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Abstract: We explore the notion of degree of asymmetry for integer sequences and related combinatorial
objects. The degree of asymmetry is a new combinatorial statistic that measures how far an object is from
being symmetric. We define this notion for compositions, words, matchings, binary trees, and permutations, we
find generating functions enumerating these objects with respect to their degree of asymmetry, and we describe
the limiting distribution of this statistic in each case.

Keywords: Asymmetry; Binary tree; Composition; Matching; Symmetry; Word

2020 Mathematics Subject Classification: 05A15; 05A05; 05A19

1. Introduction

It is common in mathematics to study objects that are invariant under certain symmetries. Examples of such
objects in combinatorics include self-conjugate partitions [15, Prop. 1.8.4], symmetric plane partitions [11, 16],
symmetric planar maps [1], centrally symmetric dissections of a polygon [14], palindromic compositions [10],
symmetric lattice paths [3], involutions, and centrosymmetric permutations.

To interpolate between the set of all objects and the subset of symmetric ones, it is natural to introduce
the notion of degree of asymmetry, which is a measure of how asymmetric the object is, i.e., how far it is from
being invariant under the symmetry operation. In particular, symmetric objects are those having degree of
asymmetry equal to 0. To the best of our knowledge, the notion of the degree of asymmetry is new. It has some
similarities to other statistics studied in the literature, such as the number of centered tunnels in Dyck paths
(introduced in [4, 6, 7]) or the number of transpositions of a permutation.

In this paper, we study the degree of asymmetry of integer sequences, including compositions and words
(Section 2), binary words with the same number of zeros and ones (Section 3), and other related combinatorial
objects such as binary trees (Section 4), matchings (Section 5) and permutations (Section 6). We provide
generating functions for these objects with a variable t that marks their degree of asymmetry so that the
specialization t = 0 enumerates in each case the subclass of symmetric objects. We use singularity analysis
of bivariate generating functions to determine the limiting distribution of the degree of asymmetry on these
objects. For compositions and words, the resulting distributions are asymptotically normal, whereas in the
case of binary trees and matchings we obtain convergence to discrete limit laws. For binary words with the
same number of zeros and ones, we find a bijection that proves a surprising connection between statistics that
relate to the degree of symmetry and statistics that count pattern occurrences. This work is complemented by
a concurrent paper by the first author [5], which focuses on a similar notion of symmetry for lattice paths and
partitions.

2. Compositions and words

Let S = (a1, a2, . . . , am) be a finite sequence. We define the degree of asymmetry of S to be the number of pairs
of symmetrically positioned distinct entries, and denote it by da(S). Specifically,

da(S) = |{i : 1 ≤ i ≤ m/2 : ai 6= am+1−i}| .
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For example, if S = (2, 5, 1, 3, 2), then da(S) = 1. By definition, da(S) = 0 if and only if S is palindromic, that
is, equal to its reversal.

2.1 Compositions

A sequence of positive integers (a1, a2, . . . , am), where m ≥ 0 and a1 +a2 + · · ·+am = n, is called a composition
of n with m parts. Let K(t, x, z) be the generating function for compositions where t marks the degree of
asymmetry, x marks the number of parts, and z marks the sum of its parts.

Proposition 2.1.

K(t, x, z) =
(1− z + xz)(1− z2)

(1− z)(1− (1 + x2)z2)− 2tx2z3
.

Proof. The generating function K = K(t, x, z) satisfies

K = 1 + x
∑
i≥1

zi + tx2
∑
i,j≥1

zi+jK + (1− t)x2
∑
i≥1

z2iK,

where the summands correspond to the empty word, a word i of length 1, a word of length at least 2 starting
with i and ending with j, and the corresponding correction for words where i = j, which should be weighted
by t. It follows that

K = 1 +
xz

1− z
+
tx2z2K

(1− z)2
+

(1− t)x2z2K
1− z2

.

Solving for K gives the stated expression.

More generally, one can consider compositions whose parts belong to a (finite or infinite) set R, and let
R(z) =

∑
r∈R z

r. Let KR(t, x, z) be the generating function for such compositions with respect to the degree
of asymmetry.

Proposition 2.2.

KR(t, x, z) =
1 + xR(z)

1− x2R(z2)− tx2 (R(z)2 −R(z2))
.

Proof. We claim that the generating function KR = KR(t, x, z) satisfies

KR = 1 + xR(z) + x2R(z2)KR + tx2(R(z)2 −R(z2))KR.

Indeed, x2R(z2)KR is the generating function for compositions with at least 2 parts where the first and the last
entry are the same, and tx2(R(z)2 −R(z2))KR(t, z) counts compositions where the first and the last entry are
different. Solving for KR gives the stated expression.

As expected, the substitution t = 1 gives KR(1, x, z) = 1/(1− xR(z)), the generating function for composi-
tions with parts in R. The substitution t = 0 gives

KR(0, x, z) =
1 + xR(z)

1− x2R(z2)
,

which is the generating function for palindromic compositions with parts in R. This generating function has
been obtained by Hoggatt and Bicknell [10, Thms. 1.1 and 1.2].

Next, we analyze the generating function

K(t, z) := K(t, 1, z) =
1− z2

(1− z)(1− 2z2)− 2tz3
(1)

from Proposition 2.1 in order to describe the asymptotic behavior of the degree of asymmetry of compositions.
If Xn is the random variable that gives the degree of asymmetry of a uniformly random composition of n, then

P(Xn = k) =
[tkzn]K(t, z)

[zn]K(1, z)
. (2)

Denote by Kt and Ktt the first and second partial derivatives of K(t, z) with respect to t, respectively, and let
[zn]f(z) denote the coefficient of zn in a formal power series f(z). It is well known that the expected value and
the variance of Xn are given by

EXn =
[zn]Kt(1, z)

[zn]K(1, z)
and VXn =

[zn]Ktt(1, z) + [zn]Kt(1, z)

[zn]K(1, z)
−
(

[zn]Kt(1, z)

[zn]K(1, z)

)2

, (3)

respectively.
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Corollary 2.1. The sequence of random variables Xn, giving the degree of asymmetry of a uniformly random
composition of n, converges to a normal distribution with expected value and variance given by

EXn =
n

6
+O(1), VXn =

5n

108
+O(1).

Proof. With K(t, z) given by equation (1), we can compute easily the expectation and variance using equa-
tion (3), and the fact that [zn]K(1, z) = 2n−1 for n ≥ 1,

[zn]Kt(1, z) =

(
n

12
− 1

18

)
2n − 4

9
(−1)n

for n ≥ 2, and

[zn]Ktt(1, z) =

(
n2

72
− 17n

216
+

2

27

)
2n +

16n− 56

27
(−1)n

for n ≥ 3.
Convergence to a normal distribution follows from [9, Thm. IX.9] or [2, Thm. 1], noting that for t in a

neighborhood of 1, the singularity of K(t, z) closest to the origin is a simple pole at z = ρ(t), where ρ(1) = 1,
ρ′(1) = −1/12, and ρ′′(1) = 2/27.

It is well known [9, Prop. III.4] that the expected number of parts of a random composition of n is (n+1)/2,
and that the distribution is concentrated around this mean. The value of EXn given in Corollary 2.1 tells us
that, of the roughly n/4 pairs of symmetrically positioned entries in a typical composition of n (for large n), an
average of about 2/3 consists of distinct entries, contributing to the degree of asymmetry, while the remaining
1/3 consist of equal entries.

We end this subsection by suggesting a possible extension of our results.

Problem 2.1. For fixed ` ≥ 2, find the distribution of the degree of asymmetry on compositions where each
part appears at most ` times.

2.2 Words

Words over an m-ary alphabet can be viewed as compositions with parts in {1, 2, . . . ,m}. The difference now
is that the size function of a word is defined to be its length, i.e., its number of entries, rather than the sum of
its entries. Setting R(z) = z1 + z2 + · · ·+ zm and z = 1 in Proposition 2.2, we obtain the following result.

Corollary 2.2. The generating function for m-ary words with respect to the degree of asymmetry is

Wm(t, x) =
1 +mx

1−mx2 −m(m− 1)tx2
.

We derive that the number of m-ary words of length n with degree of asymmetry k is

[tkxn]Wm(t, x) = mdn/2e
(
bn/2c
k

)
(m− 1)k.

Thus, the random variable Xn, giving the degree of asymmetry of a uniformly random m-ary word of length n,
follows a binomial distribution with parameters

⌊
n
2

⌋
and 1− 1

m . In particular,

EXn =

(
1− 1

m

)⌊n
2

⌋
, VXn =

1

m

(
1− 1

m

)⌊n
2

⌋
, (4)

and the limiting distribution is again normal.

3. Restricted binary words

Next, we consider words over a binary alphabet {0, 1} with the additional restriction that the number of zeros
equals the number of ones. Let Gn be the set of words consisting of n zeros and n ones. Clearly, |Gn| =

(
2n
n

)
,

and ∑
n≥0

|Gn|xn =
1√

1− 4x
.
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3.1 The degree of asymmetry over Gn
Let [n] = {1, 2, . . . , n}. As in Section 2, define the degree of asymmetry of w = w1w2 . . . w2n ∈ Gn as

da(w) = |{i ∈ [n] : wi 6= w2n+1−i}| , (5)

i.e., the number of symmetrically positioned pairs of entries where one is a 0 and the other is a 1. Let G(t, x) =∑
n≥0

∑
w∈Gn t

da(w)xn be the corresponding generating function.

Theorem 3.1.

G(t, x) =
1√

1− 4tx+ 4(t2 − 1)x2
.

Proof. It is possible to prove this formula by using the bijection from [5] between Gn and so-called bicolored
grand Motzkin paths, which can be shown to send the degree of asymmetry to the number of horizontal steps,
and then enumerating such paths by the number of horizontal steps.

However, here we give a different, self-contained proof. For w ∈ Gn and a binary length-2 word ab, let

oab(w) = |{i ∈ [n] : w2i−1w2i = ab}| ,

that is, the number of occurrences of the consecutive subword ab starting at an odd position. Applying the
transformation

Z : Gn → Gn
w1w2 . . . w2n 7→ w1w2nw2w2n−1 . . . wnwn+1,

(6)

which reads w in zig-zag, the statistic da becomes the statistic o10 + o01.
To find an expression for

G(t, x) =
∑
n≥0

∑
w∈Gn

to10(w)+o01(w)xn,

we decompose words w ∈ Gn uniquely as follows. Each pair w2i−1w2i, for i ∈ [n], must be one of 00, 01, 10 or
11. The substring of w consisting of pairs w2i−1w2i ∈ {00, 11} (we call these twin pairs) can be viewed itself as
a word in Gm, for some m ≤ n/2, where each letter has been doubled, i.e., each 0 has been replaced with 00
and each 1 with 11. This substring contributes

1√
1− 4x2

(7)

to the generating function G(t, x). Between each twin pair and the next, and also to the left of the first twin
pair and to the right of the last one, w contains (possibly empty) sequences of pairs 01 and 10 (we call these
non-twin pairs). Each such sequence contributes 1

1−2tx to the generating function. Inserting these sequences
after each twin pair corresponds to replacing x with x

1−2tx in equation (7), and inserting a sequence before the

first twin pair creates an extra factor 1
1−2tx . It follows that

G(t, x) =
1

1− 2tx

1√
1− 4

(
x

1− 2tx

)2
=

1√
(1− 2tx)2 − 4x2

,

which simplifies to the expression stated above.

The argument in the above proof also yields the more general multivariate generating function:∑
n≥0

∑
w∈Gn

x
o00(w)
00 x

o11(w)
11 x

o10(w)
10 x

o01(w)
01 =

1√
(1− x10 − x01)2 − 4x00x11

. (8)

Another consequence of the proof of Theorem 3.1 is a closed formula for the number of words in Gn with
degree of asymmetry k. Assuming that n− k is even (since otherwise, the number of such words is 0), we have

|{w ∈ Gn : da(w) = k}| = |{w ∈ Gn : o10(w) + o01(w) = k}| =
(
n

k

)(
n− k
n−k
2

)
2k.

Indeed, words w ∈ Gn with o10(w)+o01(w) = k consist of n−k twin pairs and k non-twin pairs. We can choose
the positions of the non-twin pairs in

(
n
k

)
ways, decide whether each such pair is a 10 or a 01 in 2k ways, and

finally choose the substring of twin pairs –which consists of a word in Gn−k
2

where each letter is doubled– in(n−k
n−k

2

)
ways.

ECA 2:1 (2022) Article #S2R7 4



Sergi Elizalde and Emeric Deutsch

Corollary 3.1. The sequence of random variables Xn giving the degree of asymmetry of a uniformly random
word in Gn converges to a normal distribution with expected value and variance given by

EXn =
n

2
+O(1), VXn =

n

4
+O(1).

Proof. Factoring the denominator in Theorem 3.1, we can write

G(t, x) =
1√

(1− 2(t− 1)x)(1− 2(t+ 1)x)
.

In a neighborhood of t = 1, the singularity closest to the origin is at x = ρ(t) = 1
2(t+1) . Applying [9, Thm.

IX.12] and letting f(t) = ρ(1)/ρ(t) = (t+ 1)/2, it follows that Xn converges to a normal distribution with mean
f ′(1)n+O(1) = n/2+O(1) and variance (f ′′(1)+f ′(1)−f ′(1)2)n+O(1) = n/4+O(1). The mean and variance
can also be computed directly as in equation (3).

Comparing Corollary 3.1 with equation (4) for m = 2, we see that the asymptotic behavior of the degree of
asymmetry on words in Gn is the same as on binary words of length 2n without restrictions.

Words in Gn can be interpreted as grand Dyck paths, by replacing 0 and 1 with steps U = (1, 1) and
D = (1,−1), respectively. With this interpretation, one could consider a different concept of symmetry, where
the height of symmetrically positioned steps in the grand Dyck path is taken into account. This notion is studied
in [5], along with the degree of symmetry of other lattice paths. It is interesting to compare the normal limit
law in Corollary 3.1 with the analogous distribution for this other notion of symmetry, which in [5] is shown to
converge to a Rayleigh distribution with mean

√
πn/2.

In a slightly different direction, one can ask the following question.

Problem 3.1. Find the distribution of da, as defined in equation (5), on the set of Dyck words, namely, words
in Gn where every prefix contains at least as many 0s as 1s.

This restriction makes the problem more challenging, and we do not expect the formulas to be as simple as
in the case of Gn.

3.2 A surprising connection to patterns

Another statistic on Gn that is closely related to da is the number of symmetrically positioned pairs of zeros.
Specifically, for w ∈ Gn, let

s0(w) = |{i ∈ [n] : wi = w2n+1−i = 0}| .

For w ∈ Gn, we have
da(w) + 2s0(w) = n, (9)

since each pair of symmetrically positioned entries wiw2n+1−i must be one of 01, 10, 00 or 11. The number of
pairs 01 and 10 is counted by the statistic da(w), while the number of pairs 00, which must equal the number
of pairs 11 since w has the same number of zeros and ones, is counted by s0(w). An equivalent perspective
is obtained by applying the zigzag tranformation Z from equation (6), which maps s0 into the statistic o00
counting occurrences of the consecutive subword 00 in odd positions. It follows that∑

n≥0

∑
w∈Gn

us0(w)xn =
∑
n≥0

∑
w∈Gn

uo00(w)xn =
1√

1− 4x+ 4(1− u)x2
, (10)

where the last equality is obtained by setting x00 = ux and x11 = x10 = x01 = x in equation (8), or alternatively
by using equation (9) and noting that the substitution G(u−1/2, u1/2x) in Theorem 3.1 yields the right-hand
side of equation (10). The coefficients of this generating function appear as table A051288 in [13].

Interestingly, there is a third, seemingly unrelated statistic on Gn that also has the same distribution. For
w ∈ Gn, let #001(w) denote the number of occurrences of the consecutive subword 001 in w. Occurrences will
always refer to consecutive subwords even if not stated explicitly.

Theorem 3.2. For all n, k,

|{w ∈ Gn : s0(w) = k}| = |{w ∈ Gn : o00(w) = k}| = |{w ∈ Gn : #001(w) = k}|.

Proof. By equation (10), it is enough to show that the generating function for words in Gn where the variable
u marks the number of occurrences of 001 coincides with the right-hand-side of this equation.

Let us first compute the generating function for words in Gn where an arbitrary subset of the occurrences of
001 have been selected, or marked. Formally, we are enumerating pairs (w, S), where w ∈ Gn and S is a subset
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of the occurrences of 001 in w. We introduce a variable v that keeps track of |S|, that is, the number of marked
occurrences of 001. This can be done by starting with the generating function 1√

1−4yx for words in Gn with a

variable y keeping track of occurrences of 0, and then making the substitution y = 1 + vx to allow each 0 in
the word to either remain unchanged or be replaced with a marked occurrence of 001. Thus, the generating
function for pairs (w, S), with a variable v that keeps track of |S|, is

1√
1− 4x− 4vx2

. (11)

Finally, in order to obtain the generating function for words in Gn with a variable u that keeps track of all
occurrences of 001, we make the substitution v = u − 1 in equation (11). The reason for this substitution is
that, if T is the set of all occurrences of 001 in a given word w, then∑

S⊆T

v|S| = (v + 1)|T |, and so
∑
S⊆T

(u− 1)|S| = u|T |.

This substitution gives ∑
n≥0

∑
w∈Gn

u#001(w)xn =
1√

1− 4x+ 4(1− u)x2
.

3.3 A bijective proof of Theorem 3.2

The above proof of Theorem 3.2 is relatively clean, but not bijective. In fact, the methods used to obtain the
generating functions with respect to the statistics o00 and #011 are quite different from each other, and so there
is no clear way to turn our proof into a bijective one.

In this subsection, we present another proof of Theorem 3.2 by providing an explicit bijection that maps the
number of occurrences of 00 in odd positions to the number of occurrences of 001. As a bonus property, it also
maps the number of zeros in odd positions (we denote this statistic by o0(w)) to the number of occurrences of
01. Our bijection appears to be new, and it is not based on the above generating function argument. Note that
the equidistribution of the statistics s0 and o00 already has a bijective proof via the map Z from equation (6).

Theorem 3.3. There is an explicit bijection φ : Gn → Gn such that, if w ∈ Gn and w′ = φ(w), then

o00(w) = #001(φ(w)) and o0(w) = #01(φ(w)).

Proof. It will be convenient to describe the map φ : Gn → Gn by passing through an intermediate set, denoted
by Ωn, which consists of all 4-tuples (Q,R, S, T ) of pairwise disjoint (possibly empty) subsets of [n] such that
Q ∪R ∪ S ∪ T = [n] and |Q| = |R|.

To each w ∈ Gn, we associate (Q,R, S, T ) ∈ Ωn as follows. For i ∈ [n], place i in Q, R, S or T according
to whether the pair w2i−1w2i equals 00, 11, 01, or 10, respectively. This map is clearly a bijection between Gn
and Ωn. Additionally, if we let k = o00(w), then |Q| = |R| = k.

Now write the elements of Q as q1 < q2 < · · · < qk, and the elements of R as r1 < r2 < · · · < rk. Set r0 = 0
and rk+1 = n+ 1, and let dj = |{i ∈ T : rj−1 < i < rj} for all j ∈ [k + 1]. Finally, define

φ(w) = µ11µ21 . . . µn1µn+1,

where µqj = 02+dj for all j ∈ [k], µn+1 = 0dk+1 , µi = 0 for all i ∈ S, and µi is empty for all i ∈ R ∪ T .
The resulting word φ(w) is in Gn, since its number of zeros is

(2 + d1) + (2 + d2) + · · ·+ (2 + dk) + dk+1 + |S| = 2k + |T |+ |S| = |Q|+ |R|+ |T |+ |S| = n.

The number of occurrences of 001 in φ(w) is precisely |Q| = k = o00(w). Additionally, the number of occurrences
of 01 in φ(w) equals |Q|+ |S|, which is the number of indices i ∈ [n] such that w2i−1 = 0, namely o0(w).

To see that φ is a bijection, let us show how to reconstruct the 4-tuple (Q,R, S, T ) ∈ Ωn given a word
µ11µ21 . . . µn1µn+1 ∈ Gn. For i ∈ [n], clearly i ∈ S if and only if µi = 0, and i ∈ Q if and only if µi has length
at least 2. The lengths of the words µi for i ∈ Q can be used to recover the sequence dj , which then determines
how to place the elements of [n] \ (Q ∪ S) into the two disjoint subsets R and T .

Example 3.1. If w = 01 11 00 00 10 11 01 10 11 00 01 ∈ G11, then Q = {3, 4, 10}, R = {2, 6, 9}, S = {1, 7, 11},
and T = {5, 8}. We have d1 = 0, d2 = 1, d3 = 1, d4 = 0, and so µ3 = 00, µ4 = 000, and µ10 = 000. Thus,

φ(w) = 0 1 1 00 1 000 1 1 1 0 1 1 1 000 1 0 1.

This example is illustrated in Figure 1.
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S R Q Q T R S T R Q S

d1 = 0 d2 = 1 d3 = 1 d4 = 0

2 + d1

2 + d2

2 + d3

Figure 1: An illustration of the bijection φ from Theorem 3.3 applied to the word w from Example 3.1. Zeros
and ones in w are represented with up and down steps in the top path. Zeros and ones in φ(w) are represented
by north and east steps in the bottom path.

We conclude this section with a simple formula for the cardinality of the sets in Theorem 3.2. Compare this
with the cumbersome triple-summation formula that appears in [12, Cor. 3.3] for the number of words in Gn
with a given number of occurrences of 001.

Corollary 3.2. The number of words in Gn with k occurrences of 001 equals(
n

2k

)(
2k

k

)
2n−2k.

The number of words in Gn with k occurrences of 001 and ` occurrences of 01 equals(
n

2k

)(
2k

k

)(
n− 2k

`− k

)
=

n!

k!2(`− k)!(n− k − `)!
.

Proof. By Theorem 3.3, the first problem is equivalent to counting 4-tuples (Q,R, S, T ) ∈ Ωn with |Q| = |R| = k
(or equivalently, words w ∈ Gn with o00(w) = k). There are

(
n
2k

)
ways to choose the elements in Q ∪ R,

(
2k
k

)
ways to separate them into two sets Q and R, and 2n−2k ways to place the remaining n− 2k elements into S or
T . If, additionally, we require |S| = `− k, then the number of ways to choose the elements in S is

(
n−2k
`−k

)
.

By Theorem 3.3, the generating function for words in Gn with variables u and v keeping track of the number
of occurrences of 001 and 01, respectively, is obtained by setting x10 = x, x01 = vx, x00 = uvx, x11 = x in
equation (8): ∑

n≥0

∑
w∈Gn

u#001(w)v#01(w)xn =
∑
n≥0

∑
w∈Gn

uo00(w)vo0(w)xn =
1√

(1− x− vx)2 − 4uvx2
.
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4. Binary trees

A binary tree is a rooted tree where each node has at most two children, referred to as the left child and the
right child. It is well known that the number of binary trees with n nodes is the nth Catalan number, and so
the generating function for binary trees where x marks the number of nodes is

C(x) =
1−
√

1− 4x

2x
. (12)

The position of each node in a binary tree T can be specified by the word over {L,R} that describes the
sequence of left and right children in the path from the root to that node. We call this word the address of
the node and define its complement to be the word obtained by switching Ls with Rs. We say that two nodes
in T are mirror images if their addresses are complements of each other. Define the degree of asymmetry of a
binary tree, denoted by da(T ), to be the number of nodes that do not mirror images of any node in the tree.
See Figure 2 for an example.

Figure 2: A binary tree T with da(T ) = 5. The 5 nodes without mirror images are circled in red.

Let B(t, x) be the ordinary generating function for binary trees where t marks the degree of asymmetry.

Theorem 4.1.

B(t, x) = 1 +

1−
√

1 + 4x
(
x− 1−

√
1−4tx
t

)
2x

.

Proof. Let D(t, x) be the generating function for pairs of binary trees, where x marks the total number of nodes,
and t marks the number of nodes on either tree for which there is no node in the other tree with the same
address; let us call these unique nodes.

To find an equation for D(t, x), consider three possibilities for a pair of trees: both trees are empty, one tree
is empty but the other is not, or both trees are non-empty. When one tree is empty but the other is not, the
latter one contributes a term C(tx)− 1, since all of its nodes are unique. When both trees are non-empty, they
contribute x2D(t, x)2, since the left subtrees of the two roots form themselves a pair of binary trees where the
variable t marks the number of unique nodes, and so do the right subtrees of the two roots. It follows that

D(t, x) = 1 + 2(C(tx)− 1) + x2D(t, x)2,

and solving for D(t, x) we get

D(t, x) =
1−

√
1 + 4x2(1− 2C(tx))

2x2
. (13)

Next we relate B(t, x) and D(t, x). Given a non-empty binary tree, consider the pair of trees consisting of
the left subtree of the root and the reflection (over a vertical line) of the right subtree of the root. Pairs of
nodes that were mirror images in the original tree become pairs of nodes with the same address in the resulting
pair of trees. Thus, the degree of asymmetry of the original tree equals the number of unique nodes in the
resulting pair of trees. It follows that B(t, x) = 1 + xD(t, x). Using equations (13) and (12), we obtain the
stated expression for B(t, x).

By construction, B(1, x) = C(x). While this is not immediately clear from the expression in Theorem 4.1,
it can be checked using the identity√

1− 4x+ 4x2 + 4x
√

1− 4tx =

√
(2x+

√
1− 4x)2 = 2x+

√
1− 4x.
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On the other hand, setting t = 0 in B(t, x), we obtain the generating function for symmetric binary trees

B(0, x) = 1 +
1−
√

1− 4x2

2x
= 1 + xC(x2).

To study the asymptotic behavior of the degree of asymmetry, we will consider a complementary statistic,
namely the number of pairs of nodes (not counting the root) that are mirror images of each other. This statistic,
which we call the degree of symmetry, has a more natural limiting distribution, as we will see next. If T is a
binary tree with n nodes and ds(T ) denotes its degree of symmetry, then 2 ds(T )+da(T )+1 = n. Let B(s, x) be
the generating function for binary trees where the variable s marks the degree of symmetry. A slight modification
of the proof of Theorem 4.1 shows that B(s, x) = 1 + xD(s, x), where D(s, x) = 1 + 2(C(x)− 1) + sx2D(s, x)2,
from where

B(s, x) = 1 +
1−

√
1− 4sx

(
1− x−

√
1− 4x

)
2sx

. (14)

When s = 0, we get
B(0, x) = 1− x+ 2xC(x) = 2− x−

√
1− 4x,

whose coefficients for n ≥ 2 are doubled Catalan numbers. Indeed, binary trees T with ds(T ) = 0 are those
where one of the two subtrees of the root is empty.

Corollary 4.1. The sequence of random variables Xn, giving the degree of symmetry of a uniformly random
binary tree with n nodes, converges to a discrete limit law with

lim
n→∞

P(Xn = k) =
1

2

(
2k

k

)(
3

16

)k
(15)

for all k ≥ 0. Expected value and variance are given by

EXn =
3

2
+ o(1), VXn = 6 + o(1).

Proof. We can write equation (14) as

B(s, x) = 1 +
1 + F (s, x)

2sx
, where F (s, x) = −

√
1− 4sx

(
1− x−

√
1− 4x

)
.

This has the advantage that the generating function F (s, x) can be expressed as a composition F (s, x) =
g(sh(x)), where

g(x) = −
√

1− 4x and h(x) = x
(
1− x−

√
1− 4x

)
;

therefore it is amenable to the singularity analysis techniques in [9, Chapter IX].
The radii of convergence of g and h are ρg = ρh = 1/4. Letting τh = h(ρh) = 3/16, we have τh < ρg, which

corresponds to the subcritical composition case , and so we can apply [9, Prop. IX.1] to obtain the discrete limit
law. Specifically, for fixed k ≥ 1,

lim
n→∞

[skxn]F (s, x)

[xn]F (1, x)
=
kτk−1h [xk]g(x)

g′(τh)
=

1

2

(
2k − 2

k − 1

)(
3

16

)k−1
.

from where equation (15) follows, noting that

P(Xn = k) =
[skxn]B(s, x)

[xn]B(1, x)
=

[sk+1xn+1]F (s, x)

[xn+1]F (1, x)

for n ≥ 1.
The mean and variance can now easily be computed from equation (15), or directly from B(s, x) as in

equation (3).

5. Matchings

Let Mn denote the set of perfect matchings (which we will call simply matchings for short) of [2n]. It is well
known that

|Mn| = (2n− 1)!! = (2n− 1) · (2n− 3) · · · · · 3 · 1 =
(2n)!

2nn!
,
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1 2 3 4 5 6 7 8 9 10 11 12

Figure 3: The matching M = {{1, 4}, {2, 9}, {3, 7}, {5, 8}, {6, 10}, {11, 12}} ∈ M12 has one centered arc (blue,
solid), one pair of coupled arcs (green, dashed), and three asymmetric arcs (red, dotted).

and so the exponential generating function (EGF) for matchings is∑
n≥0

|Mn|
xn

n!
=
∑
n≥0

(2n)!

2nn!

xn

n!
=
∑
n≥0

(
2n

n

)
xn

2n
=

1√
1− 2x

.

Matchings are often drawn by placing 2n vertices on a line, labeled 1, 2, . . . , 2n from left to right, and placing
an arc connecting each pair of matched vertices. See Figure 3 for an example.

For a subset A ⊆ [n], let A = {2n+ 1− i : i ∈ A}. In a matching M ∈ Mn, each arc {i, j} ∈M (that is, a
pair of matched vertices) is of one of three types:

• centered, if j = 2n+ 1− i (that is, {i, j} = {i, j});

• coupled, if it is not centered but {i, j} ∈M (in this case, we call {i, j} and {i, j} a pair of coupled arcs);

• asymmetric, if it is neither centered nor coupled.

We define the degree of asymmetry of M ∈ Mn, denoted by da(M), to be the number of asymmetric arcs
that it contains. Similarly, denote by c(M) the number of centered arcs, and by p(M) the number of pairs of
coupled arcs in M . Note that

c(M) + 2p(M) + da(M) = n. (16)

For example, the matching in Figure 3 has c(M) = 1, p(M) = 1, and da(M) = 3.

Theorem 5.1. The EGF for matchings with respect to the number of centered arcs, the number of pairs of
coupled arcs, and the degree of asymmetry, is

H(r, s, t, x) =
∑
n≥0

∑
M∈Mn

rc(M)sp(M)tda(M)x
n

n!
=
e(r−t)x+(s−t2)x2

√
1− 2tx

.

Proof. The EGF for matchings all of whose arcs are centered is ex, whereas the EGF for matchings all of whose
arcs are coupled is ex

2

. More generally, the EGF for matchings all of whose arcs are centered or coupled, with
variables u and v keeping track of the number of centered and the number of pairs of coupled arcs, respectively,
is eux+vx

2

. Indeed, such matchings on 2n vertices are equivalent to set partitions of [n] into blocks of size one
(marked by u) and two (marked by v).

Next, we consider matchings in Mn where an arbitrary subset of the centered arcs and an arbitrary subset
of the pairs of coupled arcs have been marked, using a similar technique as in our first proof of Theorem 3.2.
We denote the set of such marked matchings by M∗n. Formally, M∗n is the set of triples (M,S1, S2) where
M ∈ Mn, S1 is a subset of centered arcs of M , and S2 is a subset of pairs of coupled arcs of M . The EGF for
marked matchings is

H∗(u, v, x) =
∑
n≥0

∑
(M,S1,S2)∈M∗

n

u|S1|v|S2|x
n

n!
=

eux+vx
2

√
1− 2x

.

Indeed, marked matchings are obtained by partitioning [n] into three (possibly empty) sets, say [n] = A0tA1t
A2, placing an arbitrary matching with no marked arcs on the vertices A0 ∪ A0, a matching consisting of only
centered arcs on the vertices A1 ∪A1, and a matching consisting of only coupled arcs on the vertices A2 ∪A2.

Using again the fact that, for any finite set T ,∑
S⊆T

u|S| = (u+ 1)|T |, and so
∑
S⊆T

(t− 1)|S| = t|T |,

it follows that the EGF for matchings with respect to the statistics c and p is

H(r, s, 1, x) =
∑
n≥0

∑
M∈Mn

rc(M)sp(M)x
n

n!
= H∗(r − 1, s− 1, x) =

e(r−1)x+(s−1)x2

√
1− 2x

. (17)
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Finally, using equation (16), we deduce that

H(r, s, t, x) = H(r/t, s/t2, 1, tx) =
e(r−t)x+(s−t2)x2

√
1− 2tx

.

Some specializations of the formula in Theorem 5.1 are known. For example, H(1, 1, 0, x) = ex+x
2

is the
EGF for symmetric matchings, that is, those that are fixed by the transformation i 7→ 2n+ 1− i applied to the
elements of [2n]. Its coefficients give sequence A047974 in [13]. Similarly, the specialization

H(0, 1, 1, x) =
e−x√
1− 2x

is the EGF for matchings with no centered arcs. Its coefficients give sequence A053871 in [13].
Other specializations do not appear in [13] yet. For example,

H(0, 0, 1, x) =
e−x−x

2

√
1− 2x

is the EGF for completely asymmetric matchings, that is, those containing no centered or coupled arcs. The
first terms of the sequence starting at n = 1 are 0, 0, 8, 48, 384, 4480, 59520, 897792, 15368192. Similarly,

H(1, 0, 1, x) =
e−x

2

√
1− 2x

is the EGF for matchings with no coupled arcs. The first terms of the sequence starting at n = 1 are 1, 1, 9,
81, 705, 7665, 100905, 1524705, 26022465.

Next, we describe the asymptotic behavior of the number of arcs of each type. Because of equation (16), it
is sufficient to focus on the statistics c and p, whose distributions converge to very natural discrete laws.

Corollary 5.1. Let Xn and Yn be sequences of random variables giving the number of centered arcs and the
number of pairs of coupled arcs, respectively, in a uniformly random matching in Mn. Then Xn converges to a
Poisson law with parameter λ = 1/2, and Yn converges to a Poisson law with parameter λ = 1/4, i.e.

lim
n→∞

P(Xn = k) =
e−

1
2

2kk!
and lim

n→∞
P(Yn = `) =

e−
1
4

4``!

for all k, ` ≥ 0. In addition, Xn and Yn are asymptotically independent, in the sense that

lim
n→∞

P(Xn = k, Yn = `) =
e−

3
4

2k4`k!`!
.

Proof. To compute these probabilities, we extract the relevant coefficients of the EGF in Theorem 5.1, and
then determine their behavior as n → ∞ using standard singularity analysis [9, Thm. VI.1], noting that the
dominant singularity is at x = 1/2:

[rkxn]H(r, 1, 1, x) = [xn]
e−x√
1− 2x

xk

k!
∼ e−

1
2

2kk!

2n√
πn

.

Dividing by

[xn]H(1, 1, 1, x) = [xn]
1√

1− 2x
∼ 2n√

πn

and using equation (2), which also applies to exponential generating functions, we obtain the stated expression
for limn→∞ P(Xn = k).

Similarly, the expression for limn→∞ P(Yn = `) follows from the fact that

[s`xn]H(1, s, 1, x) = [xn]
e−x

2

√
1− 2x

x2`

`!
∼ e−

1
4

4``!

2n√
πn

.

Finally, the joint distribution is obtained by computing

[rks`xn]H(r, s, 1, x) = [xn]
e−x−x

2

√
1− 2x

xk

k!

x2`

`!
∼ e−

3
4

2k4`k!`!

2n√
πn

and using that

P(Xn = k, Yn = `) =
[rks`xn]H(r, s, 1, x)

[xn]H(1, 1, 1, x)
.
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6. Permutations

One way to measure symmetry in a permutation π ∈ Sn is by considering how close the configuration of dots
in coordinates (i, π(i)), for i ∈ [n], is to be symmetric with respect to the diagonal. Under this measure, it is
natural to define the degree of asymmetry of a permutation as the number of dots whose reflection along the
diagonal does not match another dot, that is,

da(π) :=
∣∣{i : π(i) 6= π−1(i)}

∣∣ .
Note that da(π) equals the number of elements in [n] that do not belong to 1-cycles or 2-cycles of π. Using

the standard decomposition of permutations as products of disjoint cycles (see e.g. [9, Ex. II.12]), and denoting
by cm(π) the number of m-cycles of π, we obtain the EGF

P (r, s, t, x) =
∑
n≥0

∑
π∈Sn

rc1(π)sc2(π)tda(π)
xn

n!
=
e(r−t)x+(s−t2)x2/2

1− tx
.

The specialization P (1, 1, 0, x) = ex+x
2/2 is the EGF for involutions [13, A000085], which are those permu-

tations that are symmetric according to our definition. On the other hand, the specialization

P (0, 0, 1, x) =
e−x−x

2/2

1− x

is the EGF for permutations with no 1-cycles or 2-cycles [13, A038205], that is, permutations that are completely
asymmetric.

It is well known that, for any fixed m ≥ 1, the number of m-cycles in a uniformly random permutation in
Sn converges to a Poisson law with parameter λ = 1/m [9, Example IX.4]. Additionally, as in the proof of
Corollary 5.1, the distributions of these statistics for different values of m are asymptotically independent.

7. A problem regarding unimodal compositions

In Section 2.1, we found the generating function for compositions with respect to the degree of asymmetry. Let us
consider a variant of this problem by restricting to unimodal compositions, namely, compositions (a1, a2, . . . , am)
for which there exists i such that

a1 ≤ a2 ≤ · · · ≤ ai ≥ ai+1 ≥ · · · ≥ am. (18)

Problem 7.1. Find the generating function U(t, z) for unimodal compositions where t marks the degree of
asymmetry and z marks the sum of the parts.

Let us show that the specializations U(1, z) and U(0, z) are easy to obtain, and their coefficients give
sequences A001523 and A096441 in [13], respectively. Recall that a partition is a weakly decreasing composition,
and that the generating function for partitions with parts of size less than k, where z marks the sum of the
parts, is

k−1∏
i=1

1

1− zi
. (19)

It follows that the generating function for unimodal compositions is

U(1, z) =
∑
k≥1

zk

1− zk

(
k−1∏
i=1

1

1− zi

)2

.

Indeed, let k be the largest part of a unimodal composition. The factor zk

1−zk accounts for copies of k, of which
there is at least one. To the left (respectively, right) of k there is a weakly increasing (respectively, decreasing)
sequence of entries less than k; equivalently, a partition with parts of size less than k, contributing a factor as
in (19). It is also possible, as shown in [15, Cor. 2.5.3], to give the following product formula for U(1, z) using
a sieve process:

U(1, z) =

∑
k≥1

(−1)k−1z(
k+1
2 )

∏
k≥1

(1− xk)−2.
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A similar argument can be used to count unimodal compositions with degree of asymmetry equal to 0, that
is, palindromic unimodal compositions:

U(0, z) =
∑
k≥1

zk

1− zk
k−1∏
i=1

1

1− z2i
.

In this case, the weakly increasing piece to the left of the largest part has to be a mirror image of the weakly
decreasing piece to the right, and so these two pieces correspond to the same partition with parts of size less
than k.

We can obtain another expression for U(0, z) by describing a bijection between palindromic unimodal com-
positions and partitions where all the parts are odd or all the parts are even. Given a palindromic unimodal
composition a = (a1, a2, . . . , am), construct a partition λ by letting λi = |{j : aj ≥ i}|. If m is even (odd),
then λi is even (odd) for all i, because a is palindromic and unimodal. Additionally, given a partition λ where
all parts are odd or all parts are even, we can recover a as follows: start with the composition aj = 0 for all
1 ≤ j ≤ m. For each part λi, add 1 to aj if j is one of the λi most central indices, that is, those closest to
(m+ 1)/2. It follows that

U(0, z) =
∏
j≥1

1

1− z2j
+
∏
j≥1

1

1− z2j−1
− 2.

As a variation of Problem 7.1, one can consider unimodal compositions with the additional restriction that
their maximum lies in the middle, that is, those satisfying equation (18) with i = (k + 1)/2 when k is odd,
and with i ∈ {k/2, k/2 + 1} when k is even. A different version of this question, where the size of composition
is defined to be the largest part plus the number of parts (equivalently, the semiperimeter of the associated
unimodal bargraph), is addressed in [5].
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