
numerative
ombinatorics

pp
lic
at
io
ns

A Enumerative Combinatorics and Applications
ecajournal.haifa.ac.il

ECA 2:1 (2022) Article #S2R3
https://doi.org/10.54550/ECA2022V2S1R3

Lattice Walks Ending on a Coordinate Hyperplane Avoiding Backtracking and
Repeats

John Machacek

Department of Mathematics and Computer Science, Hampden-Sydney College, VA, USA
Email: jmachacek@hsc.edu

Received: May 7, 2021, Accepted: July 27, 2021, Published: August 6, 2021
The authors: Released under the CC BY-ND license (International 4.0)

Abstract: We work with lattice walks in Zr+1 using step set {±1}r+1 that finish with xr+1 = 0. We further
impose conditions of avoiding backtracking (i.e. [v,−v]) and avoiding consecutive steps (i.e. [v, v]) each possibly
combined with restricting to the half-space xr+1 ≥ 0. We find in all cases the generating functions for such walks
are algebraic and give explicit formulas for them. We also find polynomial recurrences for their coefficients.
From the generating functions, we find the asymptotic enumeration of each family of walks considered. The
enumeration in special cases includes central binomial coefficients and Catalan numbers as well as relations to
an enumeration of another family of walks previously studied for which we provide a bijection.

Keywords: Formal languages; Generating functions; Lattice walks; WZ theory
2020 Mathematics Subject Classification: 05A15; 05A16; 33F10; 68Q45

1. Introduction

Central binomial coefficients and Catalan numbers are two fundamental sequences in enumerative combinatorics
as well as in other areas of mathematics. Both these numbers can be thought of as enumerating walks in Z with
steps from {±1} that end at the origin. The Catalan number model has the additional restriction the walks
must stay in the nonnegative integers and correspond to the height of usual Dyck paths. We generalize this
situation by looking at walks in Zr+1 with steps from {±1}r+1. The condition that the walks must end on the
hyperplane defined by xr+1 = 0 is imposed. For the generalized Catalan situation, we also require the walks
to be confined to the halfspace with xr+1 ≥ 0. We then look at such walks avoiding the backtracking pattern
[v,−v] and the repeat pattern [v, v] for v ∈ {±1}r+1. Here a walk is a sequence of vectors from {±1}r+1 and
[v1, v1, . . . , v`] that contains the pattern [u1, u2] if and only if [vi, vi+1] = [u1, u2] for 1 ≤ i < `. That is, our
pattern avoidance means that no contiguous subsequence of a walk is equal to the pattern. When r = 0 there
are no nonempty walks ending at the origin avoiding the backtracking pattern. While for avoiding the repeat
pattern there are the two walks of length 2n namely [+1,−1]n and [−1,+1]n only the first of which is relevant
to the Catalan situation. However, for r > 0 there are many such walks. Our aim is to enumerate these walks.

Walks in integer lattices are a topic of interest in computer science, mathematics, physics, and statistics.
Lattice path combinatorics can be approached from various perspectives (see [11] for survey with a focus on
enumeration). Our focus is an enumeration (i.e. finding recurrences, generating functions, and formulas). One
such enumeration problem involving avoidance of backtracking we solve gives an interpretation of sequence
A085363 in the OEIS [14] in terms of 2D lattice walks. This sequence was an original motivation, but we found
the techniques readily generalized to arbitrary dimension as well as avoidance of consecutive steps. In addition
to combinatorial arguments, we make use of formal language theory and its connection to generating functions.
We also use automated methods for dealing with hypergeometric terms and finding polynomial recurrences
(see [16] for more about these types of techniques).

Lattice path enumeration has a long and rich history, and recent attention has been given to avoiding patterns
as we consider here. We saw for Dyck paths (i.e. r = 0) that avoiding consecutive steps or backtracking
is not interesting. However, the consecutive step patterns [+1,+1] and [−1,−1] are special cases of runs
[+1,+1, . . . ,+1] and [−1,−1, . . . ,−1]. A Study of Dyck paths avoiding runs of given lengths (as well as peaks
and valleys avoiding certain heights) is conducted in [8] with automated computational methods and in [5] with
formal grammar techniques. Avoiding a pattern in lattice paths was considered in [1] and later for multiple
patterns in [2,3]. These latter works make use of the so-called vectorial kernel method which modifies the kernel

John Machacek

method to allow for pattern avoidance. While the vectorial kernel method is an efficient and flexible way to
access the generating functions of our walks, we want to focus in this work on binomial expressions for the
coefficients; so, for our set of jumps we present a way to do so via an alternative approach based on context-free
grammars and ad-hoc recurrences.

The remainder of the paper is organized as follows. In Section 2 we formally define the languages of
walks we are interested in and show that their generating functions are algebraic (and hence the sequences of
coefficients satisfy a recurrence with polynomial coefficients). Formulas and recurrences are found in Section 3,
then generating functions and asymptotics are given in Section 4. Lastly, Section 5 concludes by looking at
some open problems and related work. Also, there is the Appendix which provides Maple code used to prove
some results from earlier in the article.

2. The setting

For r ≥ 0 we consider lattice walks in Zr+1 that use steps from Sr := {±1}r+1 which start at the origin and
end with xr+1 = 0. Let A(r) be the language over the alphabet Sr consisting of such walks. Evidently, any

such walk must consist of 2n steps for some n ≥ 0. Let a
(r)
n be the number of such walks with 2n steps.

We are further interested in subsets of these walks with additional conditions. We consider the language of
walks B(r) ⊆ A(r) which avoid backtracking. That is, walks ending with xr+1 = 0 with the additional constraint

that a step v cannot be directly followed by −v for any v ∈ Sd. We let b
(r)
n be the number of walks avoiding

backtracking with 2n steps. Similarly, we let C(r) ⊆ A(r) denote the language of walks avoiding consecutive

repeats. That is, walks avoiding a step v directly followed by v for any v ∈ Sd. We let c
(r)
n denote the number

of walks avoiding consecutive repeats with 2n steps.
Now let D(r) be the language consisting of walks starting at the origin for which xr+1 ≥ 0 at all times

and finish with xr+1 = 0. We similarly let E(r) ⊆ D(r) and F(r) ⊆ D(r) denote the sublanguages which avoid

backtracking and consecutive equal steps respectively. Again we let the sequences d
(r)
n , e

(r)
n , and f

(r)
n count the

number of walks of length 2n in each of the languages D(r), E(r), and F(r). Letting X(r) denote the language
of walks avoiding the backtracking pattern [v,−v] and Y(r) denote the language of walks avoiding consecutive
repeats [v, v] we have

B(r) = A(r) ∩X(r) E(r) = D(r) ∩X(r)

C(r) = A(r) ∩Y(r) F(r) = D(r) ∩Y(r)

as expressions of our languages of interest. It is worth noting that both X(r) and Y(r) are regular languages.

Remark 2.1. Here are a few remarks about notation (some of which have already been used in Section 1).
We will use (·) to denote vectors (i.e. elements of our alphabet) and [·] to denote words (i.e. sequences
of vectors). For example, (+1,−1,+1) ∈ S2 and [(+1,−1,+1), (+1,+1,−1)] is a word over S2. We may
also use (v,+1) or (v,−1) to denote an element of Sr+1 ending in +1 or −1 respectively for v ∈ Sr. We will
also use the power notation to denote repeated instances of a vector or word. So if v = (+1,−1) then [v3] =
[(+1,−1), (+1,−1), (+1,−1)]. We may also put words to power. For example, if w1 = [(+1,+1), (−1,−1)] and
w2 = [(+1,+1), (+1,+1)], then

[w2
1, w2] = [(+1,+1), (−1,−1), (+1,+1), (−1,−1), (+1,+1), (+1,+1)].

In enumeration, it is often advantageous and interesting to work with generating functions. We will consider
the following generating functions

G(x; A(r)) =
∑
n≥0

a(r)n xn G(x; D(r)) =
∑
n≥0

d(r)n xn

G(x; B(r)) =
∑
n≥0

b(r)n xn G(x; E(r)) =
∑
n≥0

e(r)n xn

G(x; C(r)) =
∑
n≥0

c(r)n xn G(x; F(r)) =
∑
n≥0

f (r)n xn

which are the ordinary generating functions for our sequences. Also for any r ≥ 0, v ∈ Sr, and L ∈
{A(r),B(r),C(r),D(r),E(r),F(r)} we let L(v) ⊆ L be the sublanguage of walks which start with v. Furthermore,
we let

G(x; L(v)) =
∑
n≥0

|L(v) ∩ S2nd |xn

ECA 2:1 (2022) Article #S2R3 2

John Machacek

start

(v, 1), Z0 → Z0U
(v,−1), Z0 → Z0D

ε,Z0 → Z0

(v, 1), U → UU
(v, 1), D → ε
(v,−1), U → ε
(v,−1), D → DD

Figure 1: A DPDA recognizing A(r) where v represents any vector in {±1}r.

start

(v, 1), Z0 → Z0U

ε, Z0 → Z0

(v, 1), U → UU
(v,−1), U → ε

Figure 2: A DPDA recognizing D(r) where v represents any vector in {±1}r.

be the generating function for these walks with a given first step.
We now review some facts on power series which can be found in [17]. A formal power series G(x) is algebraic

if it satisfies a nontrivial polynomial equation. A holonomic sequence is a sequence that satisfies a recurrence
relation with polynomial coefficients. That is, a sequence {tn}n≥0 such that

pj(n)tn+j + pj−1(n)tn+j−1 + · · ·+ p0(n)tn = 0

for some j and polynomials pi(n) not all of which are equal to zero. The sequence of coefficients of an algebraic
formal power series is holonomic.

From a generating function one can find the asymptotics of its sequence of coefficients. Methods for obtaining
these asymptotic expressions are well established and can be found in the text [9]. We write f(n) ∼ g(n) to
mean that

lim
n→∞

f(n)

g(n)
= 1

which is the standard notation. Consider a generating function G(z) =
∑
n≥0 gnz

n viewed as a complex analytic

function and let ρ be its unique singularity closest to the origin. Assume G(z) approaches C ·(1− z
ρ)−α as z → ρ

for some constant C where α is neither 0 nor a negative integer. This is the situation that will be relevant to
use, and under these assumptions

gn ∼
Cρ−nnα−1

Γ(α)

where Γ(α) denotes the Gamma function.
Let us now show using formal language and generating function theory that each of our generating functions

are algebraic from which it follows each of the sequences is holonomic. Our goal will be to further under-
stand these generating functions and find the recurrence relations that the sequences obey. The Chomsky–
Schützenberger enumeration theorem [6] (see [12, 15] for proofs) says that the length generating function of an
unambiguous context-free language is algebraic. A deterministic context-free language is a language recognized
by a deterministic pushdown automaton (DPDA). Ginsburg and Greibach [10] have shown that a deterministic
context-free language is an unambiguous context-free language and that when such a language is intersected
with a regular language it remains a deterministic context-free language.

Theorem 2.1. Let L ∈ {A(r),B(r),C(r),D(r),E(r),F(r)} be one of our languages, then L is a deterministic
context free language. Hence, G(x;L) is algebraic and its sequence of coefficients is holomonic.

Proof. It suffices to prove that each of A(r) and D(r) is recognized by a DPDA. Both of the languages X(r)

and Y(r) consisting of walks which respectively avoid the backtracking pattern [v,−v] as well as which avoid
the repeat pattern [v, v] (but can end anywhere) are regular. Since B(r) = A(r) ∩ X(r), C(r) = A(r) ∩ Y(r),
E(r) = D(r) ∩X(r), and F(r) = D(r) ∩Y(r) it will follow that each of these will be deterministic context free

ECA 2:1 (2022) Article #S2R3 3

John Machacek

languages. By the Chomsky–Schützenberger enumeration theorem all the generating functions will be algebraic.
Therefore each of the sequences must be holonomic. DPDAs recognizing the languages A(r) and D(r) are shown
in Figure 1 and Figure 2 respectively.

Remark 2.2. Theorem 2.1 essentially follows from the definition of our languages. Its purpose is to make
rigorous the fact that generating functions are algebraic and that their sequences of coefficients are holonomic.
It is worth noting that there are other techniques that can also be used to obtain the algebraicity of the generating
functions (e.g. the vectorial kernel method). We also note the method above the flexible to other situations (e.g.
intersecting with a different regular language coming from a pattern or patterns).

Now that we know our generating functions are algebraic we turn our attention to describing these generating

functions and their coefficient as explicitly as possible. The values of a
(r)
n and F (x; A(r)) can be found without

difficulty. We have that

a(r)n = 22nr
(

2n

n

)
(1)

since any walk in A(r) is
[v1, v2, . . . , v2n]

where for coordinates 1 ≤ i ≤ r in v1, . . . , v2n form any binary string and the last coordinate makes a balanced

binary string. Hence, a
(r)
n satisfies the recurrence

na(r)n = 22r+1(2n− 1)a
(r)
n−1 (2)

of the form guaranteed from being holonomic. It follows that

G(x; A(r)) =
1√

1− 22r+2x
=

1√
1− 4(4rx)

(3)

is the expression for the generating function. By similar arguments we find that

d(r)n =
22nr

n+ 1

(
2n

n

)
= 22nrCn (4)

where Cn = 1
n+1

(
2n
n

)
is the nth Catalan number. Also,

(n+ 1)d(r)n = 22r+1(2n− 1)d
(r)
n−1 (5)

and

G(x; D(r)) =
1−

√
1− 4(4rx)

2
(6)

give the recurrence and generating function for d
(r)
n

3. Formulas and recurrences

In this section we find formulas for each of the sequences {b(r)n }n≥0, {c(r)n }n≥0, {e(r)n }n≥0, and {f (r)n }n≥0 con-
sisting of a sum of hypergeometric terms and as an evaluation of a hypergeometric function. Zeilberger’s
algorithm [19,20] is then applied to obtain a recurrence.

3.1 Ending on a hyperplane

For a given integer n, an integer composition of n is an ordered sequence of positive integers which sum to n.
The notion of an integer composition will be essential to the proofs of the next two theorems. We will write
α � n to denote that α is an integer composition of n. The length of an integer composition α is the number
of entries in the sequence and is denoted by `(α). For example, α = (1, 1, 3) and β = (1, 3, 1) are two distinct
integer compositions of 5 both of length `(α) = `(β) = 3. A known fact about integer compositions that we will
use is that there are

(
n−1
k−1
)

integer compositions of n with length equal to k.

Theorem 3.1. For any r ≥ 1 and n ≥ 1 we have

b(r)n = 2

n∑
k=1

(2r − 1)2k−22r(2n−2k+1)

(
n− 1

k − 1

)(
(2r − 1)

(
n− 1

k − 1

)
+ 2r

(
n− 1

k − 2

))

ECA 2:1 (2022) Article #S2R3 4

John Machacek

= 2
(

22rn − 2r(2n−1)
)

3F2

[
−n, − n+ 1, 2rn− n+ 1

1, 2rn− n
; (2r − 1)2

(
1

2

)2r
]

which satisfies the recurrence

nb(r)n = 2
(
(22r+1 − 2r+1 + 1)(n− 1) + 22r − 2r

)
b
(r)
n−1 − (2r+1 − 1)2(n− 2)b

(r)
n−2

for n ≥ 3 with b
(r)
1 = 2r+1(2r − 1) and

b
(r)
2 = 23r+1(2r − 1) + 22r+1(2r − 1)2 + 2r+1(2r − 1)3.

Proof. Recall that b
(r)
n counts the number of walks of length 2n which avoid backtracking and end with xr+1 = 0.

Consider the projection of such a walk onto the xr+1-axis. This projection can be encoded by a word with up
steps U and down steps D corresponding to if a step in the walk had the last coordinate +1 or −1 respectively.
Let us assume the word starts with a U . The case that starts with aD is completely analogous. The lengths of the
runs of U ’s and D’s will give two integer compositions α � n and β � n respectively where ` = `(β) ∈ {k− 1, k}
when `(α) = k. The vector corresponding to each U and D has the last coordinate determined and then
has either 2r or 2r − 1 choices for which v ∈ {±1}r it could have come from making the prefix of the first r
coordinates of the vector. Looking at only the U ’s, we see that the U ′s with only 2r − 1 choices are those in
positions α1 + 1, α1 + α2 + 1, . . . , α1 + · · ·+ αk−1 + 1. Looking at only the D’s, we see that the D’s with only
2r − 1 choices are those in positions 1, β1 + 1, β1 + β2 + 1, . . . , β1 + · · ·+ β`−1 + 1. Thus we find that

b(r)n = 2

n∑
k=1

∑
α�n
`(α)=k

(2r − 1)k−12r(n−k+1)

 ∑
β�n
`(β)=k

(2r − 1)k2r(n−k) +
∑
β�n

`(β)=k−1

(2r − 1)k−12r(n−k+1)

= 2

n∑
k=1

(2r − 1)k−12r(n−k+1)

(
n− 1

k − 1

)(
(2r − 1)k2r(n−k)

(
n− 1

k − 1

)
+ (2r − 1)k−12r(n−k+1)

(
n− 1

k − 2

))

= 2

n∑
k=1

(2r − 1)2k−22r(2n−2k+1)

(
n− 1

k − 1

)(
(2r − 1)

(
n− 1

k − 1

)
+ 2r

(
n− 1

k − 2

))

Once we have b
(r)
n expressed in this way as a sum over hypergeometric terms we may find the hypergeometric

evaluation and recurrence using automated methods. In the appendix, we show how this computation can be
performed in Maple.

Example 3.1. For r = 1 and n = 4 along with the two integer compositions (1, 2, 1) and (2, 2) we have 25 = 32

lattice walks in the plane contributing to the count of a
(1)
4 . Projecting onto the x2-axis all such walks will be

either
[2U, 1D, 2D, 1U, 2U, 1D, 2D, 1U]

or
[2D, 1U, 2U, 1D, 2D, 1U, 2U, 1D].

Here the superscripts indicate how many choices we have for each step as a 2-dimensional walk. We let

{±1}2 = {NE := (1, 1), NW := (−1, 1), SE := (1,−1), SW := (−1,−1)}.

Accounting for the symmetry of reflection over the x1-axis and the x2-axis (i.e. exchanging E and W or
exchanging N and S) there are 8 walks each starting with NE which are shown both as words and graphed in
the plane in Figure 3.

Theorem 3.2. For any r ≥ 1 and n ≥ 1 we have

c(r)n = 2

n∑
k=1

(2r − 1)2n−2k2r(2k−1)
(
n− 1

k − 1

)(
2r
(
n− 1

k − 1

)
+ (2r − 1)

(
n− 1

k − 2

))
= 22r+1(2r − 1)2n−23F2

[
−n, − n+ 1, − 2rn+ 1

1, − 2rn
;

22r

(2r − 1)2

]

ECA 2:1 (2022) Article #S2R3 5

John Machacek

[NE,SE, SE,NE,NE, SE, SE,NE] [NE,SE, SE,NE,NE, SE, SW,NW]

[NE,SE, SE,NE,NW,SW,SE,NE] [NE,SE, SW,NW,NE, SE, SE,NE]

[NE,SE, SE,NE,NW,SW,SW,NW] [NE,SE, SW,NW,NE, SE, SW,NW]

[NE,SE, SW,NW,NW,SW,SE,NE] [NE,SE, SW,NW,NW,SW,SW,NE]

Figure 3: Here are 8 walks from which all 32 walks in the plane avoiding backtracking corresponding to the
integer compositions (1, 2, 1) and (2, 2) can be obtained.

which satisfies the recurrence

nc(r)n = 2
(
(22r+1 − 2r+1 + 1)(n− 1) + 22r − 2r

)
c
(r)
n−1 − (2r+1 − 1)2(n− 2)c

(r)
n−2

for n ≥ 3 with c
(r)
1 = 22r+1 and

c
(r)
2 = 24r+1 + 23r+1(2r − 1) + 22r+1(2r − 1)2.

Proof. Recall that c
(r)
n counts the number of walks of length 2n which avoid consecutive repeated steps and end

with xr+1 = 0. Proceeding similarly to the proof of Theorem 3.1, we consider the projection of such a walk onto
the xr+1-axis. Again this projection can be encoded by a word with up steps U and down steps D meaning the
corresponding step in the walk had the last coordinate +1 or −1 respectively. Let us assume the word starts with
a U since the case that starts with a D is completely analogous. The lengths of the runs of U ’s and D’s will give
two integer compositions α � n and β � n respectively where ` = `(β) ∈ {k − 1, k} when `(α) = k. The vector
corresponding to each U and D has the last coordinate determined and then has either 2r or 2r − 1 choices for
which v ∈ {±1}r it could have come from making the prefix of the first r coordinates. Looking at only the U ’s,
we see that the U ′s with 2r choices are those in positions 1, α1+1, α1+α2+1, . . . , α1+· · ·+αk−1+1. Looking at
only the D’s, we see that the D’s with 2r choices are those in positions 1, β1+1, β1+β2+1, . . . , β1+· · ·+β`−1+1.
So, it follows that

c(r)n = 2

n∑
k=1

∑
α�n
`(α)=k

(2r − 1)n−k2rk

 ∑
β�n
`(β)=k

(2r − 1)n−k2rk +
∑
β�n

`(β)=k−1

(2r − 1)n−k+12r(k−1)

= 2

n∑
k=1

(2r − 1)n−k2rk
(
n− 1

k − 1

)(
(2r − 1)n−k2rk

(
n− 1

k − 1

)
+ (2r − 1)n−k+12r(k−1)

(
n− 1

k − 2

))

= 2

n∑
k=1

(2r − 1)2n−2k2r(2k−1)
(
n− 1

k − 1

)(
2r
(
n− 1

k − 1

)
+ (2r − 1)

(
n− 1

k − 2

))
Notice the only difference with Theorem 3.1 is that exponents of (2r − 1) and 2r are changed. Once we have

c
(r)
n expressed in this way as a sum over hypergeometric terms we may find the hypergeometric evaluation and

recurrence using automated methods. In the appendix, we show how this computation can be performed in
Maple.

ECA 2:1 (2022) Article #S2R3 6

John Machacek

3.2 Ending on a hyperplane and restricted to a halfspace

Theorem 3.3. For any r ≥ 1 and n ≥ 1 we have

e(r)n =
1

n

n∑
k=1

(2r − 1)2k−12r(2n−2k+1)

(
n

k

)(
n

k − 1

)

=
(

22rn − 2r(2n−1)
)

2F1

[
−n, − n+ 1

2
; (2r − 1)2

(
1

2

)2r
]

which satisfies the recurrence

(n+ 1)e(r)n = (22r+1 − 2r+1 + 1)(2n− 1)e
(r)
n−1 − (2r+1 − 1)2(n− 2)e

(r)
n−2

for n ≥ 3 with e
(r)
1 = 2r(2r − 1) and e

(r)
2 = 23r(2r − 1) + 2r(2r − 1)3.

Proof. Recall that e
(r)
n counts the number of walks of length 2n which avoid backtracking and end with xr+1 = 0

while staying the half space defined by xr+1 ≥ 0. In the last coordinate, we must have a Dyck path. We partition
Dyck paths of semilength n by number of peaks. The Narayana number

N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
gives the number of Dyck paths of semilength n with k peaks (and hence k−1 valleys). For the first r coordinates
with have 2r choices for each step except for the steps directly after a peak or valley for which we only have

(2r − 1) choices. Once we have e
(r)
n expressed in this way as a sum over hypergeometric terms we may find

the hypergeometric evaluation and recurrence using automated methods. In the appendix, we show how this
computation can be performed in Maple.

Theorem 3.4. For any r ≥ 1 and n ≥ 1 we have

f (r)n =
1

n

n∑
k=1

(2r − 1)2n−2k22rk
(
n

k

)(
n

k − 1

)
= 22r(2r − 1)2n−22F1

[
−n, − n+ 1

2
;

22r

(2r − 1)2

]
which satisfies the recurrence

(n+ 1)f (r)n = (22r+1 − 2r+1 + 1)(2n− 1)f
(r)
n−1 − (2r+1 − 1)2(n− 2)f

(r)
n−2

for n ≥ 3 with f
(r)
1 = 22r and f

(r)
2 = 24r + 22r(2r − 1)2.

Proof. Recall that f
(r)
n counts the number of walks of length 2n which avoid the repeat pattern and end with

xr+1 = 0 while staying the half space defined by xr+1 ≥ 0. In the last coordinate, we must have a Dyck path.
We again partition Dyck paths of semilength n by number of peaks given by Narayana numbers

N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
for each 1 ≤ k ≤ n. For the first r coordinates with have 2r for only the steps directly after a peak or valley
as well as for the first step. At all other steps, we have (2r − 1) choices for the first r coordinates. Once we

have f
(r)
n expressed in this way as a sum over hypergeometric terms we may find the hypergeometric evaluation

and recurrence using automated methods. In the appendix, we show how this computation can be performed
in Maple.

Example 3.2. For r = 1 and n = 4 consider walks contributing to f
(1)
4 projecting onto the Dyck path

[2U, 1U, 1U, 2D, 2U, 2D, 1D, 1D] where U and D are up and down steps respectively and superscripts indicated
the number of choices for each step. There are 24 = 16 such paths because this Dyck path has 2 peaks and 1
valley. We let

{±1}2 = {NE := (1, 1), NW := (−1, 1), SE := (1,−1), SW := (−1,−1)}

and accounting for symmetry we may assume NE is the first step. This results in 8 walks shown in Figure 4.

ECA 2:1 (2022) Article #S2R3 7

John Machacek

[NE,NW,NE, SE,NE, SE, SW,SE] [NE,NW,NE, SE,NE, SW,SE, SW]

[NE,NW,NE, SE,NW,SE, SW,SE] [NE,NW,NE, SE,NW,SW,SE, SW]

[NE,NW,NE, SW,NE, SE, SW,SE] [NE,NW,NE, SW,NE, SW,SE, SW]

[NE,NW,NE, SW,NW,SE, SW,SE] [NE,NW,NE, SW,NW,SW,SE, SW]

Figure 4: Here are 8 walks from which all 16 walks in the plane avoiding consecutive steps projecting up the
Dyck path [U,U, U,D,U,D,D,D] can be obtained.

4. Generating functions and asymptotics

In this section we give a formula for each of the generating functions G(x; B(r)), G(x; C(r)), G(x; E(r)), and
G(x; F(r)).

Lemma 4.1. If r ≥ 0 and v = (v′, 1) ∈ Sr, then G(x; E(r)(v)) = 1
2r

(
G(x; E(r))− 1

)
.

Proof. Let εi : Sr → Sr be defined by

(y1, . . . , yi−1, yi, yi+1 . . . , yr+1) 7→ (y1, . . . , yi−1,−yi, yi+1 . . . , yr+1)

for each 1 ≤ i ≤ r. It is clear εi is an involution, and hence a bijection. We have that [v1, v2, . . . , v2n] ∈ E(r)

if and only if [εi(v1), εi(v2), . . . , εi(v2n)] ∈ E(r). This is because v = −u if and only if εi(v) = −εi(u) and
because the sum of the last coordinate is preserved. Now given any v = (v′, 1) ∈ Sr we can obtain any other
u = (u′, 1) ∈ Sr by εi` ◦ εi`−1

◦ · · · ◦ εi1 for any some sequence i1, i2, . . . , i` (i.e. the coordinates where v and u

differ). It follows that G(x; E(r)(v)) = G(x; E(r)(u)). The lemma follows since

G(x; E(r))− 1 =
∑

v=(v′,1)∈Sr

G(x; E(r)(v))

as all nonempty walks must start with some v = (v′, 1) ∈ Sr while E(r)(v) ∩E(r)(u) = ∅ for v 6= u.

Lemma 4.2. If r ≥ 0 and v ∈ Sr, then G(x; B(r)(v)) = 1
2r+1

(
G(x; B(r))− 1

)
.

Proof. The proof is very similar to the proof of Lemma 4.1. The only essential difference is that a walk in B(r)

can begin with any v ∈ Sr and hence we are also allowed the use the similarly defined εr+1 : Sr → Sr.

Lemma 4.3. For any r, n ≥ 1 we have that 2rb
(r)
n = (2r − 1)c

(r)
n and 2re

(r)
n = (2r − 1)f

(r)
n .

Proof. Using Theorem 3.1, Theorem 3.2, Theorem 3.3, and Theorem 3.4 we see that {b(r)n } satisfies the same re-

currence as {c(r)n } while {e(r)n } satisfies the same recurrence as {f (r)n }. It remains only to check initial conditions.
We find that

2rb
(r)
1 = 2r(2r+1(2r − 1)) = (2r − 1)22r+1 = (2r − 1)c

(r)
1

ECA 2:1 (2022) Article #S2R3 8

John Machacek

and also

2rb
(r)
2 = 2r(23r+1(2r − 1) + 22r+1(2r − 1)2 + 2r+1(2r − 1)3)

= (2r − 1)(24r+1 + 23r+1(2r − 1) + 22r+1(2r − 1)2)

= (2r − 1)c
(r)
2

so the lemma is proven for b
(r)
n and c

(r)
n . In a similar way

2re
(r)
1 = 2r(2r(2r − 1)) = (2r − 1)(22r) = (2r − 1)f

(r)
1

and
2re

(r)
2 = 2r(23r(2r − 1) + 2r(2r − 1)3) = (2r − 1)(24r + 22r(2r − 1)2) = (2r − 1)f

(r)
2

which completes the proof of the lemma.

Theorem 4.1. For any r > 0 we have

G(x; B(r)) =

√
1− x

1− (2r+1 − 1)2x

G(x; C(r)) =
2r
√

1− x−
√

1− (2r+1 − 1)2x

(2r − 1)
√

1− (2r+1 − 1)2x

G(x; E(r)) =
1− x−

√(
1− (2r+1 − 1)2x

)
(1− x)

2r+1(2r − 1)x

G(x; F(r)) =
1− (2r+1 − 1)x−

√(
1− (2r+1 − 1)2x

)
(1− x)

2(2r − 1)2x

while for r = 0 we have

G(x; C(0)) =
1 + x

1− x
G(x; F(0)) =

1

1− x

and G(x; B(0)) = G(x; E(0)) = 1.

Proof. For r = 0 the result is easy as there are no nonempty walks avoiding backtracking ending at the origin
while [+1,−1]n and [−1,+1]n are the only walks avoiding consecutive steps ending at the origin with only the
former confined to the nonnegative integers. To establish the generating function identity for E(r) with r > 1
we split the walk where it first returns to xr+1 = 0. We note any walk in E(r) is:

(i) empty,

(ii) or of the form [(u, 1), w1, (v,−1), w2] such that u, v ∈ Sr−1 and w1, w2 ∈ E(r) where w1 is nonempty and
w2 does not begin with (−v, 1),

(iii) or of the form [(u, 1), (v,−1), w] such that u, v ∈ Sr−1 with v 6= −u and w ∈ E(r) where w does not begin
with (−v, 1).

Making use of Lemma 4.1 it follows that G = G(x; E(r)) satisfies

G = 1 + 22rx(G− 1)

(
1 +

2r − 1

2r
(G− 1)

)
+ 2r(2r − 1)x

(
1 +

2r − 1

2r
(G− 1)

)
which is equivalent to quadratic equation

0 = 2r(2r − 1)x(G− 1)2 + ((22r + (2r − 1)2)x− 1)(G− 1) + 2r(2r − 1)x

that we can solve. For r > 0 using the quadratic formula and making the correct choice of sign we have

G− 1 =

1− (22r + (2r − 1)2)x−
√(

(22r − (2r − 1)2)
2
x− 1

)
(x− 1)

2r+1(2r − 1)x

=
1− (22r + (2r − 1)2)x−

√(
1− (2r+1 − 1)2x

)
(1− x)

2r+1(2r − 1)x

ECA 2:1 (2022) Article #S2R3 9

John Machacek

which completes the proof for G = G(x; E(r)) after adding 1 to each side. By Lemma 4.3 it follows that

G(x; F(r)) = 1 +
2r

2r − 1

(
G(x; E(r))− 1

)
which can be used to conclude the theorem for G(x; F(r)).

Now consider walks in B(r) which we again split according to where they first return to xr+1 = 0. Such a
walk must be:

(i) empty,

(ii) of the form [(u,±1), w1, (v,∓1), w2] such that u, v ∈ Sr−1, ±w1 ∈ E(r) is nonempty where ±1 is the last
coordinate of the first step of the walk, and w2 ∈ B(r) which does not start with (−v,±1)

(iii) of the form [(u,±1), (v,∓1), w] such that u, v ∈ Sr−1 with v 6= −u and w ∈ B(r) which does not start
with (−v,±1).

Letting H = G(x; B(r)) while still letting G = G(x; E(r)) we have that

H = 1 + 22r+1x(G− 1)

(
1 +

2r+1 − 1

2r+1
(H − 1)

)
+ 2r+1(2r − 1)x

(
1 +

2r+1 − 1

2r+1
(H − 1)

)
where we have made use of Lemma 4.2. After rearranging we find

(1 + (2r+1 − 1)x− 2r(2r+1 − 1)G) ·H = 1− x− 2rxG

then solving for H and substituting the formula we have previously found for G we have

H =
(2r+1 − 1)− (2r+1 − 1)x−

√
(1− (2r+1 − 1)2x)(1− x)

−1 + (2r+1 − 1)2x+ (2r+1 − 1)
√

(1− (2r+1 − 1)2x)(1− x)

=

√
1− x

(
(2r+1 − 1)

√
1− x−

√
1− (2r+1 − 1)2x

)
√

1− (2r+1 − 1)2x
(
−
√

1− (2r+1 − 1)2x+ (2r+1 − 1)
√

1− x
)

which derives the formula for H = G(x; B(r)). Last it remains to demonstrate the formula for H = G(x; C(r))
and this can be readily done using Lemma 4.3.

Corollary 4.1. For any r ≥ 1, we have

b(r)n ∼ (2r+1 − 1)2n−1 ·
√

(2r+1 − 1)2 − 1

πn

c(r)n ∼
2r(2r+1 − 1)2n−1

2r − 1
·
√

(2r+1 − 1)2 − 1

πn

e(r)n ∼
(2r+1 − 1)2n+1

2r+2(2r − 1)
·
√

(2r+1 − 1)2 − 1

πn3

f (r)n ∼ (2r+1 − 1)2n+1

22(2r − 1)2
·
√

(2r+1 − 1)2 − 1

πn3

as asymptotics for our sequences.

Proof. By Lemma 4.3 we need only compute the asymptotics for b
(r)
n and e

(r)
n . For b

(r)
n we have the generating

function

G(z; B(r)) =

√
1− z

1− (2r+1 − 1)2z

by Theorem 4.1 which has ρ = 1
(2r+1−1)2 as its singularity closest to the origin. As z → ρ we have that the

generating function approaches √
(2r+1 − 1)2 − 1

(2r+1 − 1)2
· (1− (2r+1 − 1)2x)−α

as a complex analytic function with α = 1
2 . It then follows that

b(r)n ∼

√
(2r+1 − 1)2 − 1

(2r+1 − 1)2
· ρ−n · n

α−1

Γ(α)

ECA 2:1 (2022) Article #S2R3 10

John Machacek

which simplifies to the desired formula since Γ(1/2) =
√
π.

Now for e
(r)
n we have the generating function

G(z; E(r)) =
1− z −

√(
1− (2r+1 − 1)2z

)
(1− z)

2r+1(2r − 1)z

by Theorem 4.1 which also has ρ = 1
(2r+1−1)2 as its singularity closest to the origin. As z → ρ we have that the

generating function approaches

(2r+1 − 1)2

2r+1(2r − 1)
− 1

2r+1(2r − 1)
− (2r+1 − 1)2

2r+1(2r − 1)
·

√
(2r+1 − 1)2 − 1

(2r+1 − 1)2
· (1− (2r+1 − 1)2x)−α

as a complex analytic function with α = − 1
2 . It then follows that

e(r)n ∼ −
(2r+1 − 1)2

2r+1(2r − 1)
·

√
(2r+1 − 1)2 − 1

(2r+1 − 1)2
· ρ−n · n

α−1

Γ(α)

which simplifies to the desired formula since Γ(−1/2) = −2
√
π.

For comparison to the expressions in Corollary 4.1 one can see that

a(r)n ∼ (22r+2)n · 1√
πn

d(r)n ∼ (22r+2)n · 1√
πn3

which can be gotten from either the formula for coefficients in Equations (1) and (4) or the generating functions
in Equations (3) and (6).

5. Conclusion

We now conclude with some possible directions for future work and discussions of related work.

5.1 Intersections of hyperplanes

Let us look at a natural generalization of the languages A(r) and D(r). For 0 ≤ j ≤ r We can consider the
language A(r)(j) of walks in Zr+1 with steps from Sr which end with xr−j+1 = xr−j+2 = · · · = xr+1 = 0.
So, we have that A(r) = A(r)(0). We also take the language D(r)(j) which is contained in A(r) with the
additional condition that xr−j+1, xr−j+1, . . . , xr+1 ≥ 0 at all times during the walk. Similarly it is the case
that D(r) = D(r)(0). In Theorem 2.1 we saw that both A(r) and D(r) are unambiguous CFLs which in
turn guaranteed the sequences under consideration earlier were holonomic and their generating functions were
algebraic. It turns out neither A(r)(j) nor D(r)(j) is a CFL for j > 0.

Proposition 5.1. For any 0 < j ≤ r the languages A(r)(j) and D(r)(j) are not a CFLs.

Proof. It will suffice to show that neither A(1)(1) nor D(1)(1) is a CFL. We will use the pumping lemma and the
choice of string pumped will readily generalize to A(r)(j) and D(r)(j) for r, j > 1. Assume that either A(1)(1)
or D(1)(1) is a CFL with pumping length p. There is the walk

[(1, 1)p, (1,−1)p, (1, 1)p, (−1, 1)p, (−1,−1)2p] ∈ D(1)(1) ⊆ A(1)(1)

which cannot be pumped. Indeed any consecutive substring of length at most p will contain one coordinate
with all entries equal. Hence, after pumping this substring the walk will not end at the origin. For other values
of r and j the above example can be used to choose the coordinates in positions r and r+ 1 while the remaining
coordinates can be filled as needed to make a valid walk.

Letting a
(r)
n (j) denote the number of walks of length 2n in A(r)(j) we can see that

a(r)n (j) = 22n(r−j)
(

2n

n

)j+1

which satisfies that recurrence

nj+1a(r)n (j) = 22r−j+1(2n− 1)j+1a
(r)
n−1(j)

so the sequence turns out to still be holomonic. A similar computation can be performed for D(r)(j) with
Catalan numbers in place of the central binomial coefficients. We can then look at avoiding patterns like
backtracking or consecutive steps. For these languages, we do not have a guarantee that the corresponding
sequences are holomonic.

ECA 2:1 (2022) Article #S2R3 11

John Machacek

[(+1,+1)2, (−1,+1)2, (−1,−1)1, (+1,−1)3] [(2, 2), (2, 2), (1,−1), (3,−3)]

Figure 5: A walk in E′ and the path in E′′ it maps to by the bijection Φ.

Question 5.1. What can be said about enumeration for the analogous languages ending on an intersection of
hyperplanes?

5.2 A Motzkin generalization and more patterns

A natural extension would be to look at other sets of steps. We outline one possibility related to Motzkin
numbers. The Motzkin numbers enumerate walks in Z with steps from {−1, 0,+1} that end at the origin and
are restricted to the nonnegative integers. Continuing in the spirit of what we have done, one could consider
walks in Zr+1 with step set {−1, 0,+1}r+1 that end with xr+1 = 0 along with combining half-space restrictions
as well as pattern avoidance. Bu [4] has used dynamic programming to attack enumeration of restricted Motzkin
paths in a manner similar to the previously mentioned work on Dyck paths by Ekhad and Zeilberger [8]. As
previously mentioned these works look at other patterns (e.g. longer runs [v, v, . . . , v] of consecutive steps).
One could look at the pattern of a longer run with either our current step set or another step set. Theorem 2.1
can be easily adapted to give an algebraic generating function for other patterns since the language of walks
avoiding a pattern is regular.

Question 5.2. What can be said about enumeration for the analogous languages using the Motzkin-like alphabet
{−1, 0,+1}r+1?

5.3 Other related work

We finish by mentioning some other related work. The r = 1 case of Theorem 3.1 agrees with A082298 in
the OEIS [14] and provides proof of a conjecture observed by David Scambler. For r = 1 Theorem 3.3 and
Theorem 3.4 correspond to A086871 and A082298 respectively in the OEIS [14]. Furthermore, when r = 1
Theorem 3.3 is twice the formula in [7, Theorem 2.2(b)] which enumerates lattice walks from (0, 0) to (n, n)
using steps {(0, j), (j, 0) : j ≥ 0} which never go above the line x = y. These walks are also enumerated by
Woan in [18] and are A059231 in the OEIS [14].

Let E′ = E(1)((+1,+1)) ⊆ E(1) be the sublanguage of walks starting with the step (+1,+1). Also, let E′′

be the language of walks from (0, 0) to (2n, 0) for any n ≥ 0 using steps from {(j, j), (j,−j) : j ≥ 0} which
never go below the x-axis. The walks in E′′ are equinumerous with the walks enumerated by Cocker and by
Woan via exchanging (j, 0)↔ (j, j) and (0, j)↔ (j,−j). Since our walks have symmetry with orbit size 2 for all
nonempty walks by the action of reflecting over the y-axis, there is a bijection between E′ and E′′. Let us now
define a map Φ : E′ → E′′. For w ∈ E′ start by considering the decomposition into maximal runs of consecutive
steps

w = [vj11 , v
j2
2 , . . . v

j`
`] ∈ E′

for vi ∈ S1 with vi 6= vi+1 which is unique and well-defined. We then set

Φ(w) = [u1, u2, . . . , u`] ∈ E′′

where

ui =

{
(ji, ji) if vi has positive y-coordinate;

(ji,−ji) if vi has negative y-coordinate;

for each 1 ≤ i ≤ `.

Proposition 5.2. The map Φ : E′ → E′′ is a bijection.

Proof. If w ∈ E′ has 2n steps, then Φ(w) ∈ E′′ is a path from (0, 0) to (2n, 0). It is enough to show Φ is injective
since we know the number of walks in E′ with 2n steps is the same as the number of paths in E′′ from (0, 0) to
(2n, 0). Consider w,w′ ∈ E′ with

w = [vj11 , v
j2
2 , . . . v

j`
`]

ECA 2:1 (2022) Article #S2R3 12

John Machacek

w′ = [u
j′1
1 , u

j′2
2 , . . . u

j′
`′
`′]

as decompositions into maximal runs. Assume the Φ(w) = Φ(w′), then immediately we have ` = `′ because the
paths Φ(w) and Φ(u) must have the same number of steps. Next it must be the case that v1 = u1 = (+1,+1)
since w,w′ ∈ E′. The first steps of Φ(w) and Φ(w′) are (j1, j1) and (j′1, j

′
1) so we have j1 = j′1. This establishes

the base case for induction. Assume that vi−1 = ui−1 and ji−1 = j′i−1 for some 1 < i < `. We will show
this implies that vi = ui and ji = j′i. The ith steps of Φ(w) and Φ(w′) are (ji,±ji) and (j′i,±j′i). This
means that ji = j′i and the y-coordinate of vi and ui match. Since the walks avoid backtracking and we have
decomposed them into maximal runs there is only one choice for the x-coordinate once the y-coordinate is fixed.
As ui−1 = vi−1 we have that ui = vi. The proposition then follows by induction.

Example 5.1. Consider w ∈ B′ where

w = [(+1,+1), (+1,+1), (−1,+1), (−1,+1), (−1,−1), (+1,−1), (+1,−1), (+1,−1)]

= [(+1,+1)2, (−1,+1)2, (−1,−1)1, (+1,−1)3]

then
Φ(w) = [(2, 2), (2, 2), (1,−1), (3,−3)]

and these walks are shown in Figure 5.3.

Acknowledgments

The author wishes to thank anonymous referees for their careful reading as well as for several thoughtful and
helpful comments which have improved this paper.

References

[1] A. Asinowski, A. Bacher, C. Banderier, and B. Gittenberger, Analytic combinatorics of lattice paths with
forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Algo-
rithmica 82(3) (2020), 386–428.

[2] A. Asinowski and C. Banderier, On Lattice Paths with Marked Patterns: Generating Functions and Mul-
tivariate Gaussian Distribution, In Michael Drmota and Clemens Heuberger, editors, 31s International
Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA
2020), Volume 159 of Leibniz International Proceedings in Informatics (LIPIcs), pages 1:1–1:16, Dagstuhl,
Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[3] A. Asinowski, C. Banderier, and V. Roitner, Generating functions for lattice paths with several forbidden
patterns, Sém. Lothar. Combin. 84B (2020), Article 95.

[4] A. Bu, Automated counting of restricted Motzkin paths, Enumer. Combin. Appl. 1(2) (2021), Article
#S2R12.

[5] A. Bu and R. Dougherty-Bliss, Enumerating restricted Dyck paths with context-free grammars,
arXiv:2009.09061.

[6] N. Chomsky and M. P. Schützenberger, The algebraic theory of context-free languages, In Computer pro-
gramming and formal systems, 118–161, North-Holland, Amsterdam, 1963.

[7] C. Coker, Enumerating a class of lattice paths, Discrete Math. 271(1-3) (2003), 13–28.

[8] S. B. Ekhad and D. Zeilberger, Automatic counting of restricted Dyck paths via (numeric and symbolic)
dynamic programming, arXiv:2006.01961.

[9] P. Flajolet and R. Sedgewick, Analytic combinatorics, Cambridge University Press, Cambridge, 2009.

[10] S. Ginsburg and S. Greibach, Deterministic context free languages, Information and Control 9(6) (1966),
620–648.

[11] C. Krattenthaler, Lattice path enumeration, In Handbook of enumerative combinatorics, Discrete Math.
Appl. (Boca Raton), 589–678, CRC Press, Boca Raton, FL, 2015.

[12] W. Kuich and A. Salomaa, Semirings, automata, languages, Volume 5 of EATCS Monographs on Theoret-
ical Computer Science, Springer-Verlag, Berlin, 1986.

[13] Maplesoft, a division of Waterloo Maple Inc., Maple.

[14] OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences.

[15] A. Panholzer, Gröbner bases and the defining polynomial of a context-free grammar generating function, J.
Autom. Lang. Comb., 10(1) (2005), 79–97.

ECA 2:1 (2022) Article #S2R3 13

John Machacek

[16] M. Petkovšek, H. S. Wilf, and D. Zeilberger, A = B With foreword by Donald E. Knuth, Wellesley, MA:
A. K. Peters, 1996.

[17] R. P. Stanley, Differentiably finite power series, European J. Combin. 1(2) (1980), 175–188.

[18] W. Wen-jin, Diagonal lattice paths, Congr. Numerantium, 151 (2001), 173–178.

[19] D. Zeilberger, A fast algorithm for proving terminating hypergeometric identities, Discrete Math. 80(2)
(1990), 207–211.

[20] D. Zeilberger, The method of creative telescoping, J. Symbolic Comput. 11(3) (1991), 195–204.

Appendix: Proofs with Maple code

Here in the Appendix we show how the functions sumrecursion and sumtohyper from the sumtools package
in Maple [13] can be used to compute the recurrences and hypergeometric evaluations in this paper. We first
illustrate how to compute the recurrence relations in Theorem 3.1, Theorem 3.2, Theorem 3.3, and Theorem 3.4
using Maple to execute to Zeilberger’s algorithm [19,20]. Running the following in Maple

with (sumtools) ;

sumrecurs ion (2∗ (2ˆ r − 1) ˆ(2∗k − 2) ∗2ˆ(r ∗(2∗n − 2∗k + 1)) ∗binomial (n − 1 , k − 1) ∗ ((2ˆ r −
1) ∗binomial (n − 1 , k − 1) + 2ˆ r ∗binomial (n − 1 , k − 2)) , k , b (n)) ;

sumrecurs ion (2∗ (2ˆ r − 1) ˆ(2∗n − 2∗k) ∗2ˆ(r ∗(2∗k − 1)) ∗binomial (n − 1 , k − 1) ∗(2ˆ r ∗
binomial (n − 1 , k − 1) + (2ˆ r − 1) ∗binomial (n − 1 , k − 2)) , k , c (n)) ;

sumrecurs ion ((1/n) ∗(2ˆ r−1)ˆ(2∗k−1)∗2ˆ(r ∗(2∗n−2∗k+1)) ∗binomial (n , k) ∗binomial (n , k−1) , k ,
e (n)) ;

sumrecurs ion ((1/n) ∗(2ˆ r−1)ˆ(2∗n−2∗k) ∗2ˆ(2∗ r ∗k) ∗binomial (n , k) ∗binomial (n , k−1) , k , f (n)) ;

will return is the relevant parts of Theorem 3.1, Theorem 3.2, Theorem 3.3, and Theorem 3.4 giving the
recurrences. Also running the following in Maple

with (sumtools) ;

sumtohyper (2∗ (2ˆ r − 1) ˆ(2∗k − 2) ∗2ˆ(r ∗(2∗n − 2∗k + 1)) ∗binomial (n − 1 , k − 1) ∗ ((2ˆ r −
1) ∗binomial (n − 1 , k − 1) + 2ˆ r ∗binomial (n − 1 , k − 2)) , k) ;

sumtohyper (2∗ (2ˆ r − 1) ˆ(2∗n − 2∗k) ∗2ˆ(r ∗(2∗k − 1)) ∗binomial (n − 1 , k − 1) ∗(2ˆ r ∗binomial
(n − 1 , k − 1) + (2ˆ r − 1) ∗binomial (n − 1 , k − 2)) , k) ;

sumtohyper ((2ˆ r − 1) ˆ(2∗k − 1) ∗2ˆ(r ∗(2∗n − 2∗k + 1)) ∗binomial (n , k) ∗binomial (n , k − 1) /
n , k) ;

sumtohyper ((2ˆ r − 1) ˆ(2∗n − 2∗k) ∗2ˆ(2∗ r ∗k) ∗binomial (n , k) ∗binomial (n , k − 1) /n , k) ;

verifies the hypergeometric evaluations.

ECA 2:1 (2022) Article #S2R3 14

