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Abstract: Fix an integer n ≥ 1, and consider the set of all connected finite simple graphs on n vertices. For
each G in this set, let I(G) denote the edge ideal of G in the polynomial ring R = K[x1, . . . , xn]. We initiate a
study of the set RD(n) ⊆ N2 consisting of all the pairs (r, d) where r = reg(R/I(G)), the Castelnuovo-Mumford
regularity, and d = deg hR/I(G)(t), the degree of the h-polynomial, as we vary over all the connected graphs on
n vertices. In particular, we identify sets A(n) and B(n) such that A(n) ⊆ RD(n) ⊆ B(n). When we restrict
to the family of Cameron-Walker graphs on n vertices, we can completely characterize all the possible (r, d).
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1. Introduction

Let R = K[x1, . . . , xn] with K a field, and let I be a homogeneous ideal of R. In this paper we are interested
in comparing r = reg(R/I), the regularity of R/I, with d = deg hR/I(t), the degree of the h-polynomial of
R/I (formal definitions are postponed until the next section) for the class of edge ideals. The first and third
authors [10, 11] first showed that for any integers 1 ≤ r, d, there exists a monomial ideal Ir,d (and in fact, a
lexsegment ideal) such that reg(R/Ir,d) = r and deg hR/Ir,d(t) = d. In collaboration with the last author [13],
it was later shown that the ideal Ir,d could in fact be an edge ideal.

Given these results, it may appear that there is no relationship between the regularity and the degree of the
h-polynomial, even in the case that I = I(G) is an edge ideal of a graph G. However, our starting point is the
following inequality found in [13, Theorem 13]; namely, if G is a graph on n vertices, then

reg(R/I(G)) + deg hR/I(G)(t) ≤ n, (1)

which gives a bound on the possible values of r and d. If we fix an n and compute

(r, d) = (reg(R/I(G)),deg hR/I(G)(t))

for all connected graphs G on n = |V (G)| vertices, and plot the corresponding pairs, some interesting patterns
appear. Using Macaulay2 [4], we computed (r, d) for all connected graphs on nine or fewer vertices. Figure 1
shows all the possible (r, d) for graphs on 8, respectively, 9 vertices. In particular, it is tantalizing to ask if the
set of all possible (r, d) for a fixed n can be described as the integer points of some convex lattice polytope.

To study this question, for each integer n ≥ 1 we define:

RD(n) =

{
(r, d)

∣∣∣∣ there exists a connected graph G with |V (G)| = n
and (r, d) = (reg(R/I(G)),deg hR/I(G)(t))

}
⊆ N2.
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Figure 1: Possible (r, d) = (reg(R/I(G)),deg hR/I(G)(t)) for all connected graphs G on 8 and 9 vertices

One of our main results (see Theorem 3.2) describes finite subsets A(n), B(n) ⊆ N2 such that A(n) ⊆ RD(n) ⊆
B(n). Both A(n) and B(n) are the integer points of convex lattice polytopes.

Our results are stronger when we restrict to the connected graphs on n vertices that are also Cameron-Walker
graphs. Cameron-Walker graphs are those graphs G which satisfy the property that the induced matching
number of G equals the matching number of G; this family was first characterized by Cameron and Walker [2].
From a combinatorial commutative algebra point-of-view, these graphs are attractive since reg(R/I(G)) is also
equal to the induced matching number. In fact, a number of their algebraic properties have been developed,
e.g., see [6, 7, 9]. The following classification is one of our main results:

Theorem 1.1 (Theorem 5.1). Fix an n ≥ 5. Then there exists a Cameron-Walker graph G on n vertices with
reg(R/I(G)) = r and deg hR/I(G)(t) = d if and only if

• 2 ≤ r ≤ bn−12 c,

• r ≤ d ≤ n− r, and

• d ≥ −2r + n+ 1.

The pairs (r, d) in the above result form the integer points of a convex lattice polytope.
Our paper is structured as follows. In Section 2 we present the required background, including the undefined

terminology from the introduction. In Section 3, we derive some properties about RD(n). In Section 4, we
introduce Cameron-Walker graphs, and describe some of their relevant homological invariants. In Section 5,
we give our proof to Theorem 5.1. This result is used to count the number of integer points in the lattice
polytope defined by Theorem 5.1. Our final section includes some questions and observations about the ratio
|CWRD(n)|/|RD(n)| as we vary n.

As a final comment, although our discussion in this introduction has been restricted to monomial ideals, some
results are known about the pairs (r, d) for non-monomial ideals. In particular, the first and third authors [12]
showed that for all 2 ≤ r ≤ d, there is a binomial edge ideal JG with regularity r and h-polynomial of degree d;
Kahle and Krüsemann [14] have shown that for each integer k ≥ 0, there exists a binomial edge ideal JG with
r− d = k. Finally, Favacchio, Keiper, and the last author [3] have shown that if 4 ≤ r ≤ d, there is a toric ideal
of a graph with regularity r and h-polynomial with degree d.

2. Background

In this section, we recall some of the relevant prerequisites about homological invariants, graph theory, and
combinatorial commutative algebra. We have also included the formal definitions of the undefined terms from
the introduction.

2.1 Homological Invariants

Let R = K[x1, . . . , xn] denote the polynomial ring in n variables over a field K with deg xi = 1 for all i. For
any ideal I of R, the dimension of R/I, denoted dimR/I, is the length of the longest chain of prime ideals in
R/I.
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If I ⊆ R is a homogeneous ideal, then the Hilbert series of R/I is

HR/I(t) =
∑
i≥0

dimK [R/I]it
i

where [R/I]i denotes the i-th graded piece of R/I. If dimR/I = d, then the Hilbert series of R/I is of the form

HR/I(t) =
h0 + h1t+ h2t

2 + · · ·+ hst
s

(1− t)d
=
hR/I(t)

(1− t)d
,

where each hi ∈ Z ( [1, Proposition 4.4.1]) and hR/I(1) 6= 0. We say that

hR/I(t) = h0 + h1t+ h2t
2 + · · ·+ hst

s

with hs 6= 0 is the h-polynomial of R/I.
The (Castelnuovo-Mumford) regularity of R/I, with I homogeneous, is

reg(R/I) = max{j − i | βi,j(R/I) 6= 0}

where βi,j(R/I) denotes an (i, j)-th graded Betti number in the minimal graded free resolution of R/I. (For
more details see, for example, [16, Section 18].)

2.2 Graph theory

Let G = (V (G), E(G)) be a finite simple graph (i.e., a graph with no loops and no multiple edges) on the vertex
set V (G) = {x1, . . . , xn} and edge set E(G).

A subset S ⊂ V (G) is an independent set of G if {xi, xj} 6∈ E(G) for all xi, xj ∈ S. In particular, the empty
set ∅ is an independent set.

A subset M ⊂ E(G) is a matching of G if e ∩ e′ = ∅ for any e, e′ ∈ M with e 6= e′. A matching M of G
is called an induced matching of G if for e, e′ ∈ M with e 6= e′, there is no edge f ∈ E(G) with e ∩ f 6= ∅ and
e′ ∩ f 6= ∅. The matching number m(G) of G is the maximum cardinality of the matchings of G. Similarly, the
induced matching number im(G) of G is the maximum cardinality of the induced matchings of G. Because an
induced matching is also a matching, we always have im(G) ≤ m(G).

The S-suspension ( [8, p.313]) of a graph G plays an important role in our results; we recall this construction.
If G = (V (G), E(G)) is a finite simple graph, then for any independent set S ⊂ V (G) = {x1, . . . , xn}, we
construct the graph GS with the vertex and the edge sets given by:

• V (GS) = V (G) ∪ {xn+1}, where xn+1 is a new vertex, and

• E(GS) = E(G) ∪ {{xi, xn+1} | xi 6∈ S} .

That is, we add a new vertex xn+1 and join it to every vertex not in S. The graph GS is called the S-suspension
of G. Note that this construction still holds if S = ∅.

2.3 Combinatorial commutative algebra

Graphs can be studied algebraically by employing the edge ideal construction. If G = (V (G), E(G)) is a finite
simple graph on V (G) = {x1, . . . , xn}, we associate with G the quadratic square-free monomial ideal

I(G) = 〈xixj | {xi, xj} ∈ E(G)〉 ⊆ R = K[x1, . . . , xn].

The ideal I(G) is the edge ideal of the graph G. We sometimes write K[V (G)] for the polynomial ring K[x | x ∈
V (G)].

Under this construction, invariants of G and homological invariants of I(G) are then related. For example,
it is known that

dimR/I(G) = max {|S| | S is an independent set of G} .

Another relevant example of this behaviour is the following lemma.

Lemma 2.1. For any finite simple graph G = (V (G), E(G)) on n vertices, we have

im(G) ≤ reg(R/I(G)) ≤ m(G) ≤
⌊n

2

⌋
.

Proof. The first inequality is [15, Lemma 2.2], and the second inequality is [5, Theorem 6.7]. The last inequality
follows from the observation that m(G) edges in G contain 2m(G) distinct vertices, so 2m(G) ≤ n.
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If G is a graph with an S-suspension GS , then by virtue of [8, Lemma 1.5], we have some relationships
between the homological invariants of I(G) and I(GS).

Lemma 2.2. Let G be a finite simple graph on V (G) = {x1, . . . , xn}, and suppose that GS is the S-suspension
of G for some independent set S of V (G). If I(G) ⊆ R = K[x1, . . . , xn] and I(GS) ⊆ R′ = K[x1, . . . , xn, xn+1]
are the respective edge ideals, then

1. reg(R′/I(GS)) = reg(R/I(G)) if G has no isolated vertices.

2.

HR′/I(GS)(t) = HR/I(G)(t) +
t

(1− t)|S|+1
.

In particular, deg hR′/I(GS)(t) = deg hR/I(G)(t) if |S| = dimR/I(G)− 1.

3. dimR′/I(GS) = dimR/I(G) if |S| ≤ dimR/I(G)− 1.

Let H1 and H2 be finite simple graphs, and let H = H1 ∪H2 the disjoint union of H1 and H2. Then one
has the following identities.

Lemma 2.3. Under the above situation, we have

1. reg(K[V (H)]/I(H)) = reg(K[V (H1)]/I(H1)) + reg(K[V (H2)]/I(H2)).

2. deg hK[V (H)]/I(H)(t) = deg hK[V (H1)]/I(H1)(t) + deg hK[V (H2)]/I(H2)(t).

Proof. The result follows from the fact that K[V (H)]/I(H) is the tensor product of K[V (H1)]/I(H1) and
K[V (H2)]/I(H2).

3. Properties of the set RD(n)
Recall from the introduction that for each n ≥ 1, the set RD(n) compares the regularity and the degree of the h-
polynomial over all connected graphs on n vertices. The purpose of this section is to derive some basic properties
of this set. We begin with the following observations, which rely heavily on the S-suspension construction.

Lemma 3.1. For all n ≥ 1, we have RD(n) ⊆ RD(n+ 1).

Proof. Let (r, d) ∈ RD(n). Then there exists a connected graph G with n vertices such that reg(R/I(G)) = r
and deghR/I(G)(t) = d. Take an independent set S of G with |S| = dimR/I(G)− 1. This is possible since there
is an independent set W with |W | = dimR/I(G), so we can take S = W \ {w} for any w ∈ W . By virtue of
Lemma 2.2 (1) and (2), we have reg(R′/I(GS)) = r and deghR′/I(GS)(t) = d. Since GS is a graph on n + 1
vertices, we have (r, d) ∈ RD(n+ 1).

Lemma 3.2. Let n1, . . . , np ≥ 2 be integers. Suppose that (ri, di) ∈ RD(ni) for all i = 1, . . . , p. Then
(r1 + · · ·+ rp, d1 + · · ·+ dp) ∈ RD(n1 + · · ·+ np + 1).

Proof. Let Gi denote a connected graph with ni vertices such that

reg(K[V (Gi)]/I(Gi)) = ri and deghK[V (Gi)]/I(Gi)(t) = di

for all i = 1, . . . , p. Let us consider the disjoint union G = G1 ∪ · · · ∪ Gp. By virtue of Lemma 2.3, one has
reg(K[V (G)]/I(G)) = r1 + · · ·+ rp and deghK[V (G)]/I(G)(t) = d1 + · · ·+ dp. Let S ⊂ V (G) be an independent
set of G with |S| = dimK[V (G)]/I(G) − 1. Then the S-suspension GS is a connected graph, since there is
at least one vertex in Gi that is not in S for each i. Furthermore, GS has n1 + · · · + np + 1 vertices and
reg(K[V (GS)]/I(GS)) = r1 + · · ·+ rp and deghK[V (GS)]/I(GS)(t) = d1 + · · ·+ dp by Lemma 2.2. Hence we have
the desired conclusion.

We now focus on the elements of RD(n). Our starting point is the next lemma which identifies some
elements of this set. To prove this lemma, we require the following two graphs. The ribbon graph denoted
Gribbon, is the graph on five vertices as given in Figure 2. The regularity and the degree of the h-polynomial
for K[V (Gribbon)]/I(Gribbon) are computed in [13, Example 10] (or can be computed via a computer algebra
system):

reg(K[V (Gribbon)]/I(Gribbon)) = 2 and deg hK[V (Gribbon)]/I(Gribbon)(t) = 1.
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Gribbon =
x5

x1

x2

x3

x4

Figure 2: The graph Gribbon

Our second family is Dr, where Dr is a graph on 2r vertices consisting of the disjoint union of r paths of
length 1. In this case I(Dr) is a complete intersection since I(Dr) = 〈x1x2, x3x4, . . . , x2r−1x2r〉 is generated by
r monomials which have pairwise disjoint support. So, by properties of complete intersections,

HK[V (Dr)]/I(Dr)(t) =
(1 + t)r

(1− t)r
,

and consequently, hK[V (Dr)]/I(Dr)(t) = (1 + t)r and dimK[V (Dr)]/I(Dr) = r. Moreover, since the Koszul
complex gives a minimal free resolution of K[V (Dr)]/I(Dr), we have reg(K[V (Dr)]/I(Dr)) = r.

Lemma 3.3. Let r ≥ 1, d ≥ 1 be integers.

1. Then (r, 1) ∈ RD(2r + r − 1).

2. If r < d, then (r, d) ∈ RD(r + d).

3. If r ≥ 2, then (r, d) 6∈ RD(2r). In particular, if (r, d) ∈ RD(n), then r ≤ bn−12 c.

4. If r = d ≥ 2, then (r, d) = (r, r) ∈ RD(2r + 1).

5. If r = d + 1 and r is even (respectively, r is odd), then (r, d) = (r, r − 1) ∈ RD(2r + 1) (respectively,
(r, d) = (r, r − 1) ∈ RD(2r + 2)).

6. Let c be an integer with c ≥ 1. If r ≥ d+ 2 and cd < r ≤ (c+ 1)d, then

(r, d) ∈ RD ((2c + 1)r − ((c− 1)2c + 1)d+ 1) .

Proof. Statement (1) follows from [13, Lemma 12] which constructs a connected graph G on 2r + r− 1 vertices
that has reg(K[V (G)]/I(G)) = r and deg hK[V (G)]/I(G)(t) = 1.

To prove (2), let Dr be the graph defined prior to this lemma. Let S1 be an independent set of Dr with
|S1| = r (for example, take one vertex from each path of length one). The S-suspension graph B1 = DS1

r has
2r + 1 vertices, and by Lemma 2.2 (1) reg(K[V (B1)]/I(B1)) = r and by Lemma 2.2 (2)

HK[V (B1)]/I(B1)(t) =
(1 + t)r

(1− t)r
+

t

(1− t)r+1
=

(1 + t)r(1− t) + t

(1− t)r+1

and so deg hK[V (B1)]/I(B1)(t) = r + 1.
We now reiterate this process. Let Si be the independent set of Bi−1 of size r + i− 1 that contains the

r independent elements of S1 and y1, . . . , yi−1 where yj was the new vertex we added when we constructed

Bj = B
Sj

j−1 by forming the S-suspension of Bj−1 with Sj . Each set Si is independent because each new yj is
only adjoined to the vertices not in S1 in Dr. By induction on i, Lemma 2.2 implies that the graph Bi satisfies
reg(K[V (Bi)]/I(Bi)) = r and deg hK[V (Bi)]/I(Bi) = r + i. It then follows that Bd−r has 2r + d − r = r + d
vertices, reg(K[V (Bd−r)]/I(Bd−r)) = r and deg hK[V (Bd−r)]/I(Bd−r)(t) = d. So (r, d) ∈ RD(r + d).

For the proof of (3), we assume that (r, d) ∈ RD(2r). Then there exists a connected simple graph G with
reg(K[V (G)]/I(G)) = r ≥ 2 and |V (G)| = 2r. By Lemma 2.1, we have r = reg(K[V (G)]/I(G)) ≤ m(G) ≤ b 2r2 c,
that is, reg(K[V (G)]/I(G)) = m(G) = r. If im(G) = r, then G = Dr, a contradiction for the connectivity of
G. Hence im(G) < reg(K[V (G)]/I(G)) = m(G), which implies that G is not a Cameron-Walker graph (see
Definition 4.1 in the next section). But [17, Theorem 11] states if reg(K[V (G)]/I(G)) = m(G), then G is a
Cameron-Walker graph or a pentagon. So G is a pentagon. But this contradictions the fact that G has an even
number of vertices. Thus (r, d) 6∈ RD(2r).

For the proof of (4), again consider the graph Dr, and let S be an independent set with |S| = r − 1 =
dimK[V (Dr)]/I(Dr) − 1. Then by Lemma 2.2 (1) and (2), the ring K[V (DS

r )]/I(DS
r ) has regularity r and

deg hK[V (DS
r )]/I(DS

r )(t) = deg hK[V (Dr)]/I(Dr)](t) = r. Since DS
r has 2r + 1 vertices, (r, r) ∈ RD(2r + 1).
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To prove (5), first assume that r is even. Let Dr be as above, and consider the S-suspension with S = ∅.
By Lemma 2.2 (1), the regularity of K[V (D∅r)]/I(D∅r) equals r, while

HK[V (D∅r )]/I(D
∅
r )

(t) = HR/I(Dr)(t) +
t

1− t
=

(1 + t)r

(1− t)r
+

t

1− t
=

(1 + t)r + t(1− t)r−1

(1− t)r
.

Because r is even, when we simplify the h-polynomial we find deg hK[D∅r ]/I(D
∅
r )

(t) = r − 1. So (r, r − 1) ∈
RD(2r + 1).

If we instead assume that r is odd, consider the graph G which is the disjoint union of D∅r−1 and D1.
Then |V (G)| = 2r + 1, reg(K[V (G)]/I(G)) = dimK[V (G)]/I(G) = r, and deg hK[V (G)]/I(G)(t) = r − 1. Let
S be an independent set of G with |S| = r − 1. By Lemma 2.2 the S-suspension of G creates a graph with
(r, r − 1) ∈ RD(2r + 2).

Finally, we give proof of (6). We set i = r − d ≥ 2. Note that

(r, r − i) = (cr − (c+ 1)i) · (c, 1) + (ci− (c− 1)r) · (c+ 1, 1).

By virtue of (1), one has (c, 1) ∈ RD(2c + c− 1) and (c+ 1, 1) ∈ RD(2c+1 + c). Then, since i = r− d, it follows
that

(r, d) = (r, r − i) ∈ RD
(
(cr − (c+ 1)i)(2c + c− 1) + (ci− (c− 1)r)(2c+1 + c) + 1

)
= RD ((2c + 1)r − ((c− 1)2c + 1)d+ 1)

by virtue of Lemma 3.2. We now have the desired conclusion.

By virtue of Lemmas 3.1 and 3.3, we have the following theorem. Recall that if (r, d) ∈ RD(n), then
r ≤ bn−12 c by Lemma 3.3 (3) and r + d ≤ n by (1).

Theorem 3.1. Let r ≥ 1, d ≥ 1, and n ≥ 3 be integers. Assume that r ≤ bn−12 c and r + d ≤ n. Then

1. If r < d, then (r, d) ∈ RD(n).

2. If r = d ≥ 2 and r + d = r + r < n, then (r, d) = (r, r) ∈ RD(n).

3. If r = d+ 1 and r < bn−12 c, then (r, d) = (r, r − 1) ∈ RD(n).

Proof. For the proof of (1), assume that r < d. Since r+ d ≤ n, we have (r, d) ∈ RD(r+ d) ⊆ RD(n) by virtue
of Lemmas 3.1 and 3.3 (2). Statement (2) follows from Lemmas 3.1 and 3.3(4).

For statement (3), if r < n−1
2 , we have 2r+ 1 < n, or equivalently, 2r+ 2 ≤ n. If r = d+ 1, then by Lemma

3.3 (5), we have (r, r− 1) ∈ RD(2r+ 1) or RD(2r+ 2), depending upon the parity of r. The result now follows
from Lemma 3.1 since 2r + 1 < 2r + 2 ≤ n.

Remark 3.1. We can improve the above result slightly in the case that r = d + 1, r = bn−12 c, and if n is
even. In this case we have r < n−1

2 , and so by the same argument as Theorem 3.1 (3), (r, r− 1) ∈ RD(n). On
the other hand, if n is odd, and if r = n−1

2 = bn−12 c, then we may or may not have (r, r − 1) ∈ RD(n). For
example, the graph Gribbon implies that (2, 1) ∈ RD(5) where 2 = r = 5−1

2 . However, a computer search over
all graphs on seven vertices reveals that (3, 2) 6∈ RD(7) where 3 = r = 7−1

2 . For this reason, we exclude the
point (bn−12 c, b

n−3
2 c) in the definition of A(n) below.

For a positive integer n, we define

A(n) =

{
(r, d) ∈ N2

∣∣∣∣ 1 ≤ r ≤
⌊
n− 1

2

⌋
, 1 ≤ d ≤ n− r, r − d ≤ 1

}
\
{(⌊

n− 1

2

⌋
,

⌊
n− 3

2

⌋)}
,

B(n) =

{
(r, d) ∈ N2

∣∣∣∣ 1 ≤ r ≤
⌊
n− 1

2

⌋
, 1 ≤ d ≤ n− r

}
.

Both A(n) and B(n) are convex lattice polytopes. As an example, Figure 3 illustrates A(11) and B(11).
Specifically, the filled in points represent the elements of A(11) and the filled in points and the empty points
represent all the points of B(11).

The following theorem is one of our main theorems, and it follows directly from Theorem 3.1.

Theorem 3.2. Let n ≥ 3 be an integer. Let A(n) and B(n) be sets of integer points as above. Then

A(n) ⊆ RD(n) ⊆ B(n).

Proof. For all (r, d) ∈ A(n) except (r, d) = (1, 1), the first inclusion follows from Theorem 3.1. For (1, 1), note
that the graph D1 has reg(R/I(D1)) = deg hR/I(D1)(t) = 1. So by Lemma 3.1, one has (1, 1) ∈ RD(n). The
second inclusion follows from Lemma 3.3 (3) and (1).
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r = reg

d = deg

1 2 3 4 5

2

1 2 3 4 51 2 3 4 5

4

1 2 3 4 51 2 3 4 5

6

1 2 3 4 51 2 3 4 5

8

1 2 3 4 51 2 3 4 5

10

1 2 3 4 5

Figure 3: The sets A(11) (all the black points) and B(11) (all the points)

We end this section with a question inspired by our results and computer experiments.

Question 3.1. For all n ≥ 1, is the set RD(n) a convex set? That is, if (r, d) and (r, d′) with d < d′, respectively
(r′, d) with r < r′, are in RD(n), is (r, s) ∈ RD(n) for all d < s < d′, respectively is (s, d) ∈ RD(n) for all
r < s < r′?

4. Cameron-Walker graphs: relevant properties

For the remainder of this paper, we will focus on describing all possible pairs (r, d) = (reg(R/I(G)),deg hR/I(G)(t))
when G is a Cameron-Walker graph, a family of connected graphs. Towards this end, we introduce the following
subset of RD(n):

CWRD(n) =

{
(r, d) ∈ N2

∣∣∣∣ there exists a Cameron-Walker graph G with
|V (G)| = n and (r, d) = (reg(R/I(G)),deg hR/I(G)(t))

}
.

In this section, we review the relevant background on Cameron-Walker graphs so that in the next section we
can completely describe CWRD(n) for all n ≥ 1.

Recall from Lemma 2.1 the following inequalities:

im(G) ≤ reg (K[V (G)]/I(G)) ≤ m(G).

By virtue of [2, Theorem 1] together with [6, Remark 0.1], we have that the equality im(G) = m(G) holds if
and only if G is one of the following graphs:

• a star graph, i.e., a graph joining some paths of length 1 at one common vertex (see Figure 4);

• a star triangle, i.e., a graph joining some triangles at one common vertex (see Figure 4); or

• a finite graph consisting of a connected bipartite graph with vertex partition {v1, . . . , vm} ∪ {w1, . . . , wp}
such that there is at least one leaf edge attached to each vertex vi and that there may be possibly some
pendant triangles attached to each vertex wj ; see Figure 5 where si ≥ 1 for all i = 1, . . . ,m and tj ≥ 0
for all j = 1, . . . , p. Note that a leaf edge is an edge meeting a vertex of degree 1 and a pendant triangle
is a triangle where two vertices have degree 2 and the remaining vertex has a degree more than 2.

· · ·
· · ·

Figure 4: The star graph (left) and the star triangle (right)
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connected bipartite graph on {v1, . . . , vm} ∪ {w1, . . . , wp}

x
(1)
1 x

(1)
s1

· · ·

x
(2)
1 x

(2)
s2

· · ·

x
(m)
1 x

(m)
sm

· · ·

v1 v2 · · · vm

· · ·

y
(1)
1,1

y
(1)
1,2

y
(1)
t1,1 y

(1)
t1,2

y
(2)
1,1

y
(2)
1,2 y

(2)
t2,1

y
(2)
t2,2

y
(p)
1,1

y
(p)
1,2 y

(p)
tp,1

y
(2)
1,1

y
(p)
tp,2

w1 w2 · · · wp

· · ·
· · · · · · · · ·

Figure 5: Cameron-Walker graph

Definition 4.1. A finite connected simple graph G is a Cameron-Walker graph if im(G) = m(G) and if G is
neither a star graph nor a star triangle.

Some invariants of Cameron-Walker graphs were computed in [9]:

Theorem 4.1. Let G be a Cameron-Walker graph with notation as in Figure 5. Then

1. |V (G)| = m+ p+

m∑
i=1

si + 2

p∑
j=1

tj;

2. deg hR/I(G)(t) = dimR/I(G) =

m∑
i=1

si +

p∑
j=1

max{tj , 1}; and

3. reg(R/I(G)) = m+

p∑
j=1

tj.

Proof. (1) follows from the definition of a Cameron-Walker graph. See [9, Proposition 1.3] for (2). Statement
(3) is easy to see by computing im(G).

The following class of Cameron-Walker graphs plays an important role in Section 5.

Construction 4.1. Fix a, b ≥ 1 and 0 ≤ c ≤ b. Let G = Ga,b,c be the Cameron-Walker graph whose bipartite
part is the complete bipartite graph Ka,b, and s1 = · · · = sa = 1, t1 = · · · = tc = 1, and tc+1 = · · · = tb = 0 (see
Figure 6).

Example 4.1. Let a = 2, b = 3, and c = 2. Then the graph G2,3,2 is as in Figure 7.

As a direct application of Theorem 4.1, we can compute some invariants of Ga,b,c.

Lemma 4.1. Let G = Ga,b,c be the Cameron-Walker graph as in Construction 4.1. Then reg(R/I(G)) = a+ c
and deg hR/I(G)(t) = a+ b.

5. The regularity and h-polynomials of Cameron-Walker
graphs

In this section, we prove our second main result, namely, a characterization of the elements of CWRD(n). We
then use this characterization to compute |CWRD(n)|.
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Ka,b on {v1, . . . , va} ∪ {w1, . . . , wb}

v1 v2 · · · va

· · ·

w1 · · · wc wc+1 · · · wb

· · ·

Figure 6: The Cameron–Walker graph Ga,b,c

Figure 7: The Cameron–Walker graph G2,3,2

Theorem 5.1. For all n ≥ 5, (r, d) ∈ CWRD(n) if and only if

• 2 ≤ r ≤ bn−12 c,

• r ≤ d ≤ n− r, and

• d ≥ −2r + n+ 1.

Proof. The hypothesis n ≥ 5 allows us to assume the conditions are not vacuous.
Suppose (r, d) satisfy all the above conditions. Let G = Gd+2r−n,n−2r,n−r−d be the graph of Construction

4.1 and R = K[V (G)]. The conditions on (r, d) imply d+ 2r− n, n− 2r ≥ 1 and 0 ≤ n− r− d ≤ n− 2r, so the
graph G is defined. Then |V (G)| = n and Lemma 4.1 says that

• reg(R/I(G)) = (d+ 2r − n) + (n− r − d) = r,

• deg hR/I(G)(t) = (d+ 2r − n) + (n− 2r) = d.

Thus one has (r, d) ∈ CWRD(n).
We will now verify that all the (r, d) ∈ CWRD(n) satisfy the given inequalities. We know that r + d ≤ n

(which is equivalent to d ≤ n− r) holds for all graphs by [13, Theorem 13] (also see (1)). For Cameron-Walker
graphs, it was shown that d ≥ r in [9, Theorem 3.1]. Consequently, r ≤ d ≤ n− r, as desired.

We now show that r ≥ 2 for any Cameron-Walker graph. Suppose that r = 1. Then by Theorem 4.1 (3),
we must have m = 1 and tj = 0 for all j. But this then forces the graph to be the star graph K1,n−1, which is
not considered as a Cameron-Walker graph. So r ≥ 2.

To show that r ≤ bn−12 c, it suffices to show that r < n
2 (if n is even bn−12 c = n

2 − 1, and if n is odd,
bn−12 c = bn2 c). Suppose for a contradiction that r ≥ n

2 . Since n = m+p+2
∑p

j=1 tj +
∑m

i=1 si and
∑m

i=1 si ≥ m,

we have n ≥ 2m+ 2
∑p

j=1 tj + p. Thus

r ≥ n

2
≥ m+

p∑
j=1

tj +
p

2
> r

where the last inequality follows from Theorem 4.1 (3). This gives the desired contradiction. This paragraph
and the previous paragraph now show 2 ≤ r ≤ bn−12 c.

Finally, we show that d ≥ −2r + n+ 1. We first note that we can rewrite d as

d =

m∑
i=1

si +

p∑
j=1

max{tj , 1} =

m∑
i=1

si +

p∑
j=1

tj + |{j | tj = 0}|.
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We then have

d+ 2r − n− 1

=

m∑
i=1

si +

p∑
j=1

tj + |{j | tj = 0}|+ 2

(
m+

p∑
i=1

tj

)
−

m+

m∑
i=1

si + p+ 2

p∑
j=1

tj

− 1

=

(
p∑

i=1

tj + |{j | tj = 0}| − p

)
+ (m− 1) ≥ 0

because
∑p

i=1 tj + |{j | tj = 0}| ≥ p and m ≥ 1. Thus we have d ≥ −2r + n+ 1, as desired.

When (r, d) ∈ CWRD(n), we have r + d ≤ n by (1) and so r + d = n − e for some integer e ≥ 0. As an
interesting consequence, the following theorem gives a graph-theoretical interpretation of this integer e.

Theorem 5.2. Suppose that G is a Cameron-Walker graph on n vertices with (r, d) = (reg(R/I(G)),deg hR/I(G)(t)).
If r + d = n − e, then G has at least e pendant triangles. In particular, if r + d = n, then G has no pendant
triangles.

Proof. We have

e = n− r − d

=

m+

m∑
i=1

si + p+ 2

p∑
j=1

tj

−
m+

p∑
j=1

tj

−
 m∑

i=1

si +

p∑
j=1

tj + |{j | tj = 0}|


= p− |{j | tj = 0}|.

So e is the number of j ∈ {1, . . . , p} with tj ≥ 1, i.e., the vertices wj ∈ {w1, . . . , wp} that have a pendant
triangle attached to it. So, e is a lower bound on the number of pendant triangles in G.

Moreover if e = 0, then p = |{j | tj = 0}|. This means that G has no pendant triangles.

It is natural to ask how many elements (r, d) belong to CWRD(n). Using Theorem 5.1 we can answer this
question.

Theorem 5.3. Fix an integer n ≥ 5. Then

|CWRD(n)| =


1
12 (n+ 6)(n− 4) if n = 6k or n = 6k + 4,
1
12 (n− 3)(n+ 5) if n = 6k + 1 or n = 6k + 3,
1
12 (n+ 1)2 − 7

4 if n = 6k + 2,
1
12 (n+ 1)2 − 1 if n = 6k + 5.

Proof. By Theorem 5.1, we have inequalities:

2 ≤ r ≤
⌊
n− 1

2

⌋
, r ≤ d ≤ n− r, d ≥ −2r + n+ 1.

We fix an integer r with 2 ≤ r ≤ b(n − 1)/2c. When r ≤ n − 2r + 1, namely r ≤ (n + 1)/3, the number of d
satisfying (r, d) ∈ CWRD(n) is r. Indeed, if r ≤ n − 2r + 1, we have n − 2r + 1 ≤ d ≤ n − r, so there are r
possibilities for d. When r > n− 2r+ 1, namely r > (n+ 1)/3, the number of d satisfying (r, d) ∈ CWRD(n) is
n− 2r+ 1. To see this, in this range, we must have r ≤ d ≤ n− r, so d = r+ i with i = 0, . . . , n− 2r. Summing
up d for all r, we can compute |CWRD(n)|.

Note the number of elements will thus depend upon knowing the exact value of n+1
3 . In particular, from the

previous paragraph

|CWRD(n)| =
bn+1

3 c∑
r=2

r +

bn−1
2 c∑

r=bn+1
3 c+1

(n− 2r + 1). (2)

If n = 6k, then n+1
3 = 6k+1

3 and n−1
2 = 6k−1

2 . Consequently, bn+1
3 c = 2k and bn−12 c = 3k − 1. Plugging this

information into (2), we get

|CWRD(n)| =

2k∑
r=2

r +

3k−1∑
r=2k+1

(6k − 2r + 1)

= [2 + 3 + · · ·+ 2k] + [(2k − 1) + (2k − 3) + · · ·+ 3]
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=

[
2k(2k + 1)

2
− 1

]
+ [k2 − 1] = 3k2 + k − 2.

Using the fact that k = n
6 , now gives the desired formula

|CWRD(n)| = 3
n2

36
+
n

6
− 2 =

1

12
(n+ 6)(n− 4).

The other cases are computed in a similar fashion, so we have omitted the details.

The next result is an immediate corollary of Theorem 5.3.

Corollary 5.1. We have

lim
n→∞

|CWRD(n)|
n2

=
1

12
.

6. Future directions

We conclude this paper with some questions inspired by the results of this paper. It would be interesting to
compare the number of integer points in CWRD(n) to the number of integer points in RD(n). In particular,
one might wish to know what percentage of possible (r, d) = (reg(R/I(G)),deg hR/I(G)(t)) can be realized by
Cameron-Walker graphs. Thus, an answer to the following question would be of interest:

Question 6.1. What is the value of

lim
n→∞

|CWRD(n)|
|RD(n)|

?

It is not clear that this limit exists due, in part, to the fact that we can only bound |RD(n)| (see Theorem

3.2). Observe that to show that this limit exists, it is enough to show that |CWRD(n)|
|RD(n)| ≤

|CWRD(n+1)|
|RD(n+1)| for all n

since |CWRD(n)|
|RD(n)| ≤ 1, and then one can use the fact that we have a bounded monotic increasing sequence.

If we assume that the limit exists, we can give a partial answer to Question 6.1.

Theorem 6.1. Suppose that limn→∞
|CWRD(n)|
|RD(n)| exists. Then

2

9
≤ lim

n→∞

|CWRD(n)|
|RD(n)|

≤ 1

3
.

Proof. Note that by Theorem 5.3, we always have |CWRD(n)| = 1
12 (n+ a)(n+ b) + c for some a, b and c that

satisfy −4 ≤ a, b ≤ 6 and − 7
4 ≤ c ≤ 0. Thus, for all n ≥ 5,

1

12
(n− 4)(n− 4)− 7

4
≤ |CWRD(n)| ≤ 1

12
(n+ 6)(n+ 6).

Using the fact that if (r, d) ∈ RD(n), then r + d ≤ n and 1 ≤ r ≤ bn−12 c, we get an upper bound

|RD(n)| ≤
(
n

2

)
−
(
dn+1

2 e
2

)
,

where we use the fact that n − 1 < bn−12 c + dn+1
2 e < n + 1. Combining this bound with the lower bound for

|CWRD(n)| above gives

|CWRD(n)|
|RD(n)|

≥
1
12 (n− 4)(n− 4)− 7

4(
n
2

)
−
(dn+1

2 e
2

) .

Letting n→∞ on the right hand side gives 2
9 .

Moreover, by Theorem 3.2,we get a lower bound

|RD(n)| ≥
(⌊n

2

⌋)2
.

Hence we have the bound
|CWRD(n)|
|RD(n)|

≤
1
12 (n+ 6)(n+ 6)(⌊

n
2

⌋)2 .

Letting n→∞ on the right hand side gives 1
3 .

ECA 2:3 (2022) Article #S2R17 11



Takayuki Hibi, Kyouko Kimura, Kazunori Matsuda, and Adam Van Tuyl

Instead of comparing CWRD(n) to RD(n), another variation is to ask for the frequency of (r, d). We phrase
this as a specific question:

Question 6.2. Fix an integer n ≥ 1 and suppose that (r, d) ∈ RD(n). What percentage of all the connected
graphs on n vertices have (reg(R/I(G)),deg hR/I(G)(t)) = (r, d)?

The above question would also be interesting if we only consider (r, d) ∈ CWRD(n).
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