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1. Introduction

In general, even a minor modification of a region would lead to an unpredictable change in its tiling number.
However, in some situations, it changes the tiling number by only a simple multiplicative factor. The author and
Rohatgi first introduced this phenomenon for the doubly–dented hexagons in [21] and named it the “Shuffling
Phenomenon”† for tilings.

The initial example of this phenomenon was recognized earlier when the author attended the Joint Mathemat-
ics Meetings 2018. After discussing with Dennis Stanton about the tiling number of Ciucu and Krattenthaler’s
‘S-cored hexagon’ (a hexagon with a cluster of four triangles removed) [5], the author found a striking pattern
in the tiling number of the region when the side-lengths of the S-core are changed. This example was later
generalized in [6,18,19]. The phenomenon has been found in many different forms and different region families.
For recent work about the phenomenon, we refer the reader to, e.g. [3, 4, 8, 12,13,17,20].

In this paper, we show several new instances of the shuffling phenomenon. In particular, we are investigating
two new region families. The first family is a class of semi-hexagons, i.e., upper halves of symmetric hexagons (see
Figure 1). The second family consists of certain quartered hexagons, i.e., halves of symmetric semi-hexagons (see
Figure 4). We show that the tiling generating functions of these regions change by only a simple multiplicative
factor if we adjust the width while fixing the other parameters. A highlight of the result is that these tiling
generating functions are not given by simple product formulas themselves.

We want to emphasize that most of the results in the field of enumeration of tilings are unweighted enu-
merations; the weighted enumerations are very rare. This paper is devoted to such rare enumerations. The
unweighted version of Theorem 1.1 was independently found by Condon [8]. Strictly speaking, Condon investi-
gates a different family of regions, namely hexagons with dents on two non-adjacent sides. However, his regions
have the same tiling number as our regions.

We now define in detail the semi-hexagon with dents on two sides. Consider a trapezoidal region of side-
lengths x,m+n, x+m+n,m+n (in clockwise order, starting from the top‡) in the triangular lattice, as shown
in Figure 1(a). Next, we remove m up-pointing unit triangles from the left side and n up-pointing unit triangles
from the right side. These removed triangles are called the ‘dents’ and are indicated by the black triangles in
the figure. A lozenge is a union of any two unit triangles that share an edge (see Figure 2 for three possible
orientations of the lozenges: vertical, left, and right). A lozenge tiling of a region is a covering of the region by

∗This research was supported in part by Simons Foundation Collaboration Grant (# 585923).
†The “shuffling phenomenon” here is not related to the “domino shuffling” operation in [10,11].
‡From now on, we always list the side-lengths of a region in this order.
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Figure 1: (a) A semi-hexagon with dents on two sides, and (b) a tiling of its. The black triangles indicate the
unit triangles removed.
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Figure 2: Three possible orientations of the lozenges: left, vertical, and right.

lozenges with no gaps or overlaps. See Figure 1(b) for a tiling of a semi-hexagon with dents. In general, our
dented semi-hexagon may not have any tiling (see Lemma 2.1 for the tile-ability of this region). Even when it
has tilings, the number of tilings is not given by a nice product formula.

We now consider a weight assignment for the lozenges as follows. We define a rectangular coordinate system
with the horizontal i-axis running along the base of the semi-hexagon; the vertical j-axis passes the middle
point of the base. A unit on the i-axis is equal to 1/2 times the side-length of a lozenge, and a unit on the
j-axis is equal to

√
3/2 times the side-length of a lozenge. The vertical lozenge with center at the point (i, j)

is weighted by Xqi+Y q−i

2 , where X,Y, q are three indeterminates. The lozenges of different orientations (left
and right) are all weighted by 1. We note that our lozenge-weights are independent of the j-ordinate. See
Figure 3(a) for an example. The weight of a tilling is now the product of its lozenge-weights§. This weight
assignment is a special case of the elliptic weight considered by Borodin, Gorin, and Rains in [2]. Denote by
Sx(a,b) = Sx((ai)

m
i=1; (bj)

n
j=1) the resulting weighted region, where a = (ai)

m
i=1 and b = (bj)

n
j=1 are respectively

the sequences of the left dents’ positions and the right dents’ positions (as they appear from top to bottom).
All regions considered in this paper are weighted regions. Strictly speaking, a ‘weighted region’ is a pair

(R,wt), where R is an unweighted region in the triangular lattice, called the “shape” of the region, and wt is
a weight assignment for the tilings of R. We will see in the next part of the paper that there exist different
weighted regions that have the same shape. We abuse the notation when the weight assignment is clearly given
by viewing R as the weighted region. In the rest of the paper, we use the notation T(R) for the weighted sum
of all tilings of R. If R does not have any tiling, then T(R) = 0. When R is a degenerated region (i.e., a region
with an empty interior), we set T(R) = 1 by convention. We call T(R) the tiling generating function of R.

In general, the tiling generating function of the semi-hexagon Sx(a,b) is not given by a simple product
formula. However, if we consider the ratio of the tiling generating functions of Sx(a,b) and its ‘sibling’ Sy(a,b),
then a magical cancelation happens. (Intuitively, Sy(a,b) is obtained by horizontal stretching or compressing
Sx(a,b).) The ratio reduces to a nice product formula.

We often use the standard q-Pochhammer symbol in our tiling formulas:

(x; q)n :=


1 if n = 0;

(1− x)(1− xq) · · · (1− xqn−1) if n > 0;
1

(1−xq−1)(1−xq−2)···(1−xqn) if n < 0.

(1)

We are now ready to state our first main theorem.

Theorem 1.1. Assume that x,m, n are non-negative integers, and (ai)
m
i=1 and (bj)

n
j=1 are two increasing

sequences of positive integers between 1 and m+n. The region Sx((ai)
m
i=1; (bj)

n
j=1) is tile-able if and only if the

region Sy((ai)
m
i=1; (bj)

n
j=1) is tile-able. Moreover, if Sx((ai)

m
i=1; (bj)

n
j=1) is tile-able, then we always have

T(Sx((ai)
m
i=1; (bj)

n
j=1))

T(Sy((ai)mi=1; (bj)nj=1))
= q(y−x)(

∑m
i=1 ai+

∑n
j=1 bj− (m+n)(m+n+1)

2 ) PPq2(y,m, n)

PPq2(x,m, n)

×
m∏
i=1

(q2(x+i); q2)ai−i

(q2(y+i); q2)ai−i

n∏
j=1

(q2(x+j); q2)bj−j

(q2(y+j); q2)bj−j
, (2)

§From now on, we only describe in detail the lozenge-weights, and the weights of the tilings are obtained implicitly in this way.
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Figure 3: Two weight assignments for the lozenges of a semi-hexagon with dents on two sides. The shaded

lozenges passed by the j-axis are weighted by X+Y
2 , the ones with label k are weighted by Xqk+Y q−k

2 .

where

PPq(a, b, c) =

a∏
i=1

b∏
j=1

c∏
k=1

qi+j+k−1 − 1

qi+j+k−2 − 1
. (3)

We note that the ratio of generating functions in (2) does not depend on the determinates X and Y in our
weight assignment. We also note that the product PPq(a, b, c) in the above formula is exactly MacMahon’s
generating function of the plane partitions fitting in an (a × b × c)-box [22]. We still do not have any good
explanation for the appearance of MacMahon’s formula here.

We now re-assign weights to the right lozenges of the semi-hexagon as in Figure 3(b). In particular, the

right lozenge with center at (i, j) is weighted by Xqi+Y q−i

2 ; all the left and vertical lozenges now have weight 1.
Denote by S′x((ai)

m
i=1; (bj)

n
j=1) the new weighted region. In other words, Sx(a,b) and S′x(a,b) have the same

shape but different weight assignments. The ratio of the tiling generating functions of S′x(a,b) and S′y(a,b) is
also given by a simple product formula. It is, in fact, very similar to that in the previous theorem.

Theorem 1.2. Assume that x,m, n are non-negative integers, and (ai)
m
i=1 and (bj)

n
j=1 are two increasing

sequences of positive integers between 1 and m+n. The region S′x((ai)
m
i=1; (bj)

n
j=1) is tile-able if and only if the

region S′y((ai)
m
i=1; (bj)

n
j=1) is tile-able. Moreover, if S′x((ai)

m
i=1; (bj)

n
j=1) is tile-able, then

T(S′x((ai)
m
i=1; (bj)

n
j=1))

T(S′y((ai)mi=1; (bj)nj=1))
= q

n
2 (y2−x2)+(y−x)(

∑n
i=1 bj− 1

2m
2− 1

2n
2−mn+2n) PPq2(y,m, n)

PPq2(x,m, n)

×
n∏

j=1

y−x∏
i=1

(X2 + q2(x+i−bj)XY )

m∏
i=1

(q2(x+i); q2)ai−i

(q2(y+i); q2)ai−i

n∏
j=1

(q2(x+j); q2)bj−j

(q2(y+j); q2)bj−j
. (4)
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Figure 4: (a) A quartered with dents on the right side and (b) a tiling of its. The black triangles indicate the
unit triangles removed.

Next, we consider a new family of regions called “quartered hexagons” with dents on the right side, as shown
in Figure 4. In particular, we consider a right trapezoidal region of side-lengths x, 2m,x+m, 2m. The vertical
left side runs along a zigzag path with 2m steps. We remove m up-pointing unit triangles from the right side of
the region at the positions a1, a2, . . . , am, from top to bottom. We also assign the weights to vertical lozenges
of the region, as in Figure 5(a). In particular, the j-axis is touching the right side of the region, and the i-axis

runs along the base. The vertical lozenge with the center at the point (i, j) is weighted by qi+q−i

2 (i.e., we set
X = Y = 1 here). Denote by Qx((ai)

m
i=1) this weighted region. Similar to the case of Theorems 1.1 and 1.2,

the ratio of tiling generating functions of Qx((ai)
m
i=1) and its sibling Qy((ai)

m
i=1) is always given by a simple

product formula (even though each tilling generating function is not a simple product).

ECA 2:1 (2022) Article #S2R5 3
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Figure 5: Assigning weights to the lozenges of a quartered hexagon. The shaded lozenges passed by the j-axis

are weighted by 1
2 ; the ones with label n are weighted by qn+q−n

2 .

Theorem 1.3. For non-negative integers x,m and an increasing sequence a = (ai)
m
i=1 of positive integers

between 1 and 2m, the region Qx((ai)
m
i=1) is tile-able if and only if the region Qy((ai)

m
i=1) is tile-able. Moreover,

we have

T(Qx((ai)
m
i=1))

T(Qy((ai)mi=1))
= q2(y−x)(

∑m
i=1 ai−m2)

m∏
i=1

(q2(2y+ai+1); q2)2i−ai−1

(q2(2x+ai+1); q2)2i−ai−1
(5)

whenever Qx((ai)
m
i=1) is tile-able.

Next, we consider a variation of the quartered region above. The new weighted region has the same shape
as the one in Theorem 1.3. The only difference is in the lozenge-weights. We now re-assign the weights to the
lozenges, as in Figure 5(b). One should note that the new j-axis is one unit to the right of the j-axis in Figure
5(a). As a consequence, our region now has some vertical lozenges intersected by the j-axis. The vertical lozenge

with center at the point (i, j) in the new coordinate system is still weighted by qi+q−i

2 , with one exception: the

vertical lozenges intersected by the j-axis are weighted by 1/2 (not by 1 = q0+q−0

2 ). Denote by Q′x((ai)
m
i=1) the

new weighted region.

Theorem 1.4. Assume that x,m are non-negative integers and that (ai)
m
i=1 is an increasing sequence of positive

integers between 1 and 2m. The region Q′x((ai)
m
i=1) is tile-able if and only if the region Q′y((ai)

m
i=1) is tile-able.

Moreover, we have

T(Q′x((ai)
m
i=1))

T(Q′y((ai)mi=1))
= q2(y−x)(

∑m
i=1 ai−m2)

m∏
i=1

(q2(2y+ai); q2)2i−ai−1

(q2(2x+ai); q2)2i−ai−1
(6)

if Q′x((ai)
m
i=1) is tile-able.

Remark 1.1 (Combinatorial reciprocity phenomenon). The ratio in Theorem 1.4 is obtained from the one in
Theorem 1.3 by replacing x by x − 1/2 and y by y − 1/2. This reminds us of the “ combinatorial reciprocity
phenomenon”: even though the regions Qx((ai)

m
i=1) and Qy((ai)

m
i=1) are not defined when x and y are half-

integers, the formula of the ratio of their tiling generating functions gives the “numbers” of combinatorial objects
of a different sort when evaluated at half-integers. It would be interesting to find a direct explanation for this,
i.e., an explanation without requiring the calculation of the tiling generating functions. For more discussions
about the combinatorial reciprocity phenomenon, we refer the reader to, e.g. [1, 23, 24].

Remark 1.2. It is worth noticing that Fulmek recently re-proves Theorems 1.1 and 1.3 using lattice path
combinatorics and a special matrix factorization in [12].

2. Preliminaries

2.1 Tile-ability

As mentioned in the previous section, the semi-hexagons with dents on both sides may not have any tilings in
general. It is not hard to obtain the following tile-ability for these semi-hexagons by using the correspondence
between lozenge tilings and non-intersecting lattice paths.

Lemma 2.1. Assume that x,m, n are non-negative integers, and (ai)
m
i=1 and (bj)

n
j=1 are two increasing se-

quences of positive integers between 1 and m+ n. Then Sx((ai)
m
i=1; (bj)

n
j=1) is tile-able if and only if

|{ai}mi=1 ∩ [t]|+ |{bj}nj=1 ∩ [t]| ≤ t, (7)

ECA 2:1 (2022) Article #S2R5 4
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for any t = 1, 2, . . . ,m+ n, where we use the notation [t] for the set of the first t positive integers {1, 2, . . . , t},
and where |A| denotes the cardinality of a finite set A.

Similar to the case of the semi-hexagons, the quartered hexagon Qx((ai)
m
i=1) may have no tiling. The

following lemma provides a condition for the tile-ability of this region.

Lemma 2.2. Assume that x,m are non-negative integers and that (ai)
m
i=1 is an increasing sequence of positive

integers between 1 and 2m. Then Qx((ai)
m
i=1) is tile-able if and only if

|{ai}mi=1 ∩ [2t]| ≤ t, (8)

for any t = 1, 2, . . . ,m.

2.2 Kuo Condensation and Region-splitting Lemma

In the early 2000s, Eric H. Kuo [14] proved several combinatorial interpretations of the well-known Dodgson
condensation in linear algebra [9]. Kuo condensation has become a powerful tool in the field of enumeration of
tilings.

A perfect matching of a simple graph is a collection of disjoint edges that cover all vertices of the graph.
We use the notation M(G) for the weighted sum of the perfect matchings of the weighted graph G, where the
weight of a perfect matching is the product of the weights of its edges. We call M(G) the matching generating
function of G.

There is a one-to-one correspondence between tilings of a region R in the triangular lattice and perfect
matchings of its (planar) dual graph G (i.e., the graph whose vertices are the unit triangles in R and whose
edges connect precisely two unit triangles sharing an edge). Each edge of the dual graph inherits the weight of
the corresponding lozenge in the region. In particular, we have T(R) = M(G).

We will employ the following three versions of the Kuo condensation in our proofs.

Lemma 2.3 (Theorem 5.1 in [14]). Let G = (V1, V2, E) be a weighted plane bipartite graph in which |V1| = |V2|.
Let vertices u, v, w, s appear on a face of G, in that order. If u,w ∈ V1 and v, s ∈ V2, then

M(G) M(G− {u, v, w, s}) = M(G− {u, v}) M(G− {w, s}) + M(G− {u, s}) M(G− {v, w}). (9)

Lemma 2.4 (Theorem 5.3 in [14]). Let G = (V1, V2, E) be a weighted plane bipartite graph in which |V1| =
|V2|+ 1. Let vertices u, v, w, s appear on a face of G, in that order. If u, v, w ∈ V1 and s ∈ V2, then

M(G− {v}) M(G− {u,w, s}) = M(G− {u}) M(G− {v, w, s}) + M(G− {w}) M(G− {u, v, s}). (10)

Lemma 2.5 (Theorem 5.4 in [14]). Let G = (V1, V2, E) be a weighted plane bipartite graph in which |V1| =
|V2|+ 2. Let vertices u, v, w, s appear on a face of G, in that order. If u, v, w, s ∈ V1, then

M(G− {u,w}) M(G− {v, s}) = M(G− {u, v}) M(G− {w, s}) + M(G− {u, s}) M(G− {v, w}). (11)

A forced lozenge of the region R is a lozenge contained in any tilings of R. Assume that we remove k forced
lozenges l1, l2, . . . , lk from R and get a new region R′, then we have

T(R) =

(
k∏

i=1

wt(li)

)
· T(R′), (12)

where wt(li) is the weight of the removed lozenge li, for i = 1, 2, . . . , k.
A region in the triangular lattice¶ must have the same number of up-pointing and down-pointing unit

triangles to admit a tiling. We call such a region balanced. The following simple lemma is especially useful when
enumerating tilings.

Lemma 2.6 (Region-splitting Lemma [15, 16]). Assume R is a balanced region and Q is a subregion of R
satisfying the following two conditions:

1. The unit triangles in Q lying on the boundary between Q and R \ Q have the same orientation (all are
up-pointing or all are down-pointing);

2. Q is balanced.

Then we have T(R) = T(Q) · T(R \Q).

ECA 2:1 (2022) Article #S2R5 5
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lozenges passed by the j-axis are weighted by X+Y
2 , the ones with label k are weighted by Xqk+Y q−k

2 .

2.3 Four basic enumerations

We also need the following four basic enumerations for our proofs.
We consider a semi-hexagon of side-lengths a, b, a + b, b. We remove b up-pointing unit triangles from the

base at the positions s1, s2, . . . , sb as they appear from left to right. We now assign weights to the vertical
lozenges of the dented semi-hexagon, as in Figure 6(a). In particular, the vertical lozenges with center at the

point (i, j) are weighted by Xqi+Y q−i

2 . All other lozenges are weighted by 1. Denote by Sa,b(s1, s2, . . . , sb) the
resulting weighted region.

It is worth noticing that the tiling number of this dented semi-hexagon was first provided by Cohn, Larsen,
and Propp [7, Proposition 2.1]. A weighted version of Cohn–Larsen–Propp’s result can be found in [25, pp. 374–
375], in terms of the column-strict plane partitions (or reverse semi-standard Young tableaux). The following
lemma was proved implicitly in [2].

Lemma 2.7. For non-negative integers a, b, and an increasing sequence (si)
b
i=1 of positive integers between 1

and a+ b, we have

T(Sa,b(s1, s2, . . . , sb)) = 2−(b
2)q

∑b
i=1(b−1)(i+1−2si)

∏
1≤i<j≤b

q2sj − q2si
q2j − q2i

b∏
i=1

i−1∏
j=1

(q2(si+sj−2)X + Y ). (13)

Next, we consider a variation of the weighted region above. We now weigh the lozenges of the semi-hexagon
differently, as in Figure 6(b). Denote by S′a,b(s1, s2, . . . , sb) the new weighted region. We have the following
counterpart of Lemma 2.7.

Lemma 2.8. For non-negative integers a, b, and an increasing sequence (si)
b
i=1 of positive integers between 1

and a+ b

T(S′a,b(s1, s2, . . . , sb)) = 2
∑b

i=1(i−si)q
∑b

i=1
(i−si)(si−3+i)

2

∏
1≤i<j≤b

q2sj − q2si
q2j − q2i

b∏
i=1

si−i∏
j=1

(q2(i+j−b−1)X + Y ). (14)
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Figure 7: Two ways to assign weights to lozenges of a halved hexagon. The shaded lozenges passed by the

j-axis are weighted by 1
2 , the ones with label k are weighted by qk+q−k

2 .

¶We only consider regions in the triangular lattice in this paper. From now on, we will use the term“region(s)” to mean “region(s)
in the triangular lattice.”
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Next, we consider a pentagonal region with side-lengths x, n, n, x, 2n, whose vertical right side runs along a
zigzag path with 2n steps. We now assign the weight to lozenges of the region as in Figure 7(a): the vertical

lozenges with center at the point (i, j) are weighted by qi+q−i

2 ; other lozenges are all weighted by 1. Denote by
Px,n the resulting weighted region. We usually call Px,n a (weighted) halved hexagon, as it can be viewed as
half of a symmetric hexagon of side-lengths 2x+ 1, n, n, 2x+ 1, n, n divided by a vertical zigzag cut.

The q-integer [n]q is defined as [n]q = 1 + q + · · ·+ qn−1, where [0]q = 0. Then the q-factorial is defined to
be the product of q-integers: [n]q! = [1]q[2]q · · · [n]q, where [0]q! = 1.

Lemma 2.9. Assume that x, n are non-negative integers. Then we have

T(Px,n) =
2−n

2

q−
∑n

i=1(2i−1)(2x+i)

[1]q2 ![3]q2 ! · · · [2n− 1]q2 !

n∏
i=1

[4(x+ i)]q2
∏

1≤i<j≤n

[2(2x+ i+ j)]q2 [2(j − i)]q2 . (15)

(b)

x

mm

x+mx+n

nn

x

(a)

Figure 8: Two base cases in the proof of Theorem 1.1: (a) the case m = 0 and (b) the case n = 0.
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Figure 9: The case t = 0 in the proof of Theorem 1.1.

We also consider a variant of Px,n obtained by re-assigning the lozenge-weights as in Figure 5(b). In

particular, the vertical lozenges with center at the point (i, j) are still weighted by qi+q−i

2 , except for the ones

intersected by the j-axis, which are weighted by 1/2 (not 1 = q0+q−0

2 ). Denote by P ′x,n the new weighted region.

Lemma 2.10. Assume that x, n are non-negative integers. Then we have

T(P ′x,n) =
2−n

2

q−
∑n

i=1(2i−1)(2x+i−1)

[1]q2 ![3]q2 ! · · · [2n− 1]q2 !

n∏
i=1

[4(x+ i)− 2]q2
∏

1≤i<j≤n

[2(2x+ i+ j − 1)]q2 [2(j − i)]q2 . (16)

To the best of the author’s knowledge, there are no references for the proofs of Lemmas 2.8, 2.9, and 2.10 in
the literature. For the completeness of the paper, we will provide the proofs of these lemmas in the Appendix.

3. Proofs of Main Theorems

Proof of Theorem 1.1. By Lemma 2.1, the region Sx((ai)
m
i=1; (bj)

n
j=1) is tile-able if and only if the region

Sy((ai)
m
i=1; (bj)

n
j=1) is tile-able.
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Figure 10: How to apply Kuo condensation to a semi-hexagon with dents on two sides.

Next, we assume that Sx((ai)
m
i=1; (bj)

n
j=1) has a tiling. We rewrite identity (2) as

T(Sx((ai)
m
i=1; (bj)

n
j=1)) = fx,y((ai)

m
i=1; (bj)

n
j=1) · T(Sy((ai)

m
i=1; (bj)

n
j=1)), (17)

where fx,y((ai)
m
i=1; (bj)

n
j=1) denotes the expression on the right-hand side of (2).

We prove (17) by induction on the statistic p := m+ 2n+ t, where t =
∑n

i=1((m+ i)− bi). The base cases
are the situations when at least one of the perimeters m,n, t is equal to 0.

If m = 0, then our two semi-hexagons Sx(a,b) and Sy(a,b) have exactly 1 tiling as shown in Figure 8(a).
In this case, identity (17) becomes “1=1.” The case n = 0 is similar (illustrated in Figure 8(b)).

If t = 0, then all b-dents of Sx((ai)
m
i=1; (bj)

n
j=1) are clustering to the lower-right corner. By removing forced

lozenges, we get a pentagonal region with dents on the left side (illustrated by the region restricted by the bold
contour in Figure 9(a)). The resulting region has the same tiling generating function as the region in Figure
9(b). (The two regions differ by only several forced lozenges with weight 1.) We now 120◦-rotate this region
to get a weighted semi-hexagon in Lemma 2.7 (see Figure 9(c)). This way, we obtain an explicit formula for
the tiling generating function of the semi-hexagon Sx((ai)

m
i=1; (bj)

n
j=1), and similarly for Sy((ai)

m
i=1; (bj)

n
j=1).

Identity (17) now follows directly from Lemma 2.7 in this case.
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Figure 11: Obtaining a recurrence for tiling generating functions of the semi-hexagons with dents on two sides.

For the induction step, we assume that m,n, t are all positive and that (17) holds for any pair of semi-
hexagons whose p-statistic is strictly less than m+ 2n+ t.

By the tile-ability of the semi-hexagons in Lemma 2.1, at least one of a1 and b1 is strictly greater than 1.
Without loss of generality, we assume that a1 > 1. If b1 = 1, then one can remove forced lozenges on the top
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of the two semi-hexagons to get two “smaller”‖ semi-hexagons of the same type. Then (17) follows from the
induction hypothesis. Therefore, we can also assume that b1 > 1.

When a1, b1 > 1, we will show that the expressions on both sides of (17) satisfy the same recurrence. Then
the theorem follows from the induction principle.

Assume that l is the largest index such that there is no a-dent at the position al − 1 on the left side of
S. We consider the region R obtained by filling the dents at the positions al and b1 in S (see Figure 10 for
an example when l = 3). We apply Kuo condensation in Lemma 2.5 to the dual graph G of R with the four
vertices u, v, w, s corresponding to the shaded unit triangles of the same label. More precisely, the u-triangle
is the up-pointing triangle on the upper-left corner of S, the v-triangle is at the position b1, the w-triangle is
at the last non-dent position on the right side of S, and the s-triangle is at the position al. Let α denote the
position of the w-triangle.

We consider the region corresponding to graph G−{u,w} (as shown in Figure 11(a)). The removal of the u-
and w-triangles yields forced lozenges (with weight 1) on the top of the region. Removal of these forced lozenges
gives a new semi-hexagon, namely Sx+1((a− al)∗; (b− b1 +α)∗). Here, we use the notations a− c and a + d for
the sequences obtained from a = (ai)

m
i=1 by excluding the term c and by including the term d (and rearranging

in increasing order), respectively. We also use the notation a∗ for the sequence obtained from sequence a by
subtracting 1 from each of its terms. By the correspondence between tilings and perfect matchings, we get

M(G− {u,w}) = T(Sx+1((a− al)∗; (b− b1 + α)∗)).

x

x+m

2m

(e)

(a) (b)
x

x+m

2m

x

x+m

2m

x

x+m

2m

(c) (d)

x+m

2m

x

a4

a3

a2

a1

a2

a3

a4

a5

a6

a1

a4

a5

a1

a1

a2

a3

a4

a5

a6

a2

a3

a4

a5

a6

a1

a2

a3

a6

a4

a6

Figure 12: Several special cases in the proof of Theorem 1.3: (a) the case a1 = 1, (b) the case t = 0, (c) the
case a1 = 2, (d) the case t = 1 (i.e., am = 2m and am−1 ≤ 2m− 2), and (e) the case t = m.

Working similarly based on Figures 11(b)–(f), we get

M(G− {v, s}) = T(Sx(a; b)), M(G− {u, v}) = T(Sx+1((a− al)∗; b∗)),

M(G− {u, s}) = T(Sx+1(a∗; (b− b1)∗)), M(G− {v, s}) = T(Sx(a− al; b + α)).

‖In the rest of this proof, we say that the semi-hexagon A is smaller than the semi-hexagon B if the p-statistic of A is less than
that of B.
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Plugging these six equations into the equation in Lemma 2.5, we get the recurrence:

T(Sx+1((a− al)∗; (b− b1 + α)∗) T(Sx(a; b)) = T(Sx+1((a− al)∗; b∗)) T(Sx(a; b− b1 + α))

+ T(Sx+1(a∗; (b− b1)∗)) T(Sx(a− al; b + α)). (18)

One could verify that the p-statistics of these five semi-hexagons are all strictly less than m+ 2n+ t, which
is the p-statistic of S.

To complete the proof, we want to show that the expression fx,y(a; b) · T(Sy(a; b)) on the right-hand side
of (17) also satisfies the same recurrence. Equivalently, we need to verify that

A · T(Sy+1((a− al)∗; (b− b1 + α)∗) T(Sy(a; b)) = B · T(Sy+1((a− al)∗; b∗)) T(Sy(a; b− b1 + α))

+ C · T(Sy+1(a∗; (b− b1)∗)) T(Sy(a− al; b + α)), (19)

where A = fx+1,y+1((a − al)∗; (b − b1 + α)∗) · fx,y(a; b), B = fx+1,y+1((a − al)∗; b∗) · fx,y(a; b − b1 + α), and
C = fx+1,y+1(a∗; (b− b1)∗) · fx,y(a− al; b + α).

It is routine to verify that A = B = C. Canceling out A,B,C terms, we now only need to verify that

T(Sy+1((a− al)∗; (b− b1 + α)∗) T(Sy(a; b)) = T(Sy+1((a− al)∗; b∗)) T(Sy(a; b− b1 + α))

+ T(Sy+1(a∗; (b− b1)∗)) T(Sy(a− al; b + α)). (20)

However, this recurrence follows directly from recurrence (18) by simply replacing x with y. This finishes our
proof.

One could prove Theorem 1.2 in the same way as Theorem 1.1, using Lemma 2.8. We leave this proof as an
exercise to the reader. We now prove Theorem 1.3.

t

2
m

-t

x

x+m

u

s

w

v

a4

a1

a3

a6

a5

a2

Figure 13: How to apply Kuo condensation to the quartered hexagon.

Proof of Theorem 1.3. By Lemma 2.2, the region Qx = Qx(a) has a tiling if and only if the region Qy = Qy(a)
has a tiling, where a = (ai)

m
i=1.

Next, we assume that Qx is tile-able. We reformulate our identity (5) as

T(Qx((ai)
m
i=1)) = gx,y((ai)

m
i=1) · T(Qy((ai)

m
i=1)), (21)

where gx,y((ai)
m
i=1) is the express on the right-hand side of (5).

Let t be the size of the maximal cluster of dents attaching to the lower-right corner of the region Qx. We
prove (21) by induction on the statistic h := 2m− t, the base cases are the situations when m = 0, 1 and t = m.

If m = 0, then our identity simply becomes “1 = 1.” If m = 1, then there are only two cases a = (a1) = (1)
or (2). If a1 = 1, then both Qx((a1)) and Qy((a1)) has tiling generating function 1, and our identity is obviously
true. If a1 = 2, then our region is exactly the halved hexagon Px,1, and (21) follows from Lemma 2.9.

If t = m, then all of the dents are clustering to the lower-right corner of the region. Then our region, after
removed forced lozenges, becomes a halved hexagon Px,m in Lemma 2.9 (see Figure 12(e)). Again, (21) follows
from Lemma 2.9.

For the induction step, we assume that m ≥ 2 and t < m, and that identity (21) holds for any pair of
quartered hexagons whose h-statistics are strictly less than 2m− t.

First, we will show below that one could assume that a1 ≥ 3 and t ≥ 2. Indeed, if a1 = 1, then a2 ≥ 3
by the tile-ability in Lemma 2.2. Then we get forced lozenges along the first and second rows of unit triangles
in Qx (see Figure 12(a)). After removing these forced lozenges (whose weights are all 1), we get a ‘smaller’∗∗

∗∗Similar to the case of dented semi-hexagons, we say a quartered hexagon is “smaller” than another quartered hexagon if its
h-statistic is less than that of the latter one.
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Figure 14: Obtaining a recurrence for the tiling generating functions of the quartered hexagons.

quartered hexagon with the same tiling generating function. We can do similarly for Qy, and (21) follows from
the induction hypothesis. We do similarly for the case t = 0 (illustrated in Figure 12(b)).

If a1 = 2, then we can apply the Region-splitting Lemma 2.6 to split the region Qx into two smaller quartered
hexagons as in Figure 12(c). (The cut is at level 2 from the top of Qx; the top portion is shaded.) Do similarly
for Qy, and (21) follows from the Region-splitting Lemma 2.6 and the induction hypothesis. We do similarly
for the case t = 1 (see Figure 12(d)).

When a1 ≥ 3 and t ≥ 2, we will use Kuo condensation in Lemma 2.4 to show that the expressions on both
sides of (21) satisfy the same recurrence.

We apply Kuo condensation in Lemma 2.4 to the dual graph G of R, the region obtained from Qx by
filling the top dent, with the four vertices u, v, w, s corresponding to the shaded unit triangles in Figure 13. In
particular, the v-triangle is the up-pointing triangle at the position a1, and the w-triangle is at the last non-dent
position β on the right side of R. Similar to the proof of Theorem 1.1, Figure 14 tells us that

T(Qx(a)) T(Qx+1(((ai)
m−2
i=2 + β)∗∗) = T(Qx+1((ai)

m
i=2)∗∗) T(Qx((ai)

m−2
i=1 + β))

+ T(Qx((ai)
m
i=2 + β)) T(Qx+1(((ai)

m−2
i=1 )∗∗), (22)

where we use the notation s∗∗ for the sequence obtained by subtracting 2 from each term of s .
To finish the proof, we need to show that the expression gx,y(a) · T(Qy((ai)

m
i=1)) on the right-hand side of

(21) also satisfies recurrence (22) above. Equivalently, we need to verify that

A′ · T(Qy(a)) T(Qy+1(((ai)
m−2
i=2 + β)∗∗) = B′ · T(Qy+1((ai)

m
i=2)∗∗) T(Qy((ai)

m−2
i=1 + β))

+ C ′ · T(Qy((ai)
m
i=2 + β)) T(Qy+1(((ai)

m−2
i=1 )∗∗), (23)

where A′ = gx,y(a) · gx+1,y+1(((ai)
m−2
i=2 + β)∗∗), B′ = gx+1,y+1((ai)

m
i=2)∗∗) · gx,y(((ai)

m−2
i=1 + β), and C ′ =

gx,y((ai)
m
i=2 + β) · gx+1,y+1(((ai)

m−2
i=1 )∗∗).

By definition, one could routinely verify that A′ = B′ = C ′. Then (23) reduces to

T(Qy(a)) T(Qy+1(((ai)
m−2
i=2 + β)∗∗) = T(Qy+1((ai)

m
i=2)∗∗) T(Qy((ai)

m−2
i=1 + β))

+ T(Qy((ai)
m
i=1 + β)) T(Qy+1(((ai)

m−2
i=1 )∗∗). (24)
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However, this recurrence follows immediately from recurrence (22) by replacing x with y. This finishes our
proof.

Theorem 1.4 can be proved in the same manner as Theorem 1.3, using Lemma 2.10. Even though the
lozenges are weighted differently in Theorems 1.3 and 1.4, the Kuo condensation works essentially the same as
the forced lozenges all have weight 1. We omit the proof of Theorem 1.4 here.

4. Appendix: Proofs of Lemmas 2.7–2.10

We first show briefly here the proof of Lemma 2.7. The proof of Lemma 2.8 is essentially the same.
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Figure 15: How to apply Kuo condensation to the semi-hexagon with dents on the base.
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Figure 16: Obtaining recurrence for tiling generating functions of the semi-hexagons with dents on the base.

Proof of Lemma 2.7. We define t = b − l, where l is the size of the maximal dent cluster attaching to the
lower-right corner of the semi-hexagon S = Sa,b(s), where s = (si)

b
i=1. We prove the lemma by induction on

a+ b+ t. One could easily verify the base cases when at least one of a, b, t is equal to 0.
For the induction step, we assume that a, b, t > 0 and that the lemma holds for any semi-hexagons whose

sum of a-, b-, and t-parameters is strictly less than a + b + t. It is easy to see that we can assume s1 = 1 and
sb = a+ b. Otherwise, one can remove forced lozenges from S to obtain a smaller region of the same type, and
the lemma follows from the induction hypothesis.

Assume that sk is the first dent position so that there is no dent on the right of its (in particular, sk+1 >
sk + 1). We consider the region R obtained from S by filling the sk-dent. R has one more up-pointing triangles
than down-pointing triangles. We apply Kuo condensation in Lemma 2.4 to the dual graph G of R with the
four vertices u, v, w, s as shown in Figure 15. In particular, the v-triangle is at the position of α = sk, and the
w-triangle is at the position β = sb−t+1−1 on the base. Considering the removal of forced lozenges as in Figure
16, we get the following recurrence

T(Sa,b(s)) T(Sa,b−1((si)
b−1
i=1 − α+ β)) = T(Sa+1,b−1(s− α)) T(Sa−1,b((si)

b−1
i=1 + β))

+ T(Sa,b(s− α+ β)) T(Sa,b−1((si)
b−1
i=1 )). (25)

(The weights of forced lozenges cancel out.) Then the lemma follows from the induction principle.

Next, we show the proof of Lemma 2.9 (Lemma 2.10 can be proved in the same manner).
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Figure 17: Obtaining recurrence for tiling generating functions of halved hexagons.

Proof of Lemma 2.9. We prove by induction on x+ n. The base cases are the situations x = 0 and n ≤ 1.
When x = 0, the region Px,n has only one tiling consisting of vertical lozenges; when n = 0, the region

is degenerated. It is easy to verify our identity in these cases. If n = 1, then our region becomes a hexagon
of side-lengths x, 1, 1, x, 1, 1. It is easy to see that the hexagon has exactly x + 1 tilings; each consists of one
vertical lozenge, x left lozenges, and x right lozenges. One could calculate the tilling generating function and
easily verify the identity in this case.

When x > 0 and n > 1 , we apply Kuo condensation in Lemma 2.3 to the dual graph G of the halved
hexagon Px,n, as shown in Figure 17. We get the following recurrence:

T(Px,n) T(Px,n−2) =

(
q2x+n + q−2x−n

2

)
T(Px,n−1) T(Px,n−1) + T(Px+1,n−2) T(Px−1,n). (26)

The factor q2x+n+q−2x−n

2 comes from the weight of the rightmost vertical lozenge in Px,n; the weights of all other
forced lozenges cancel out. Then the lemma follows from the induction principle.
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