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Abstract: For the ideal I = 〈y1 + · · · + yn, y
2
1 , . . . , y

2
n〉 in R = k[y1, . . . , yn] with char(k) = 0, we show that

the reduced Gröbner basis with lex-order consists of polynomials gα that are represented in terms of paths,
moving northeast in the Cartesian plane, that stay above the diagonal and cross the diagonal at the last step.
This implies that a linear basis for the quotient ring R/I is given by a set of Catalan paths. We show that the
dimension is the number of standard Young tableaux of size n and height at most two. The graded Frobenius

characteristic of R/I as a symmetric group module is given by
∑bn2 c
k=0 sn−k,kq

k.
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1. Introduction

Let R = k[y1, . . . , yn] be the polynomial ring over a field k with char(k) = 0 and consider the ideal: I =
〈 y1 + y2 + · · ·+ yn, y

2
1 , y

2
2 , . . . , y

2
n 〉 ⊆ R . We show that the graded quotient N = R/I has its Hilbert series given

by

HN (q) =

bn2 c∑
k=0

f (n−k,k)qk ,

where f (n−k,k) is the number of standard Young tableaux of shape (n−k, k), equivalently, the dimension of the
irreducible symmetric group indexed by that shape. These numbers are related to paths that remain above the
diagonal, such as Catalan paths (see Definition 1.2). We then show that N is indeed a symmetric group module
and its irreducible representation decomposition is as expected (see Section 3). This problem was suggested to us
by John Machacek [6]. This ideal is one among a family of ideals related to those which are studied extensively
in [3], and was motivated as a commutative version of the exterior portion of the super-space quotient defined
in [10]. Our main goal is to find the Gröbner basis explicitly for the ideal described above.

Theorem 1.1. The reduced Gröbner basis with respect to >lex for the ideal I consists of {y22 , . . . , y2n} and of
the polynomials

gα = yα +
∑
β∈Pα

yβ (1)

Where α ∈ {0,1}n is a Modified Catalan Path (see Definition 1.4) and Pα is a set of paths weakly above α (see
Definition 1.6).

The paper is divided as follows. In §1.1 we introduce some definitions, notations and a loop version of our
main theorem; namely Theorem 1.2. We span §2 to construct the Gröbner basis and in §3, we will compute some
independent elements in the orthogonal complement of I. A dimension argument will allow us to conclude that
they form a basis of the quotient and that Theorem 1.2 holds. As a byproduct, we show that each homogeneous
component is of degree k ≤ bn2 c. It is in fact an irreducible symmetric group module indexed by the shape
(n− k, k).
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1.1 Definitions, notation and a loop version of our main theorem

In the following section, we introduce notation and definitions relevant to the construction of the Gröbner basis.

Definition 1.1. For α = (α1, . . . , αn) ∈ Zn≥0, we denote a monomial yα = yα1
1 · · · yαnn ∈ k[y1, . . . , yn]. For

any square free monomial yα, we call the {0,1}–sequence α, the bitstring of the monomial. We often remove
commas and parenthesis to represent α.

Definition 1.2. A Catalan path is a series of unit steps forming a staircase walk from (0, 0) to (l, l), which
is weakly above the line y = x in the Cartesian plane. Each step is either (0, 1) an east step, or (1, 0) a north
step. Each path contains a total of 2l steps.

Remark 1.1. An arbitrary northeast path corresponds to a bit string α ∈ {0,1}n, where αi = 0 indicates the
ith step is north, and αj = 1 indicates the jth step is east. We say that α is a path of length n. We have the
following correspondence:

Square-Free Monomial ⇐⇒ Bitstring ⇐⇒ Path.

We will often reference a monomial, path, or bitstring interchangeably as the same object.

Example 1.1. Consider the monomials y2y4y5, y2y4y6 ∈ k[y1, . . . , y6]; their bitstring representations are 010110

and 010101 respectively. Their corresponding paths are respectively

and .

For definitions and theorems pertaining to Gröbner basis theory, we follow [1]. Throughout this paper, we
will use the following lexicographic order.

Definition 1.3. Let α, β ∈ Zn≥0. We say that α >lex β, if the leftmost nonzero entry of the vector difference

α − β ∈ Zn≥0 is positive. We will write yα >lex y
β if α >lex β. Note that >lex is a monomial order [1, §2

—Proposition 4].

Theorem 1.1 is our main theorem. To prove it, we decompose Buchberger’s algorithm into loops. The
division of S-polynomials produced in each loop is either the next generation of MCP polynomials or has a zero
remainder.

Definition 1.4. A sequence α ∈ {0,1}n is a Modified Catalan Path (MCP) if there exists integers l,m ≥ 0
and a Catalan path w ∈ {0,1}2l such that α = w1(0)m. Note that α is equivalent to a Catalan path with an
additional East step after its final step. We let d = 2l + 1 denote the position of the last 1 in α.

Definition 1.5. For a sequence α ∈ {0,1}n, we say that `(α) = n is the length of α. The number of 0 entries
and the number of 1 entries in α are denoted `0(α) and `1(α), respectively. Remark that `1(α) is the degree of
the corresponding monomial yα. Moreover, if α = w1(0)m is an MCP, then d = `(w) + 1 = 2`1(α) − 1 is the
position of the last entry 1 in α.

Definition 1.6. For a fixed MCP α, let d = 2`1(α)− 1. We define the set:

Pα =
{
β ∈ {0,1}n

∣∣β 6= α, `1(β) = `1(α) and (αi = 0 =⇒ βi = 0)1≤i≤d
}

Thus, any β ∈ Pα will correspond to a northeast path that is weakly above α and ends in the same position as
α.

Remark 1.2. Note that α >lex β, for all β ∈ Pα. Hence, the polynomial gα in Equation (1) has leading term
given by yα.

Definition 1.7. For an integer k ≥ 1 such that αk = 1, let P
(k)
α =

{
β ∈ Pα | βk = 0

}
.

Definition 1.8. Given an integer ` ≥ −1 let:

F` =
{
y22 , . . . , y

2
n

}
∪
{
gα
∣∣α is an MCP and `1(α)− 1 ≤ `

}
,

where gα is as indicated in Equation (1). Here F−1 =
{
y22 , . . . , y

2
n

}
.

Theorem 1.2. Fix an integer n > 0 and let ` = bn−12 c. The set F` is the reduced Gröbner basis for the ideal
I = 〈 y1 + y2 + · · ·+ yn, y

2
1 , y

2
2 , . . . , y

2
n 〉
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2. Constructing F` with S-polynomials

To prove Theorem 1.2, we proceed by iteration, inputting F` into a special loop of Buchberger’s algorithm to
obtain F`+1. Each loop uses only well-selected S-polynomials to produce F`+1, where Lemma 2.2 is the key
to this process. Once we reach Fbn−1

2 c
, we turn to §3 to conclude that all other S-polynomials must have

zero remainder after division by Fbn−1
2 c

, concluding our proof. This will be done using a dimension argument.

Remark that I 6= 〈F` 〉 for ` ≤ 0, hence, we first prove the following lemma.

Lemma 2.1. Fix an integer n > 0. Then I = 〈F1 〉.

Proof. We have that F1 = {g1, g011, y22 , . . . , y2n} where

g1 = y1 +
∑
β∈P1

yβ = y1 + y2 + · · ·+ yn ∈ I

g011 = y2y3 +
∑
β∈P011

yβ =
∑

2≤i<j≤n

yiyj

To prove 〈F1 〉⊆ I we need only show that g011 ∈ I. Indeed, we have

g011 =
1

2
(g21 − (y21 + · · ·+ y2n))− y1g1 + y21 ∈ I .

Conversely, we have y21 = (y22 + · · ·+ y2n)− g21 + 2(y1g1 + g011) ∈ 〈F1 〉.

Now that this is established, we want to show that the division algorithm with respect to certain S-
polynomials of F` will produce F`+1. The next lemma will be very useful for this. For gα ∈ F`, we compute
only the S-polynomials of gα and y2j ∈ F` for all j such that αj = 1, and divide each such S-polynomial by
F`1(α)−1. Let us denote the result by

Sα,j = S(gα, y2j )
F`1(α)−1

Lemma 2.2. Let ` ≤ bn−12 c − 1 and let gα ∈ F`. Let 1 < k1 < · · · < k`1(α) = d be the positions of all αki = 1.
By definition of F`, `1(α)− 1 ≤ ` and d = 2`1(α)− 1. There exists an invertible linear map φ such that:

φ(Sα,ki) =

`1(α)∑
j=1

cijSα,kj = gα(ki) ,

where α(ki) = α1 · ·αki−10αki+1 · ·αd11(0)n−d−2. The k-matrix Mα = [cij ] is invertible.

The proof of this lemma is technical and will be done by cases in the sections §2.1–§2.6. Once it is established,
the invertibility of the matrix Mα shows that the gα(ki) can be obtained from the Sα,ki by a sequence of well-
chosen elementary Gaussian operations that mimic S-polynomials and divisions. The polynomials gα(ki) have
distinct leading terms and are fully reduced; they are in the output of this loop of the Buchberger’s algorithm
and nothing else is produced from the Sα,ki . To visualize our case analysis, it will be useful to develop a good
graphical representation of the paths.

Visualization. Given gα ∈ F`, we have α = w1(0)n−2l−1 is an MCP for `(w) = 2l ≤ `. Let d = 2l + 1 =

2`1(α)− 1 be the position of the last 1 in α. For β ∈ P (k)
α recall that βk = 0 and k is chosen such that αk = 1.

Let Lk be the anti-diagonal line intersecting the end of kth position of α, and similarly for Ld which intersects
the last 1 in α. Then any such β we must have a north step, ending at some position on the line Lk. This is
visualized as in Example 2.1.

Example 2.1. Suppose we have k = 4 and α = 010110· · · 0. Then d = 5. The path α and lines Lk and Ld are
visualized as

Lk

Ld

The set P
(4)
α decomposes into four different possibilities depending on the first d entries of β = β1β2β3β4β5 · · · :

P (4)
α =

{
01001| · ·1 · · · ; 01000| · ·1 · ·1 · · · ; 00001| · ·1 · ·1 · · · ; 00000| · ·1 · ·1 · ·1 · · ·

}
ECA 2:3 (2022) Article #S2R21 3
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We visualize this as

β =01001··β =01001·· β =01000··β =01000·· β =00001··β =00001·· β =00000··β =00000·· .

From Example 2.1, it is evident that P
(4)
α decomposes according to the first d entries of β ∈ P

(4)
α . The

remaining entries of β are only restricted by the number of ones. Also note that the number of zeros in β1 · · ·βd
determines the position where β crosses the line Ld. Indeed, let

`0(β1 · · ·βd) = q and `1(β1 · · ·βd) = d− q ,

then the path β intersects the line Ld at the point (q, d− q).

2.1 Decomposing Pα

In this section, we decompose the set Pα according to first d = 2`1(α)− 1 entries of the path β ∈ Pα.

Definition 2.1. Let α be an MCP with d = 2`1(α)− 1. For 1 ≤ r ≤ `1(α), we define

Uα,r =
{
u ∈ {0,1}d

∣∣(αi = 0 =⇒ ui = 0)1≤i≤d and `1(u) = `1(α)− r
}
.

Given u ∈ Uα,r, we define
Pu,α =

{
β ∈ Pα

∣∣β1 · · ·βd = u
}
.

Example 2.2. Let α = 010110 · · · 0, then `1(α) = 3. For r = 1, we have

U010110···0,1 = {01010, 01001, 00011} .

The subsets Pu,α are disjoint, so we can partition Pα =
⋃`1(α)
r=1

⋃
u∈Uα,r Pu,α. Therefore,

∑
β∈Pα

yβ =

`1(α)∑
r=1

∑
u∈Uα,r

yu
∑

d+1≤i1<···<ir≤n

yi1 · · · yir . (2)

We remark that for β ∈ Pu,α, the only restriction on βd+1 · · ·βn is that `1(βd+1 · · ·βn) = `1(β) − `1(u) = r.
Hence, in the last summation in Equation (2), we are summing over all square-free monomials of degree r in
the variables yd+1, . . . , yn.

Definition 2.2. For αk = 1, let u(α, k) = α1 · · ·αk−10αk+1 · · ·αd ∈ Uα,1.

2.2 Computing S(gα, y2k)
F−1

We first investigate the S-polynomial we want to compute, dividing only by F−1 = {y22 , . . . , y2n}.

Lemma 2.3. Let gα ∈ F` and given any 1 < k ≤ 2`1(α)− 1, such that αk = 1. (α1 is always 0). We have

S(gα, y2k)
F−1

=
∑

β∈P (k)
α

yβyk.

Proof. Since αk = 1, we have LCM(LM(gα), y2k) = yαyk and the result is as follows

S(gα, y2k)
F−1

= ykgα − yαyk
F−1 =

∑
β∈Pα

yβyk
F−1

=
∑

β∈P (k)
α

yβyk .

The last equality follows from the fact that any monomial yβyk
F−1

= 0, if and only if β ∈ Pα \ P (k)
α .

For gα ∈ F` and k such that αk = 1, Lemma 2.3 and P
(k)
α =

⋃`1(α)
r=1

⋃
u∈Uα,r, uk=0 Pu,α gives

S(gα, y2k)
F−1

=
∑

β∈P (k)
α

yβyk =

`1(α)∑
r=1

∑
u∈Uα,r
uk=0

yuyk
∑

d+1≤i1<···<ir≤n

yi1 · · · yir (3)

whereas before d = 2`1(α)−1. Now we need to divide S(gα, y2k)
F−1

by F`1(α)−1. We will do this in two separate
cases: the terms of this equation for r = 1 and those for r > 1.

ECA 2:3 (2022) Article #S2R21 4
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2.3 Division of the r = 1 term in Equation (3) by F`1(α)−1

When r = 1 in Equation (3), there is only a single u ∈ Uα,1 such that uk = 0, namely u(α, k) as in Definition 2.2.
The r = 1 term in Equation (3) is

yu(α,k)yk
∑

d+1≤j≤n

yj =

n∑
j=d+1

yαyj

The terms in the sum above are monomial factors of LT(gα) = yα. Using the Division Algorithm we can divide
the expression further using gα:

n∑
j=d+1

yαyj

{gα}

=

n∑
j=d+1

yαyj − gα
n∑

j=d+1

yj

= −
∑
γ∈Pα

yγ
n∑

j=d+1

yj

= −
`1(α)∑
s=1

∑
v∈Uα,s

yv
∑

d+1≤i1<···<is≤n

yi1 · · · yis
n∑

j=d+1

yj

We use Equation (2) in the last equality. We can further divide this last expression using F−1 and we get

n∑
j=d+1

yαyj

{gα,F−1}

= −
`1(α)∑
s=1

(s+ 1)
∑

v∈Uα,s

yv
∑

d+1≤i1<···<is+1≤n

yi1 · · · yisyis+1
(4)

This result follows from the fact that∑
d+1≤i1<···<is≤n

yi1 · · · yis
n∑

j=d+1

yj = (s+ 1)
∑

d+1≤i1<···<is+1≤n

yi1 · · · yisyis+1
+ terms containing y2j

Once again, we want to separate the r = 1 terms in Equation (4) and those for r ≥ 2.

Case 1 (s = 1 in Equation (4)). In the case of s = 1 in Equation (4) and v ∈ Uα,1, we can represent any path
yvyi1yi2 visually as in Figure 1. For each v ∈ Uα,1, we have `1(v) = `1(α)− 1 and let k be the unique position,
where vk = 0 and αk = 1. The paths of the monomial yvyi1yi2 in the sum have two ones after the dth position.
If we select i1 = d+ 1 and i2 = d+ 2, this will form a new MCP path α(k) = α1 · ·αk−10αk+1 · ·αd11(0)n−d−2, as
displayed above. All the other paths in this case remain above the diagonal. There are no more possible divisions
using F`1(α)−1. The MCP path is actually new for F` if `1(α)− 1 = ` as `1(α(k))− 1 > `.

Ld

v

yi1yi2

s=1: New MCP for
yi1yi2=yd+1yd+2

Ld

s = 2: yi1yi2yi3

s = 3: yi1yi2yi3yi4

...

Figure 1: On the left is Case 1 and on the right is Case 2

Case 2 (s ≥ 2 in Equation (4)). Similarly, in the case of s ≥ 2 and v ∈ Uα,s, we can visualize any such path
yvyi1 · · · yis+1

as in Figure 1. All such paths clearly remain above the diagonal and no further divisions using
F`1(α)−1 are possible.

2.4 Division of r > 1 terms in Equation (3) by F`1(α)−1

We now focus on the r > 1 terms in Equation (3). Fix r > 1 and fix u ∈ Uα,r such that uk = 0. We are
considering a monomial of the form yuykyi1 · · · yir , where d + 1 ≤ i1 < · · · < ir ≤ n. Note that αk = 1 and
uk = 0, and there is at least one more entry such that αj = 1 and uj = 0, for j 6= k. Hence, there are at least
two entries in which u differs from α. We further split r > 1 terms into two cases, where r = 2 or r > 2. We

ECA 2:3 (2022) Article #S2R21 5
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LdLk

r = 2: yuyi1yi2

LdLk

r = 2: yuykyi1yi2
Case 3

MCP yuykyd+1yd+2

LdLk

r > 2: yuyi1 · · · yir

LdLk

r > 2: yuyi1 · · · yir
Case 4

Figure 2: On the left are the path of monomials yβ for β ∈ P (k)
α . On the right are the path of the terms in

Equation (3) for r > 1

visualize this in Figure 2. When we multiply yβ = yuyi1 · · · yir by yk, the portion of the path corresponding
to βk+1βk+2 · · ·βn will be translated down by one unit and translated right by one unit. All the paths remain
above the diagonal except when r = 2 and yβ = yuyd+1yd+2. All paths will match a subset of the paths we
encounter in §2.3 as we see below. In particular, no further division can be performed with polynomials in
F`1(α)−1.

Case 3 (r = 2 in Equation (3)). As visualized in Figure 2, when r = 2 in Equation (3) the paths we receive
correspond exactly to the paths in Case 1 for which vk = 1. In this case, these are the new MCPs which are
generated.

Case 4 (r ≥ 3 in Equation (3)). Also Visualized in Figure 2, when r > 2 in Equation (3) this set of paths
corresponds exactly to the paths in Case 2, for which vk = 1.

2.5 Combining all divisions

The analysis of §2.3 and §2.4 shows that in order to divide S(gα, y
2
k) with respect to F`1(α)−1, we need to

substitute Equation (4) in Equation (3) for r = 1. We also substitute s = r − 1 to match up the terms. We
obtain

S(gα, y2k)
F`1(α)−1

=−
`1(α)+1∑
r=2

∑
v∈Uα,r−1

ryv
∑

d+1≤i1<···<ir≤n

yi1 · · · yir

+

`1(α)∑
r=2

∑
u∈Uα,r
uk=0

yuyk
∑

d+1≤i1<···<ir≤n

yi1 · · · yir

=

`1(α)+1∑
r=2

∑
v∈Uα,r−1
vk=0

(−r)yv
∑

d+1≤i1<···<ir≤n

yi1 · · · yir (5)

+

`1(α)∑
r=2

∑
v∈Uα,r−1
vk=1

(−r + 1)yv
∑

d+1≤i1<···<ir≤n

yi1 · · · yir .

ECA 2:3 (2022) Article #S2R21 6
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In the second equality, we combined terms using the fact that for u ∈ Uα,r and uk = 0, the term yuyk = yv for
v ∈ Uα,r−1 and vk = 1. When r = 2, the term v ∈ Uα,r−1 and vk = 1 is unique and is exactly v = u(α, k) as in
Definition 2.2.

2.6 The Matrix of the Linear Transformation

The process until now has focused on a single S-polynomial reduction S(gα, y2k)
F`1(α)−1

= Sα,k, for a fixed k and
fixed α. In this section, we examine all possible Sα,kj , letting kj vary while keeping α fixed. Also, since α has
`1(α) entries equal to 1, we have Uα,1 =

{
u(α, ki)

∣∣1 ≤ i ≤ `1(α)
}

with |Uα,1| = `1(α). Let

Aα =
[
Coefficient of yu(α,ki)yd+1yd+2 in Sα,kj

]
1≤i,j≤l+1

When r = 2 in Equation (5) we readily see that we have −2 in the diagonal of Aα and −1 off the diagonal.
This matrix is invertible, given explicitly by

Aα =


−2 −1 · · · −1
−1 −2 · · · −1
...

...
. . .

...
−1 −1 · · · −2

 , Mα = A−1α =
1

`1(α) + 1


−`1(α) 1 · · · 1

1 −`1(α) · · · 1
...

...
. . .

...
1 1 · · · −`1(α)


Since Aα is invertible, we have that {Sα,ki}1≤i≤`1(α) is linearly independent. Let V be the k-span of
{Sα,ki}1≤i≤`1(α) and we define φ : V → V as

φ(Sα,ki) =

`1(α)∑
j=1

cijSα,kj , (6)

where Mα = [cij ]. This is the linear transformation we require in Lemma 2.2. To conclude the proof, we need
to show that φ(Sα,ki) = gα(ki) . To compute this, we substitute Equation (5) in (6) for each kj . When r = 2 and
fixed d+ 2 ≤ i1 < i2 ≤ n, then the coefficient of yu(α,ki)yi1yi2 in the expansion on Sα,ki , is exactly the matrix
Aα. Therefore, when we make the linear combination using Mα (the inverse of Aα), we get

Coeff of yu(α,ki′ )yi1yi2 in φ(Sα,ki) =

{
1 if i = i′ ,

0 otherwise.

For the other terms, fix r, v and d + 1 ≤ i1 < · · · < ir ≤ n, such that 3 ≤ r ≤ `1(α) + 1 and v ∈ Uα,r−1. We
want to determine the coefficient of yvyi1 · · · yir in φ(Sα,ki). This will depend on the value of vki .

Case 5 (vki = 0). Since vki = 0 and v ∈ Uα,r−1, there are (r − 1) − 1 = r − 2 other entries of v such that
αk = 1 and vk = 0. On the other hand, the number of positions where αk = vk = 1 is `1(α) − r + 1. The
coefficient of yvyi1 · · · yir in φ(Sα,ki) is

−rcii +
∑
vkj

=0

j 6=i

−rcij +
∑
vkj

=1

j 6=i

(−r + 1)cij =
r`1(α)− r(r − 2) + (−r + 1)(`1(α)− r + 1)

`1(α) + 1

= 1 .

The coefficient −r and −r+1 are from Equation (5), and they depend on the value of vk and the entry [cij ] = Mα.

Case 6 (vki = 1). Now, αki = vki = 1. There are r− 1 entries of v such that αk = 1 and vk = 0 and `1(α)− r
entries where αk = vk = 1, other than the entries where k = ki. The coefficient of yvyi1 · · · yir in φ(Sα,ki) is
now

(−r + 1)cii +
∑
vkj

=0

j 6=i

−rcij +
∑
vkj

=1

j 6=i

(−r + 1)cij

=
(r − 1)`1(α)− r(r − 1) + (−r + 1)(`1(α)− r)

`1(α) + 1
= 0 .

It follows that

φ(Sα,ki) = yu(α,ki)
∑

d+1≤i1<i2≤n

yi1yi2 +

`1(α)+1∑
r=3

∑
v∈Uα,r−1
vki

=0

yv
∑

d+1≤i1<···<ir≤n

yi1 · · · yir . (7)
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This sum is non-zero since `1(α)−1 ≤ ` ≤ bn−12 c−1, therefore d+ 2 ≤ n. We want to compare this with gα(ki) ,

where α(ki) = u(α, ki)110
n−d−2 for d = 2`1(α)− 1. Using Equation (2),

gα(ki) = yα
(ki)

+

`1(α
(ki))∑

s=1

∑
u∈U

α(ki),s

yu
∑

d+3≤i1<···<is≤n

yi1 · · · yis . (8)

Note that `1(α(ki)) = `1(α) + 1 and for any u ∈ Uα(ki),s we must have uki = 0, since α
(ki)
ki

= 0. For any

other position 1 ≤ k ≤ d, we have αk = α
(ki)
k . Hence, αk = 0 =⇒ uk = 0 =⇒ vk = 0, for any

v ∈ Uα,r−1. For k = d+ 1 or k = d+ 2, there are no constraints on u as α
(ki)
d+1 = α

(ki)
d+2 = 1. Moreover, the term

yα
(ki)

= yu(α,ki)yd+1yd+2 appears in the first sum of Equation (7). This shows that every term in Equation (8)
appears in Equation (7).

For the converse, note that any term yu(α,ki)yi1yi2 for d+1 ≤ i1 < i2 ≤ n, corresponds to yu(α,ki)yd+1yd+2 =

yα
(k1)

; or yu(α,ki)yd+1yi and yu(α,ki)yd+2yi for u(α, ki)10, u(α, ki)01 ∈ Uα(ki),1 and d+3 ≤ i ≤ n; or yu(α,ki)yi1yi2
for u(α, ki)00 ∈ Uα(ki),2 and d+3 ≤ i1 < i2 ≤ n. Similarly, for v ∈ Uα,r−1 with vki = 0, the terms yvyi1 · · · yir for
d+1 ≤ i1 < · · · < ir ≤ n correspond to yvyd+1yd+2yj3 · · · yjr−1

, for v11 ∈ Uα(ki),r and d+3 ≤ j3 < · · · < jr ≤ n;
or yvyd+1yj2 · · · yjr−1 and yvyd+2yj2 · · · yjr−1 for v01, v10 ∈ Uα(ki),r+1 and d + 3 ≤ j2 < · · · < jr ≤ n; or
yvyj1 · · · yjr−1 for v00 ∈ Uα(ki),r+2 and d + 3 ≤ j1 < · · · < jr ≤ n. This shows the reverse inclusion and
concludes our proof of Lemma 2.2. �

2.7 Termination of Buchberger’s Algorithm

In the previous subsections, we computed the set of remainders of S-polynomials S(gα, k1)
F`1(α)−1

, . . . ,

S(gα, k`1(α))
F`1(α)−1

and used Lemma 2.2 to conclude that, {gα(ki)}1≤i≤`1(α) is obtained as an intermediate
step in the Buchberger’s Algorithm. If `1(α) − 1 < `, then these polynomials are already in F` so the division
with respect to F` will be zero (no new polynomials). For `1(α)− 1 = `, we will obtain a new polynomial and
construct F`+1 in this way, as long as `1(α)− 1 ≤ bn−12 c − 1. We need to show that for ` = bn−12 c, the set F`
is the reduced Gröbner basis. The next lemma shows that the set

B =
{
yγ
∣∣square free and γ stays above the diagonal

}
, (9)

k-spans the quotient R/I using division by F` only. In the next section, we will show that dim(R/I) is at least
the cardinality of B. From this, we will conclude that B is a basis, and therefore F` is the full reduced Gröbner
basis of I. This will complete the proof of Theorem 1.2.

Lemma 2.4. Let ` = bn−12 c. For any monomial yδ, the remainder yδ
F`

is a k-linear combination of B. In
particular, B spans R/I.

Proof. If yδ is not square free, then it is divisible by y2k for some k and we get yδ
F`

= 0. If yδ crosses the
diagonal, let k be the smallest integer such that, α = δ1δ2 · · · δk0n−k crosses under the diagonal. It is clear that
α is a MCP and `1(α)− 1 ≤ `, hence gα ∈ F`. Since we have yδ = yαyε, we obtain

yδ
F`

= yαyε
F` = −

∑
β∈Pα

yβyε
F`

.

All terms yβyε <lex y
αyε. We repeat the process on any monomials in the sum that cross the diagonal. We

know this process terminates (division algorithm) and we are left only with a linear combination of monomials
in B.

3. Orthogonal complement, dimension, and irreducible
decomposition

In this section, we quickly introduce an inverse system to compute the orthogonal complement H = I⊥ of I.
We have that H ∼= R/I. We then construct a set B′ of independent elements inside H that have the same
cardinality as B in Equation (9). This will show that both B and B′ are a basis of the quotient, concluding
the proof of Theorem 1.2. We then remark that since I is homogeneous and remains invariant under the
permutation of variables, we can define an action of the symmetric group on the (graded) quotient R/I. Using
the irreducible representation theory of the symmetric group (see [7] for example), we show that B′ exhibits
a unique irreducible representation for each homogeneous component of R/I. This will complete our full
understanding of this quotient.
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3.1 Inverse System and Orthogonal complement of I

At the root of commutative algebra, one finds the theory of inverse systems developed by Macaulay [4]. This
is classical theory, and we only review (without proof) the needed ingredients. Naively, we aim to study the
quotient R/I via the orthogonal complement of I under the following scalar product. For P,Q ∈ R, we define

〈P,Q 〉 =
(
P
(
∂
∂y1

, ∂
∂y2

, . . . , ∂
∂yn

)
Q
)

(0, 0, . . . , 0). (10)

That is, we substitute the partial derivatives in P and apply this operator to Q, after we evaluate the resulting
polynomial at (0, 0, . . . , 0). This is a scalar product on R. We then compute the orthogonal complement
H = I⊥ in R with respect to the scalar product in Equation (10). A wonderful lemma (a consequence of Taylor
expansion) gives us the following.

Lemma 3.1.
H =

{
Q ∈ R

∣∣P ( ∂
∂y1

, . . . , ∂
∂yn

)
Q = 0, P generators of I

}
The difference is that now H is the solution set of a system of differential equations, we do not need the

evaluation at zero. Since H is the orthogonal complement of I, we automatically get that

H ∼= R/I .

3.2 Standard Young Tableaux

To define elements in H, we need to introduce the notion of Standard Young Tableaux. This will also be useful
for the representation theory of the symmetric group aspect of our investigation. We shall also see that the set
B in Equation (9) is related to some standard Young tableaux.

Definition 3.1. Given a sequence of integers λ = (λ1, λ2, . . . , λr) such that λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and
n = λ1 + · · ·+ λr, we construct the set

Dλ =
{

(i, j) ∈ Z×Z
∣∣1 ≤ j ≤ r; 1 ≤ i ≤ λj

}
.

We say that λ is an partition of n and Dλ is the diagram of λ. A bijection

T : {1, 2, . . . , n} → Dλ ,

is called a Standard Young Tableaux (abbreviated SYT) if

T (i, j) < T (i+ 1, j) and T (i, j) < T (i+ 1, j),

whenever T (i, j), T (i + 1, j) and/or T (i, j) < T (i + 1, j) are defined. We usually put the value T (i, j) in the
position (i, j) forming a tableau in the plane. The entries increase in rows and columns. We say that λ is the
shape of T and n is the size of T . We write T ∈ SY Tλ in this case.

Example 3.1. Let λ = (5, 3), the picture below is a visualization of a single T ∈ SY Tλ.

T = 1 2

3

4 5

6

7

8

Proposition 3.1. For k ≤ bn2 c, let λ = (n− k, k). The number fλ =
∣∣SY Tλ∣∣ is equal to the number of square

free monomials yγ that stay above the diagonal and `1(γ) = k.

Proof. This is a very classical result and some versions of it can be found in [9]. The bijection T 7→ yγ for
T ∈ SY Tλ is given by γi = 0, if i lies in the first row of T , otherwise γi = 1. One then checks that staying
above the diagonal is equivalent to the inequalities defining standard Young tableaux.

In the proof above, let us denote by yT the monomial we obtain from T . We thus have that B in Equation (9)
is also given by the following disjoint union

B =

bn2 c⊎
k=0

{
yT
∣∣T ∈ SY T(n−k,k)} . (11)
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3.3 Independent elements in H

We introduce some special Specht polynomials [8]. This will give us linearly independent polynomials in H.
Fix k ≤ bn2 c and let λ = (n− k, k). Given T ∈ SY Tλ we let

GT (y1, . . . yn) = (yT (1,1) − yT (2,1))(yT (1,2) − yT (2,2)) · · · (yT (1,k) − yT (2,k)) .

Here, we only define GT for shape λ with two parts, but it can be done for any shape using Vandermonde
polynomials for each column of T . These are the polynomials originally defined by Specht [8] to construct
irreducible representations of Sn.

Example 3.2. Let T be as in Example 3.1, we have GT = (y1 − y3)(y2 − y6)(y4 − y8).

Let

B′ =

bn2 c⊎
k=0

{
GT
∣∣T ∈ SY T(n−k,k)} . (12)

Theorem 3.1. We have that B′ ⊆ H = I⊥ is linearly independent.

Proof. For the inclusion, using Lemma 3.1, we need to show that for GT ∈ B′ we have

P
(
∂
∂y1

, . . . , ∂
∂yn

)
GT = 0,

for all generators P of I. If P = y2k, then clearly this results in zero, since GT is linear in any single variable
(square free). For P = y1 + y2 + · · ·+ yn, we use the product rule and reduce to the case(

∂
∂y1

+ ∂
∂y2

+ · · ·+ ∂
∂yn

)
(yi − yj) = 0,

for all i, j.
To see that the polynomials are independent, expand each polynomial GT and look for its trailing term in

lex-order, we obtain LT (GT ) = yT (2,1)yT (2,2) · · · yT (2,k) = yT , this is clear by always taking the largest variable
in each term (yi − yj). Since all trailing terms are distinct, we have linear independence by triangularity.

3.4 Proof of theorem

We have established that
|B| = |B′| ≤ dim(H) = dim(R/I) ≤ |B|.

The first equality is, by construction, obtained from Theorem 3.1. The next equality is the isomorphism of
H ∼= R/I. The last inequality is Lemma 2.4. We must have the equality that both B and B′ are the basis of
R/I, everywhere. To see that Theorem 1.2 is true, assume we can compute new S-polynomials. This would
produce a new leading term and reduce the size of B as a spanning set for R/I, which is absorbed. Hence,
Theorem 1.2 holds true.

Remark 3.1. The basis B in Equation (9) is the same as the standard simplicial complex obtained in [2]. This
means there is some matroid M with the property that its vanishing ideal I(M) will lead to the same basis of the
quotient as in Equation (9). An interesting question is to find, if possible, the relationship between the ideals I
in this paper and the ideals I(M) in [2]. Is I obtained by taking the top homogeneous component of I(M)?

3.5 Hilbert Series of R/I

Since the ideal I is homogeneous, there is a well-defined notion of degree on N = R/I. Hence R/I =
⊕

k≥0N
(k),

where N (k) is the homogeneous component of degree k in N . We know that the maximal degree in N is k = bn2 c.
Considering the disjoint decomposition of the basis B in Equation (11), we immediately obtain

Theorem 3.2. The Hilbert series of N = R/I is given by

HN (q) =
∑
k≥0

dim
(
N (k)

)
qk =

bn2 c∑
k=0

f (n−k,k)qk .
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3.6 Irreducible graded decomposition of R/I

The symmetric group Sn =
{
σ
∣∣σ : {1, . . . n} → {1, . . . , n} bijection

}
acts on polynomials in R with

σP (y1, . . . , yn) = P (yσ(1), . . . , yσ(n)). The generators of the ideal I are mapped to the other generators of
I under this action. Hence, the ideal I is invariant under the action of Sn. We can thus have a well-defined
k-linear action of Sn on the quotient N = R/I. In fact, since the action preserves degree, we have an action of
Sn on each graded piece N (k). Additionally, we are interested in describing the decomposition of that action in
terms of the irreducible representation. For more details on the representation of the symmetric group see [7].
For our needs, the irreducible representation of the symmetric group can be nicely constructed directly in the
space of polynomials. We can construct such a representation using Specht polynomials [8], which we introduced
in §3.3.

It is known [7,8] that for a fixed shape λ, the set{
GT
∣∣T ∈ SY Tλ} (13)

is a basis for an irreducible representation of Sn indexed by λ. Considering the disjoint decomposition of the
basis B′ in Equation (12), we immediately obtain

Theorem 3.3. For k ≤ bn2 c, we have that Equation (13) is a basis of N (k). In particular, N (k) is an irreducible
representation of Sn indexed by λ = (n− k, k). We can thus write

Frobq(R/I)

bn2 c∑
k=0

s(n−k,k)q
k,

where sλ is the Schur function used to encode the irreducible representation of Sn. Additionally, Frobq is the
graded Frobenius map, which maps the representation to symmetric functions (see [5, 7]).
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