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Abstract: The concepts of symmetric and asymmetric peaks in Dyck paths were introduced by Flórez and
Ramı́rez, who counted the total number of such peaks over all Dyck paths of a given length. Elizalde generalized
their results by giving multivariate generating functions that keep track of the number of symmetric peaks and
the number of asymmetric peaks. Elizalde also considered the analogous notion of symmetric valleys by a
continued fraction method. In this paper, mainly by bijective methods, we devote ourselves to enumerating
the statistics “symmetric peaks”, “asymmetric peaks”, “symmetric valleys” and “asymmetric valleys” of weight
k+1 overall (partial) Dyck paths of a given length. Our results refine some consequences of Flórez and Ramı́rez,
and Elizalde.
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1. Introduction

A free Dyck path of length 2n is a lattice path from (0, 0) to (2n, 0) in the XOY -plane and consists of up steps
u = (1, 1) and down steps d = (1,−1). It is known that the set of free Dyck paths of length 2n is counted by
Pn =

(
2n
n

)
, which has the generating function

P (x) =
∑

n≥0

(
2n

n

)
xn =

1√
1− 4x

. (1)

A Dyck path of length 2n is a free Dyck path of length 2n that does not go below the X-axis. See [19, p.204]
and [5]. Let Dn be the set of Dyck paths of length 2n. It is well-known [18] that |Dn| = Cn = 1

n+1

(
2n
n

)
, the nth

Catalan number, has the generating function

C(x) =
∑

n≥0

Cnx
n =

1−
√

1− 4x

2x

with the relation C(x) = 1 + xC(x)2 = 1
1−xC(x) .

A partial Dyck path of length 2n − k is the prefix of a Dyck path from (0, 0) to (2n − k, k). Let Dn,k be

the set of partial Dyck paths of length 2n− k. It is known that |Dn,k| = Cn,k = k+1
n+1

(
2n−k

n

)
has the generating

function

xkC(x)k+1 =
∑

n≥k

Cn,kx
n =

∑

n≥k

k + 1

n+ 1

(
2n− k
n

)
xn. (2)

In fact, the martix
(
Cn,k

)
n≥k≥0 forms a Riordan array (C(x), xC(x)), the first values of Cn,k are illustrated in

Table 1.
Recall that Riordan array [12–14] is an infinite lower triangular matrix D = (dn,k)n,k∈N such that its k-th

column has generating function d(x)h(x)k, where d(x) and h(x) are formal power series with d(0) = 1 and
h(0) = 0. That is, the general term of D is dn,k = [xn]d(x)h(x)k, where [xn] is the coefficient operator. The
matrix D corresponding to the pair d(x) and h(x) is denoted by (d(x), h(x)). A Riordan array D = (d(x), h(x))
is proper, if h′(0) 6= 0 additionally.
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n/k 0 1 2 3 4 5 6 7
0 1
1 1 1
2 2 2 1
3 5 5 3 1
4 14 14 9 4 1
5 42 42 28 14 5 1
6 132 132 90 48 20 6 1
7 429 429 297 165 75 27 7 1

Table 1: The first values of Cn,k

Let ε be the empty path, that is a dot path. If P1 and P2 are (partial) Dyck paths, then we define P1P2 as
the concatenation of P1 and P2, and define P 1 as the reverse path of P1. For example, P1 = uuduuddd and
P2 = uudd, then P1P2 = uuduuddduudd and P 1 = uuuddudd.

A point of a (partial) Dyck path with ordinate ` is said to be at level `. A step of a (partial) Dyck path is
said to be at level ` if the ordinate of its endpoint is `. By a return step we mean a d-step at level 0. Dyck
paths that have exactly one return step are said to be primitive. A peak (valley) in a (partial) Dyck path is
an occurrence of ud (du). By the level of a peak (valley) we mean the level of the intersection point of its two
steps. A pyramid in a (partial) Dyck path is a section of the form uhdh, a succession of h up steps followed
immediately by h down steps, where h is called the height of the pyramid. A maximal mountain of a (partial)
Dyck path is a maximal subsequence of the form uidj for i, j ≥ 1. Note that a maximal mountain contains a
unique peak and vice versa. A peak is symmetric (asymmetric) if its maximal mountain uidj satisfies i = j
(i 6= j), and it is left asymmetric when i > j and right asymmetric when i < j. The weight of a peak is defined
to be min{i, j} when its maximal mountain is uidj . The corresponding concepts to valleys of (partial) Dyck
paths are defined similarly. See Figure 1 for detailed illustrations.
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5

Figure 1: A Dyck path of length 26 with three symmetric peaks and two symmetric valleys of weight 1, one symmetric
peak and one symmetric valley of weight 2, two left and one right asymmetric peaks of weight 1, one right asymmetric
peaks of weight 2, one left and three right asymmetric valleys of weight 1.

In the literature, there are many papers dedicated to statistics of Dyck paths (words), see [1–11], [15,16] and
the references therein. Recently, Flóres and Ramı́rez [8] find a formula for the total number, sp(n), of symmetric
peaks over all Dyck paths of length 2(n+ 1), as well as for the total number, ap(n), of asymmetric peaks over
all Dyck paths of length 2(n + 3). Elizalde [6] obtains a trivariate generating function that enumerates Dyck
paths with respect to the number of symmetric peaks and the number of asymmetric peaks. His method gives
a more direct derivation of the generating function for sp(n) and ap(n). Namely,

∑

n≥0

sp(n)xn =
1

2x

(
1 +

5x− 1

(1− x)
√

1− 4x

)
=
C(x)

1− x
(

1 +
x√

1− 4x

)
, (3)

∑

n≥0

ap(n)xn =
1

x3

( 1− 3x

(1− x)
√

1− 4x
− 1
)

=
2C(x)3

(1− x)
√

1− 4x
. (4)

The sequence sp(n) reads 1, 3, 8, 23, 72, 240, 834, 2979, 10844, 40016, . . . , and ap(n) reads 2, 12, 54, 222, 882, 3456,
13466, 52362, . . . for n ≥ 0.

Elizalde [6] also deals with the related notion of symmetric valleys, originally suggested by Deutsch [5],
phrased in terms of pairs of consecutive peaks at the same level. By a continued fraction method, he deduces
a simple generating function for the total number, sv(n), of symmetric valleys over all Dyck paths of length
2(n+ 2). That is

∑

n≥0

sv(n)xn =
2

1− 3x− 4x2 + (1− x)
√

1− 4x
=

C(x)√
1− 4x

1

1− x2C(x)2
. (5)

The sequence sv(n) reads 1, 3, 11, 40, 148, 553, 2083, . . . , see A014301 in [17].
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In this paper, mainly by bijective methods, we enumerate the statistics “symmetric peaks”, “asymmetric
peaks”, “symmetric valleys” and “asymmetric valleys” of weight k + 1 overall (partial) Dyck paths of a given
length.

2. Symmetric and asymmetric peaks with weight k + 1
in Dyck paths

2.1 Symmetric peaks with weight k + 1 in Dyck paths

In this subsection, we concentrate on the symmetric peaks with weight k + 1 in Dyck paths.
Let Sn,k denote the set of Dyck paths of length 2(n+ 1) having a distinguished symmetric peak with weight

k + 1. Set Sn,k = |Sn,k|, which is the total number of symmetric peaks with weight k + 1 in Dn+1.

Lemma 2.1. There exists a bijection between the sets Sn,k and Sn+j,k+j for j ≥ 1.

Proof. Given a Dyck path P ∈ Sn,k with a distinguished symmetric peak uk+1dk+1, insert a pyramid ujdj

at the top of the distinguished symmetric peak to form the distinguished symmetric peak uk+j+1dk+j+1, the
resulting Dyck path P ′ is in Sn+j,k+j .

Conversely, for any P ′ ∈ Sn+j,k+j with a distinguished symmetric peak uk+j+1dk+j+1, remove the sub-path
ujdj to produce a Dyck path P ∈ Sn,k with the distinguished symmetric peak uk+1dk+1.

Let Fn,k denote the set of pairs (F,D), where F is an empty path or a free Dyck path starting with a ud
and D is a partial Dyck path ending at level k such that the length sum of F and D is 2n− k. When k = 0, D
is naturally a Dyck path including the empty case. Let Fn,k = |Fn,k|. Then by (1), (2) and the expansions

∑

n≥0

(
2n+ r

n

)
xn =

C(x)r√
1− 4x

, (6)

it is easy to deduce that

Fk(x) =
∑

n≥k

Fn,kx
n = xk

(
1 +

x√
1− 4x

)
C(x)k+1

and

Fn,k = [xn]xk
(

1 +
x√

1− 4x

)
C(x)k+1 =

(k + 1

n+ 1
+

n− k
2n− k

)(2n− k
n

)
. (7)

The triangle F =
(
Fn,k

)
n≥k≥0 forms a Riordan array

(
C(x)(1 + x√

1−4x ), xC(x)
)
. The first values of Fn,k

are exhibited in Table 2.

n/k 0 1 2 3 4 5
0 1
1 2 1
2 5 3 1
3 15 9 4 1
4 49 29 14 5 1
5 168 98 49 20 6 1

Table 2: The first values of Fn,k

Theorem 2.1. There is a bijection between the sets Sn,0 and Fn,0.

Proof. Given a Dyck path Q ∈ Sn,0 with a distinguished symmetric peak ud, when ud is at level 1, that is,
Q = P1udQ1, where P1, Q1 are Dyck paths. Then there are two cases to be considered. The first is that P1 is
an empty path, we define φ(Q) = (ε,Q1) ∈ Fn,0. If not, then P1 = uP2d, we define φ(Q) = (udP2, Q1) ∈ Fn,0.
Note that P2 is a free Dyck path above the line y = −1.

When the distinguished symmetric peak ud of Q is at level k ≥ 2, Q can be uniquely partitioned into
Q = Q2P1duduP2Q1, where P1duduP2 is a primitive Dyck path and Q1, Q2 are Dyck paths. Then define
φ(Q) = (udP2Q2P1, Q1) ∈ Fn,0. Note that P2 ends with a d step and Q2P1 begins with a u step, P2Q2P1 is
a free Dyck path such that the intersection of P2 and Q2P1 forms a leftmost lowest valley at the level −k and
the intersection of P2Q2 and P1 also forms a rightmost lowest valley at the level −k.
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Conversely, the inverse map of φ is constructed as follows. For any (P1, Q1) ∈ Fn,0, when P1 is empty, then
define φ−1(ε,Q1) = udQ1, we get a Dyck pathQ = udQ1 ∈ Sn,0 such thatQ starting with a symmetric peak ud.
When P1 = udP2 such that P2 is a free Dyck path above the line y = −1, then define φ−1(P1, Q1) = uP2dudQ1,
we get a Dyck path Q = uP2dudQ1 ∈ Sn,0 such that the distinguished symmetric peak ud of Q is at level 1
and not at the beginning of Q. When P1 = udP2 such that P2 is a free Dyck path with the lowest valley at the
level −k for k ≥ 2, according to the leftmost and rightmost lowest valleys (which have the same level −k), P2

can be uniquely written as P2 = P3Q2P4, where Q2 is the Dyck path between the leftmost and rightmost lowest
valleys of P2. Then define φ−1(P1, Q1) = Q2P4duduP3Q1, we get a Dyck path Q = Q2P4duduP3Q1 ∈ Sn,0
such that the distinguished symmetric peak ud of Q is at level k ≥ 2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

1

2

3

4

5

6

7

Q = ud︸︷︷︸
Q2

uuuduu︸ ︷︷ ︸
P1

dududuuddddudd︸ ︷︷ ︸
P2

uudd︸ ︷︷ ︸
Q1

m φ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
-4

-3

-2

-1

0

1

2

3

φ(Q) = (udduuddddudd︸ ︷︷ ︸
P2

ud︸︷︷︸
Q2

uuuduu︸ ︷︷ ︸
P1

, uudd︸ ︷︷ ︸
Q1

)

Figure 2: An example of the bijection φ described in the proof of Theorem 2.1.

In order to give a more intuitive view of the bijection φ, we present a pictorial description of φ for the case
Q = uduuuduudududuuddddudduudd ∈ S12,0 and φ(Q) = (udduuddddudduduuuduu,uudd) ∈ F12,0.
See Figure 2 for detailed illustrations.

Let Sk(x) =
∑

n≥k Sn,kx
n, then S0(x) = F0(x) by Theorem 2.1, and Sk(x) = xkS0(x) by Lemma 2.1.

Together with (7), we have

Corollary 2.1. The generating function

Sk(x) =
∑

n≥k

Sn,kx
n = xkC(x)

(
1 +

x√
1− 4x

)
,

and the triangle S =
(
Sn,k

)
n≥k≥0 forms a Riordan array

(
C(x)(1 + x√

1−4x ), x
)
with the general entry Sn,k =

n−k+3
2 Cn−k, for n > k and Sn,n = 1 for n ≥ 0.

The first values of Sn,k are shown in Table 3.

n/k 0 1 2 3 4 5
0 1
1 2 1
2 5 2 1
3 15 5 2 1
4 49 15 5 2 1
5 168 49 15 5 2 1

Table 3: The first values of Sn,k

Naturally, the total number sp(n) of symmetric peaks is the row sum of the triangle S, i.e.,

sp(n) = 1 +

n∑

i=1

i+ 3

2
Ci

and has the generating function given by (3).
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2.2 Asymmetric peaks with weight k + 1 in Dyck paths

In this subsection, we consider the left asymmetric peaks with weight k+1 in Dyck paths. The right asymmetric
peaks are equivalent distribution to the left asymmetric peaks according to the symmetry of Dyck paths.

Let Ln,k denote the set of Dyck paths of length 2(n+ 3) having a distinguished left asymmetric peak with
weight k+ 1. Set Ln,k = |Ln,k|, which is the total number of left asymmetric peaks with weight k+ 1 in Dn+3.

Lemma 2.2. There exists a bijection between the sets Ln,k and Ln+j,k+j for j ≥ 1.

Proof. Similar to the proof of Lemma 2.1, the bijection can be constructed if one notices that a distinguished left
asymmetric peak uk+i+1dk+1 of P ∈ Ln,k for certain i ≥ 1 can be extended to a distinguished left asymmetric
peak uk+i+j+1dk+j+1 of Q ∈ Ln+j,k+j by inserting a pyramid ujdj at the top of uk+i+1dk+1, and vice verse.

Let En,k denote the set of pairs (F,D), where F are free Dyck paths and D are partial Dyck paths ending
at the level k such that the length sum of F and D is 2n− k. Let En,k = |En,k|. Then by (1), (2) and (7) it is
easy to deduce that

Ek(x) =
∑

n≥k

En,kx
n =

xkC(x)k+1

√
1− 4x

and

En,k = [xn]
xkC(x)k+1

√
1− 4x

=

(
2n− k + 1

n− k

)
. (8)

The triangle E =
(
En,k

)
n≥k≥0 forms a Riordan array

( C(x)√
1−4x , xC(x)

)
. The first values of En,k are displayed

in Table 4.

n/k 0 1 2 3 4 5
0 1
1 3 1
2 10 4 1
3 35 15 5 1
4 126 56 21 6 1
5 462 210 84 28 7 1

Table 4: The first values of En,k

Theorem 2.2. There is a bijection between the sets Ln,0 and En+2,2.

Proof. Given a Dyck path Q ∈ Ln,0 with a distinguished left asymmetric peak uj+2d at level i + j + 2 for
certain i, j ≥ 0, Q can be uniquely partitioned into

Q =

{
Q1u

j+2duQ3dQ4dQ5, when i = j = 0,

Q1u
j+2duQ3dQ4dQ5dQ2, when i+ j ≥ 1,

where Q3, Q4 and Q5 are Dyck paths, Q1 is empty or a nonempty partial Dyck path ending with a d step at
level i, and Q2 is a partial Dyck path ending at level i+ j − 1 ≥ 0.

In the i = j = 0 case, Q1 is always a Dyck path, we define ϕ(Q) = (Q1, Q5uQ4uQ3) ∈ En+2,2.
In the i+ j ≥ 1 case, we define ϕ(Q) = (Q2dQ1u

j , Q5uQ4uQ3) ∈ En+2,2. Note that Q1 always begins with
a u step and ends with a d step if it is not empty, and Q2dQ1u

j is a free Dyck path with lowest valleys at the
level −(i+ j) ≤ −1 such that the leftmost lowest valley is the intersection of Q2d and Q1u

j .
Conversely, the inverse map of ϕ is constructed as follows. For any (P1, P2) ∈ En+2,2, where P2 = P5uP4uP3

and P3, P4, P5 are Dyck paths. When P1 is a Dyck path, then define ϕ−1(P1, P2) = P1u
2duP3dP4dP5, we get

a Dyck path Q = P1u
2duP3dP4dP5 ∈ Ln,0 such that Q has a distinguished left asymmetric peak u2d at level

2.
If P1 is a nonempty free Dyck path with the lowest valley at the level −k for k ≥ 1, according to the leftmost

lowest valley and the last maximal subpath uj of P1, P1 can be uniquely written as P1 = Q2dQ1u
j for certain

j ≥ 0, where the intersection of Q2d and Q1u
j forms the leftmost lowest valley of P1. Note that Q1 is a partial

Dyck path ending at level i for certain i ≥ 0 and Q2 is a partial Dyck path ending at level i + j − 1, once
i = 0, then j ≥ 1. The maximality of the subpath uj implies that once Q1 is not empty, then it ends with a
d step. Then define ϕ−1(P1, P2) = Q = Q1u

j+2duP3dP4dP5dQ2, we get a Dyck path Q ∈ Ln,0 such that the
distinguished symmetric peak uj+2d of Q is at level i+ j + 2 ≥ 3.
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In order to give a more intuitive view of the bijection ϕ, we present a pictorial description of ϕ for the case
Q = uduuudu2duuddududddudduudd ∈ L10,0 and ϕ(Q) = (udduuddduduuud,uududuud) ∈ E12,2. See
Figure 3 for detailed illustrations.
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Q = uduuud︸ ︷︷ ︸
Q1

u2du ud︸︷︷︸
Q3

dudud︸ ︷︷ ︸
Q4

d ︸︷︷︸
Q5

dudduudd︸ ︷︷ ︸
Q2

, Q5 = ε

m ϕ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
-3

-2

-1

0

1

2

3

4

5

ϕ(Q) = (udduudd︸ ︷︷ ︸
Q2

duduuud︸ ︷︷ ︸
Q1

, ︸︷︷︸
Q5

uudud︸ ︷︷ ︸
Q4

u ud︸︷︷︸
Q3

), Q5 = ε

Figure 3: An example of the bijection ϕ described in the proof of Theorem 2.2.

Let Lk(x) =
∑

n≥k Ln,kx
n, then L0(x) = E0(x) by Theorem 2.2, and Lk(x) = xkL0(x) by Lemma 2.2.

Together with (8), we have

Corollary 2.2. The generating function

Lk(x) =
∑

n≥k

Ln,kx
n =

xkC(x)3√
1− 4x

,

and the triangle L =
(
Ln,k

)
n≥k≥0 forms a Riordan array

( C(x)3√
1−4x , x

)
with the general entry

Ln,k =

(
2n− 2k + 3

n− k

)
.

The first values of Ln,k are demonstrated in Table 5.

n/k 0 1 2 3 4 5
0 1
1 5 1
2 21 5 1
3 84 21 5 1
4 330 84 21 5 1
5 1287 330 84 21 5 1

Table 5: The first values of Ln,k

Clearly, the total number ap(n) of asymmetric peaks is twice the row sum of L, i.e.,

ap(n) = 2

n∑

i=0

(
2n− 2i+ 3

n− i

)
= 2

n∑

i=0

(
2i+ 3

i

)

and has the generating function given by (4).

Remark 2.1. The sequence Ln,0 =
(
2n+3

n

)
also counts many statistics in Dyck paths, see comments in [17,

A002054]. For example, the total number of valleys, number of uu′s, number of peaks at a level higher than
one in all Dyck paths of length 2(n + 2), and number of nonempty Dyck subpaths in all Dyck paths of length
2(n+ 1).

Manes, Sapounakis, Tasoulas, and Tsikouras [10] study nonleft peaks in Dyck paths, which are peaks such
that the u steps preceding them are greater than or equal to the d steps following them. They present a
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combinatorial construction of the set of Dyck paths of fixed length and number of nonleft peaks and obtain
various results on the enumeration of several kinds of peaks. In our notations, a nonleft peak is just a symmetric
peak or a left asymmetric peak. Let S∗n,k denote the set of Dyck paths of length 2(n+ 1) having a distinguished
symmetric or left asymmetric peak with weight k + 1. Set S∗n,k = |S∗n,k|. Note that S∗n,k = Sn,k ∪ Ln−2,k and
S∗n,k = Sn,k + Ln−2,k. By Lemma 2.1 and 2.2, together with Theorem 2.1 and 2.2, we have

Corollary 2.3. There exists a bijection between the sets S∗n,k and S∗n+j,k+j for j ≥ 1. And the generating
function

S∗k(x) =
∑

n≥k

S∗n,kx
n = Sk(x) + x2Lk(x) =

xk√
1− 4x

,

and the triangle S∗ =
(
S∗n,k

)
n≥k≥0 forms a Riordan array

(
1√

1−4x , x
)
with the general entry

S∗n,k =

(
2n− 2k

n− k

)
.

The first values of S∗n,k are presented in Table 6.

n/k 0 1 2 3 4 5
0 1
1 2 1
2 6 2 1
3 20 6 2 1
4 70 20 6 2 1
5 252 70 20 6 2 1

Table 6: The first values of S∗n,k

3. Symmetric and asymmetric valleys with weight k + 1
in Dyck paths

3.1 Symmetric valleys with weight k + 1 in Dyck paths

In this subsection, we study the symmetric valleys with weight k + 1 in Dyck paths.
Let Vn,k denote the set of Dyck paths of length 2(n+2) having a distinguished symmetric valley with weight

k + 1. Set Vn,k = |Vn,k|, which is the total number of symmetric valleys with weight k + 1 in Dn+2.

Theorem 3.1. There is a bijection between the sets Vn,k and En,2k.

Proof. Given a Dyck path Q ∈ Vn,k with a distinguished symmetric valley dk+1uk+1 at level i ≥ 0, Q can be
uniquely partitioned into

Q =

{
Q0uQ1 . . .uQkudk+1uk+1dQk+1 . . .dQ2k+1, when i = 0,

Q0uQ1 . . .uQkudk+1uk+1dQk+1 . . .dQ2k+1dQ
′
0, when i ≥ 1,

where Q1, . . . , Q2k+1 are Dyck paths, Q0 is a partial Dyck path ending at level i, and Q′0 is a partial Dyck path
ending at level i− 1 ≥ 0.

In the i = 0 case, Q0 is always a Dyck path, we define θ(Q) = (Q0, Q1uQ2 . . .uQ2k+1) ∈ En,2k.
In the i ≥ 1 case, we define θ(Q) = (Q′0dQ0, Q1uQ2 . . .uQ2k+1) ∈ En,2k. Note that Q0 always begins with

a u step, and Q′0dQ0 is a free Dyck path with the lowest valleys at the level −i ≤ −1 such that the leftmost
lowest valley is the intersection of Q′0d and Q0.

Conversely, the inverse map of θ is constructed as follows. For any (P0, P ) ∈ En,2k, where P = P1uP2 . . .u
P2k+1 and P1, . . . , P2k+1 are Dyck paths. When P0 is a Dyck path, then define θ−1(P0, P ) = Q = P0uP1 . . .uPku
dk+1uk+1dPk+1 . . .dP2k+1, we get a Dyck path Q ∈ Vn,k such that Q has a distinguished symmetric valley
dk+1uk+1 at level 0.

If P0 is a nonempty free Dyck path with the lowest valley at the level −i for i ≥ 1, according to the leftmost
lowest valley of P0, P0 can be uniquely written as P0 = Q′0dQ0, where the intersection of Q′0d and Q0 forms
the leftmost lowest valley. Note that Q0 and Q′0 are partial Dyck paths ending at level i and i− 1 respectively.
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Then define θ−1(P0, P ) = Q = Q0uP1 . . .uPkudk+1uk+1dPk+1 . . .dP2k+1dQ
′
0, we get a Dyck path Q ∈ Vn,k

such that the distinguished symmetric valley dk+1uk+1 of Q is at level i ≥ 1.

In order to give a more intuitive view of the bijection θ, we present a pictorial description of θ for the case
Q = udu3du3dud2u2d2ud4u2d2 ∈ V11,1 and θ(Q) = (d2u2d3udu3du,udu3d) ∈ E11,2. See Figure 4 for
detailed illustrations.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

1

2

3

4

5

6

7

Q = uduuudu︸ ︷︷ ︸
Q0

u ud︸︷︷︸
Q1

ud2u2d ︸︷︷︸
Q2

d ud︸︷︷︸
Q3

ddduudd︸ ︷︷ ︸
Q′

0

, Q2 = ε

m θ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
-3

-2

-1

0

1

2

3

4

5

θ(Q) = (dduudd︸ ︷︷ ︸
Q′

0

duduuudu︸ ︷︷ ︸
Q0

, ud︸︷︷︸
Q1

u ︸︷︷︸
Q2

u ud︸︷︷︸
Q3

), Q2 = ε

Figure 4: An example of the bijection θ described in the proof of Theorem 3.1.

Let Vk(x) =
∑

n≥k Vn,kx
n, then Vk(x) = E2k(x) by Theorem 3.1. Together with (8), we have

Corollary 3.1. The generating function

Vk(x) =
∑

n≥k

Vn,kx
n =

x2kC(x)2k+1

√
1− 4x

,

and the triangle V =
(
Vn,k

)
n≥k≥0 forms a Riordan array

( C(x)√
1−4x , x

2C(x)2
)
with the general entry

Vn,k =

(
2n− 2k + 1

n− 2k

)
.

The first values of Vn,k are exhibited in Table 7.

n/k 0 1 2 3
0 1
1 3
2 10 1
3 35 5
4 126 21 1
5 462 84 7
6 1716 330 36 1

Table 7: The first values of Vn,k

Obviously, the total number sv(n) of symmetric valleys is the row sum of the triangle V, i.e.,

sv(n) =

n∑

k=0

(
2n− 2k + 1

n− 2k

)
=

n∑

k=0

(
2k + 1

n+ 1

)

and has the generating function given by (5).
Theorem 2.2 and Theorem 3.1 in the k = 1 case suggest the following result.

Corollary 3.2. There is a bijection between the sets Ln,0 and Vn+2,1.

Here we provide a simple and direct bijection. Given a Dyck path Q ∈ Ln,0 with a distinguished left asym-
metric peak uj+2d at level i+j+2 for certain i, j ≥ 0, Q can be uniquely partitioned into Q = Q1u

j+2duQ2dQ3,
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where Q1 is empty, or a nonempty partial Dyck path ending with a d step at level i, Q2 is a Dyck path and Q3

is a partial Dyck path ending at level i+ j + 1 ≥ 1. Then define η(Q) = Q1u
j+1Q2ud2u2dQ3, we get a Dyck

path P = Q1u
j+1Q2ud2u2dQ3 ∈ Vn+2,1 with a distinguished symmetric valley d2u2 at level i + j. It is easy

to verify that η is a bijection between the sets Ln,0 and Vn+2,1, the details are left to the interested readers.

3.2 Asymmetric valleys with weight k + 1 in Dyck paths

In this subsection, we follow with interest the left asymmetric valleys with weight k + 1 in Dyck paths. The
right asymmetric valleys are equivalent distribution to the left asymmetric valleys according to the symmetry
of Dyck paths.

Let VL
n,k denote the set of Dyck paths of length 2(n+ 3) having a distinguished left asymmetric valley with

weight k+ 1. Set V L
n,k = |VL

n,k|, which is the total number of left asymmetric valleys with weight k+ 1 in Dn+3.

Theorem 3.2. There is a bijection between the sets VL
n,k and En+2,2k+2.

Proof. Given a Dyck path Q ∈ VL
n,k with a distinguished left asymmetric valley dk+j+2uk+1 at level i for certain

i, j ≥ 0, Q can be uniquely partitioned into

Q =

{
Q0uQ1 . . .uQk+2d

k+2uk+1dQk+3 . . .dQ2k+3, when i = 0,

Q0uQ1 . . .uQk+2d
k+2uk+1dQk+3 . . .dQ2k+3dQ

′
0, when i ≥ 1,

where Q1, . . . , Q2k+3 are Dyck paths and Qk+2 ends with j d steps for certain j ≥ 0 which, together with
dk+2uk+1, form the left asymmetric valley dk+j+2uk+1 of Q, Q0 is a partial Dyck path ending at level i, and
Q′0 is a partial Dyck path ending at level i− 1 ≥ 0.

In the i = 0 case, Q0 is always a Dyck path, we define ρ(Q) = (Q0, Q1uQ2 . . .uQ2k+3) ∈ En+2,2k+2. In the
i ≥ 1 case, we define ρ(Q) = (Q′0dQ0, Q1uQ2 . . .uQ2k+3) ∈ En+2,2k+2. Note that Q0 always begins with a u
step, and Q′0dQ0 is a free Dyck path with the lowest valleys at the level −i ≤ −1 such that the leftmost lowest
valley is the intersection of Q′0d and Q0.

Similarly, one can verify that ρ is a bijection between the sets VL
n,k and En+2,2k+2, the details are left to the

interested readers.

Let V L
k (x) =

∑
n≥k V

L
n,kx

n, then V L
k (x) = 1

x2E2k+3(x) by Theorem 3.2. Together with (8), we have

Corollary 3.3. The generating function

V L
k (x) =

∑

n≥k

V L
n,kx

n =
x2kC(x)2k+3

√
1− 4x

,

and the triangle VL =
(
V L
n,k

)
n≥k≥0 forms a Riordan array

( C(x)3√
1−4x , x

2C(x)2
)
with the general entry

V L
n,k =

(
2n− 2k + 3

n− 2k

)
.

The first values of V L
n,k are displayed in Table 8.

n/k 0 1 2 3
0 1
1 5
2 21 1
3 84 7
4 330 36 1
5 1287 165 9
6 5005 715 55 1

Table 8: The first values of V L
n,k

Theorem 3.1 and 3.2 suggest the following result, whose direct bijective proof is left to the interested readers.

Corollary 3.4. There is a bijection between the sets Vn+2,k+1 and VL
n,k.

Let V∗n,k denote the set of Dyck paths of length 2(n+2) having a distinguished symmetric or left asymmetric

valley with weight k + 1. Set V ∗n,k = |V∗n,k|. Note that V∗n,k = Vn,k ∪ VL
n−1,k and V ∗n,k = Vn,k + V L

n−1,k. By
Theorem 3.1 and 3.2, together with (8), we have
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Corollary 3.5. The generating function

V ∗k (x) =
∑

n≥k

V ∗n,kx
n = Vk(x) + xV L

k (x) =
x2kC(x)2k+2

√
1− 4x

,

and the triangle V∗ =
(
V ∗n,k

)
n≥k≥0 forms a Riordan array

( C(x)2√
1−4x , x

2C(x)2
)
with the general entry

V ∗n,k =

(
2n− 2k + 2

n− 2k

)
.

The first values of V ∗n,k are presented in Table 9.

n/k 0 1 2 3
0 1
1 4
2 15 1
3 56 6
4 210 28 1
5 792 120 8
6 3003 495 45 1

Table 9: The first values of V ∗n,k

4. Symmetric and asymmetric peaks with weight k + 1
in partial Dyck paths

4.1 Symmetric peaks with weight k + 1 in partial Dyck paths

In this subsection, we focus on the symmetric peaks with weight k + 1 in partial Dyck paths.
Let SPn,k,r denote the set of partial Dyck paths in Dn,r having a distinguished symmetric peak with weight

k + 1. Set SP
n,k,r = |SPn,k,r|, which is the total number of symmetric peaks with weight k + 1 in Dn,r.

Lemma 4.1. The total number αn,k of symmetric peaks with weight k+ 1 in uDn is counted by the generating

function
∑

n≥0 αn,kx
n = xk+2C(x)√

1−4x .

Proof. Let uP ∈ uDn, where P is a Dyck path in Dn. Note that a symmetric peak uk+1dk+1 of weight k+ 1 in
P is also a symmetric peak of weight k+ 1 in uP if it is not at the beginning of P . If P starts with a symmetric
peak uk+1dk+1, that is P = uk+1dk+1P1, where P1 ∈ Dn−k−1, the first symmetric peak of P becomes an
asymmetric peak uk+2dk+1 in uDn. Clearly, there are Cn−k−1 such kinds of symmetric peaks in all P ∈ Dn,
which is counted by xk+1C(x). Hence, by Corollary 2.1, the total number αn,k of symmetric peaks with weight
k + 1 in uDn is counted by the generating function

∑

n≥0

αn,kx
n = xSk(x)− xk+1C(x) =

xk+2C(x)√
1− 4x

.

Theorem 4.1. The total number SP
n,k,r of symmetric peaks with weight k+1 in Dn,r is counted by the generating

function xk+r+1C(x)r+1
(

1 + (r+1)x√
1−4x

)
. Namely,

SP
n,k,r =

(r + 1)
(
(n− k + 1)(n− k − r)− 2

)
(
2(n− k)− r − 2

)(
2(n− k)− r − 1

)
(

2(n− k)− r − 1

n− k

)

for n ≥ k + r + 1.

Proof. For any P ∈ ⋃n≥0Dn,r, P can be uniquely written as P = P0uP1uP2 . . .uPr, where P0, P1, . . . , Pr are
Dyck paths. By Corollary 2.1, the total number of symmetric peaks with weight k+ 1 in all P0’s is counted by
xSk(x) and the total number of paths P1uP2 . . .uPr ∈

⋃
n≥0Dn,r−1 is counted by xr−1C(x)r. By Lemma 4.1,

the total number of symmetric peaks with weight k + 1 in all uPi’s for 1 ≤ i ≤ r is counted by xk+2C(x)√
1−4x and
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the total number of paths P0uP1 . . .uPi−1uPi+1 . . .uPr ∈
⋃

n≥0Dn,r−1 is counted by xr−1C(x)r. So the total

number SP
n,k,r of symmetric peaks with weight k + 1 in Dn,r is counted by

xSk(x)xrC(x)r + rxr−1C(x)rx
xk+2C(x)√

1− 4x
= xk+r+1C(x)r+1

(
1 +

(r + 1)x√
1− 4x

)
.

By (2) and (6), one can deduce that

SP
n,k,r = [xn]xk+r+1C(x)r+1

(
1 +

(r + 1)x√
1− 4x

)

=
r + 1

n− k

(
2(n− k)− r − 2

n− k − 1

)
+ (r + 1)

(
2(n− k)− r − 3

n− k − 1

)

=
(r + 1)

(
(n− k + 1)(n− k − r)− 2

)
(
2(n− k)− r − 2

)(
2(n− k)− r − 1

)
(

2(n− k)− r − 1

n− k

)
.

This completes the proof.

4.2 Asymmetric peaks with weight k + 1 in partial Dyck paths

In this subsection, we take into account the left asymmetric peaks with weight k + 1 in partial Dyck paths.
Let LP

n,k,r denote the set of partial Dyck paths in Dn,r having a distinguished left asymmetric peak with

weight k + 1. Set LP
n,k,r = |LP

n,k,r|, which is the total number of left asymmetric peaks with weight k + 1 in
Dn,r.

Lemma 4.2. The total number βn,k of left asymmetric peaks with weight k + 1 in uDn is counted by the

generating function
∑

n≥0 βn,kx
n = xk+1

2

(
1 + 1√

1−4x

)
= xk+1

C(x)
√
1−4x .

Proof. Let uP ∈ uDn, where P is a Dyck path in Dn. Note that an asymmetric peak uk+j+2dk+1 of weight
k+ 1 in P is also an asymmetric peak of weight k+ 1 in uP . If P starts with a symmetric peak uk+1dk+1, that
is P = uk+1dk+1P1, where P1 ∈ Dn−k−1, the first symmetric peak of P becomes an asymmetric peak uk+2dk+1

in uP . Clearly, there are Cn−k−1 such kind of symmetric peaks in all P ∈ Dn, which is counted by xk+1C(x).
Hence, by Corollary 2.2, the total number βn,k of asymmetric peaks with weight k + 1 in uDn is counted by

∑

n≥0

βn,kx
n = x3Lk(x) + xk+1C(x) = xk+1C(x)

(x2C(x)2√
1− 4x

+ 1
)

=
xk+1

2

(
1 +

1√
1− 4x

)
=

xk+1

C(x)
√

1− 4x
,

where we use the relations
√

1− 4x = 1− 2xC(x) and C(x) = 1 + xC(x)2 = 1
1−xC(x) .

Theorem 4.2. The total number LP
n,k,r of asymmetric peaks with weight k + 1 in Dn,r is counted by the

generating function xk+r+1C(x)r−1

√
1−4x

(
r + x2C(x)4

)
. That is

LP
n,k,r = r

(
2(n− k)− r − 3

n− k − r − 1

)
+

(
2(n− k)− r − 3

n− k

)

for n ≥ k + r + 1.

Proof. For any P ∈ ⋃n≥0Dn,r, P can be uniquely written as P = P0uP1uP2 . . .uPr, where P0, P1, . . . , Pr are
any Dyck paths. By Corollary 2.2, the total number of asymmetric peaks with weight k+1 in all P0’s is counted
by x3Lk(x) and the total number of paths P1uP2 . . .uPr ∈

⋃
n≥0Dn,r−1 is counted by xr−1C(x)r. By Lemma

4.2, the total number of asymmetric peaks with weight k+ 1 in all uPi’s for 1 ≤ i ≤ r is counted by xk+1

C(x)
√
1−4x

and the total number of paths P0uP1 . . .uPi−1uPi+1 . . .uPr ∈
⋃

n≥0Dn,r−1 is counted by xr−1C(x)r. So the

total number LP
n,k,r of symmetric peaks with weight k + 1 in Dn,r is counted by

x3Lk(x)xrC(x)r + rxr−1C(x)rx
xk+1

C(x)
√

1− 4x
=
xk+r+1C(x)r−1√

1− 4x

(
r + x2C(x)4

)
.

By (2) and (6), one can deduce that

LP
n,k,r = [xn]

xk+r+1C(x)r−1√
1− 4x

(
r + x2C(x)4

)
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= r

(
2(n− k)− r − 3

n− k − r − 1

)
+

(
2(n− k)− r − 3

n− k

)
.

This completes the proof.

Remark 4.1. One can also discuss the total number of symmetric peaks or left asymmetric peaks in all primitive
Dyck paths of a given length. By the similar methods, one can deduce that the total number of symmetric peaks

of weight k + 1 in all primitive Dyck paths of length 2(n + 4) is counted by the generating function xkC(x)3√
1−4x ,

and the total number of left asymmetric peaks of weight k + 1 in all primitive Dyck paths of length 2(n+ 3) is

counted by the generating function xkC(x)√
1−4x . Hence, there exist bijections between the set of Dyck paths of length

2(n+3) having a distinguished left asymmetric peak of weight k+1 and the set of primitive Dyck paths of length
2(n+ 4) having a distinguished symmetric peak of weight k + 1, and bijections between the set of Dyck paths of
length 2(n+ 2) having a distinguished symmetric valley of weight 1 and the set of primitive Dyck paths of length
2(n+ 3) having a distinguished left asymmetric peak of weight 1. The details are left to interested readers.
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[9] R. Flórez and J. Ramı́rez, Enumerations of rational non-decreasing Dyck paths with integer slope, Graphs
Combin. 37 (2021), 2775–2801.

[10] K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Nonleft peaks in Dyck paths: A combinatorial
approach, Discrete Math. 337 (2014), 97–105.

[11] A. Sapounakis, I. Tasoulas, and P. P. Tsikouras, Counting strings in Dyck paths, Discrete Math. 307 (2007),
2909-2924.

[12] L. W. Shapiro, Bijections and the Riordan group, Theoret. Comput. Sci. 307 (2003), 403–413.

[13] L. W. Shapiro, S. Getu, W.-J. Woan, and L. C. Woodson, The Riordan group, Discrete Appl. Math., 34
(1991), 229–239.

[14] R. Sprugnoli, Riordan arrays and combinatorial sums, Discrete Math. 132 (1994), 267–290.

[15] Y. Sun, The statistic “number of udu’s” in Dyck paths, Discrete Math. 287 (1-3) (2004), 177–186.

[16] Y. Sun and C. Jia, Counting Dyck paths with strictly increasing peak sequences, J. Math. Res. Exposition
27 (2) (2007), 253–263.

[17] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2019. Available at https://oeis.
org.

[18] R. P. Stanley, Catalan Addendum, http://www-math.mit.edu/~rstan/ec/catadd.pdf, a version of 25
May 2013.

[19] R. P. Stanley, Enumberative Combinatorics, Volume 2, Cambridge University Press, Cambridge, UK (1999).

ECA 2:3 (2022) Article #S2R24 12

https://oeis.org
https://oeis.org
http://www-math.mit.edu/~rstan/ec/catadd.pdf

	Introduction
	Symmetric and asymmetric peaks with weight k+1 in Dyck paths
	Symmetric peaks with weight k+1 in Dyck paths
	Asymmetric peaks with weight k+1 in Dyck paths

	Symmetric and asymmetric valleys with weight k+1 in Dyck paths
	Symmetric valleys with weight k+1 in Dyck paths
	Asymmetric valleys with weight k+1 in Dyck paths

	Symmetric and asymmetric peaks with weight k+1 in partial Dyck paths
	Symmetric peaks with weight k+1 in partial Dyck paths
	Asymmetric peaks with weight k+1 in partial Dyck paths


