M : leaf∗(T ) = i, cdes(T ) = j,dcdes(T ) = 0}

are equinumerous.

Note that our bijection φ does restrict to a bijection from T 0
M to QM, but not to the subsets refined by

the statistics. Therefore, it remains an interesting problem to find a direct bijection that proves the corollary
above.

Proof of Theorem 1.3. Basing on the expression in (15) and Foata-Strehl’s interpretation (22) for the γ-coefficients
of An(x, y), we see that (M−n+1)γM,i,j , i.e., the coefficient of zi(xy)j(x+y)M+1−i−2j in (M−n+1)QM(x, y, z),
is precisely the cardinality of the set

Γn,k,i,j := {Π ∈ Bn,k : emp(Π) = i,des(Π) = j,dd(Π) = 0},

where dd(Π) =
∑
` dd(π(`)), with the sum running over all blocks π(`) of Π. We trust the reader to verify the

following fact.

Fact 4.1. The composition φ ◦ Ψ−1 : Bn,k → RM is a bijection that sends the triple statistics (emp,des,dd)
over partitions from Bn,k to (plat, sd,dsd) over rooted permutations from RM.

Relying on this fact, we deduce that

γM,i,j =
#Γn,k,i,j
M − n+ 1

=
#{(π, rt) ∈ RM : plat(π) = i, sd(π) = j,dsd(π) = 0}

M − n+ 1

= #{π ∈ QM : plat(π) = i, sd(π) = j,dsd(π) = 0}.

The second line uses the fact that the values of the three statistics plat, sd,dsd are irrelevant to the root label
rt.
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