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Abstract: A permutation σ = σ1 · · ·σn ∈ Sn is called a cylindrical king permutation if |σi+1−σi| > 1 for each
1 ≤ i ≤ n− 1 and |σ1 − σn| > 1. The name comes from the way one can see these permutations as describing
locations of n kings on a chessboard of order n× n in such a way that

• Each row and each column contains exactly one king.

• No two kings are attacking each other.

• A king can move off a certain row and reappear at the beginning of that row.

We present some results regarding the distribution of the cylindrical king permutations, including some
interesting recursions. We also show that asymptotically, almost all the ‘king’ permutations are cylindrical king
permutations, where a ‘king’ is a permutation that satisfies the first two of the three conditions above.

In the second part of this article, we investigate the poset of the cylindrical king permutations with respect
to containment and its structure. We examine those cylindrical king permutations whose downset is as large
as possible in the upper ranks. We use a modification of Manhattan distance of the plot of a permutation and
some of its applications to the cylindrical context to find a criterion for such a permutation to be k-prolific.
One of our main results is that for every two cylindrical king permutations, π ∈ Sk and σ ∈ Sm such that σ
covers π in the sub-poset of cylindrical king permutations one has m− k ≤ 4.
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1. Introduction

In a recent paper [5], we dealt with the set of king permutations which is the set of permutations π = π1 · · ·πn ∈
Sn such that for each 1 < i ≤ n, |πi − πi−1| > 1. The inspiration was Hertzsprung’s problem [16], dealing
with the number of ways to arrange n non-attacking chess kings on an n×n chessboard such that each column
and each row contains exactly one chess king. There is a tight connection between the chess problem and the
symmetric group Sn. If we consider a permutation π = π1 · · ·πn ∈ Sn in a geometrical way as its plot, i.e.,
the set of all lattice points of the form (i, πi) where 1 ≤ i ≤ n, the problem of finding all the ways to arrange
n non-attacking chess kings is equivalent to the problem of finding all king permutations π ∈ Sn. This set is
counted in OEIS A002464 [16].

Let Kn be the set of all such permutations in Sn. For example, K1 = S1, K2 = K3 = ∅, and K4 =
{3142, 2413}. An explicit formula for the number of king permutations was given by Robbins [15]. He also
showed that when n → ∞, the probability of picking such a permutation from Sn approaches e−2. A nice
generalization of the king problem is the dinner table problem, see for example [3] and [18].

A natural question is to extend Hertzsprung’s problem to a celebrated variant of the chess game, namely
the cylindrical chess, in which the right and left edges of the board are imagined to be joined in such a way
that a piece can move off one edge and reappear at the opposite edge, moving in the same line [12].

Definition 1.1. Let CKn be defined as

CKn = {π = π1 · · ·πn ∈ Sn : |πi − πi+1| > 1, |π1 − πn| > 1, 1 ≤ i ≤ n− 1}.

An element of CKn will be called a cylindrical king.
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For example, CK1 = S1, CK2 = CK3 = CK4 = ∅ and

CK5 = {31425, 14253, 42531, 25314, 53142, 24135, 41352, 13524, 35241, 52413}.

Note that each cylindrical king can also be seen as a directed Hamiltonian path (in the complement of the
n-cycle graph). The sets CKn are counted by the sequence A002493 of OEIS [17]. The first 9 elements are
1, 0, 0, 0, 10, 60, 462, 3920, 36954. They were counted by Abramson and Moser in [1]. See also some enumerations
pertaining to this set in page 627 of [13]. We present some results regarding the distribution of the cylindrical
king permutations, including some interesting recursions. We also show that asymptotically, almost all the
‘king’ permutations are cylindrical king permutations.

In the second part of this article, we investigate the poset of the cylindrical king permutations with respect
to containment and its structure. We examine those cylindrical king permutations whose downset is as large
as possible in the upper ranks. We use a modification of Manhattan distance of the plot of a permutation and
some of its applications to the cylindrical context to find a criterion for such a permutation to be k-prolific.
One of our main results is that for every two cylindrical king permutations, π ∈ Sk and σ ∈ Sm such that σ
covers π in the sub-poset of cylindrical king permutations one has m− k ≤ 4.

2. General definitions and main results

2.1 Bonds and cyclic bonds

In order to facilitate our counting of cylindrical king permutations we define a new concept: the cyclic bond,
which extends the known concept of a bond appeared in [10,11].

A bond in a permutation π ∈ Sn is a length 2 consecutive sub-sequence of adjacent numbers (i.e. interval
of order 2 [6]). Note that a king permutation is a permutation without bonds. This point of view can be used
also to describe the set of cylindrical king permutations, provided that we slightly modify the definition of the
bond in order to obtain what we call in this paper a cyclic bond.

Definition 2.1. Let π = π1 · · ·πn ∈ Sn and let i ∈ [n− 1]. We say that the pair (πi, πi+1) is a (regular) bond
in π if πi−πi+1 = ±1. If πn−π1 = ±1 then we may say that the pair (πn, π1) is an edge bond of σ. In general,
adopting the convention that πn+1 = π1, we say that (πi, πi+1) is a cyclic bond if it is a regular or an edge bond.

Example 2.1. In π = 41325 there are 2 cyclic bonds. The regular bond (3,2) and the edge bond (5,4).

According to this new definition, a permutation is a cylindrical king if and only if it has no cyclic bonds. This
type of modification from regular to cyclic parameters has been used also in the case of the descent parameter.
See for example [8, 14].

Aside from its role in identifying the cylindrical king permutations, the definition of cyclic bonds leads to
some interesting counting results by itself. For each π ∈ Sn we denote by bnd(π) the number of regular bonds
in π and by cbnd(π) the number of cyclic bonds in π.

Definition 2.1. Let B0(t) = CB0(t) = 1 and for n ≥ 1:

Bn(t) =
∑
π∈Sn

tbnd(π),

and
CBn(t) =

∑
π∈Sn

tcbnd(π).

A simple calculation shows that B1(t) = CB1(t) = 1, B2(t) = 2t, CB2(t) = 2t2, B3(t) = 2t2 + 4t and
CB3(t) = 6t2. Note that we chose to consider the permutations of S2 as having 2 cyclic bonds each.

In Section 3 we present some results regarding the counting of cyclic bonds and their effect on the structure
of the cylindrical king permutations. First we present some relations between the distribution of the number of
regular bonds and the distribution of the number of cyclic bonds (Theorem 3.1 ) for n ≥ 2:

CBn+1(t) = (n+ 1)Bn(t) + 2(n+ 1)

n∑
i=1

(t− 1)iBn−i(t),

where the initial conditions are as in Definition 2.1 .
We also have (Theorem 3.2) for n ≥ 1:

Bn(t) = CBn(t) +
1

n
(1− t)CB′n(t).
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2.2 Asymptotic results

The results listed above have an impact on the structure of the cylindrical king permutations and thus they
enable us to connect the number of king permutations to the number of cylindrical king permutations (Corollary

3.1): For n ≥ 2, |CKn+1| = (n+ 1)|Kn|+ 2(n+ 1)
n∑
i=1

(−1)i|Kn−i| while |K0| = 1.

Section 4 exhibits a recursion connecting the sizes of the sets of cylindrical kings and non-cylindrical king
permutations, using a combinatorial proof (Theorem 4.1):

|An| = 2|Kn−1|+ |An−2|, where An = Kn \ CKn.

This enables us to calculate the asymptotic ratio of the set of cylindrical king permutations in the entire set
of the king permutations (Theorem 4.1):

The asymptotic value of |CKn|/|Kn| is equal to 1.

2.3 The distribution of cylindrical king permutations

In Section 5 we calculate the distribution of cylindrical king permutations, using the distribution of cyclic bonds
(Theorem 5.1 and Theorem 5.2).

2.4 Prolific cyclic king permutations

From a geometric point of view, we can recognize king permutations, as well as cylindrical king permutations,
by considering the distances between the points of their plots. The Manhattan or taxicab distance is defined as
follows.

Definition 2.2. Let σ ∈ Sn and let i, j ∈ [n]. The (Manhattan) distance between the i − th and the j − th
entries is defined to be the L1 distance between the corresponding points in the plot of σ:

dσ(i, j) = ||(i, σi)− (j, σj)||1 = |i− j|+ |σi − σj |.

In [2, 7], the concept of breadth of a permutation σ ∈ Sn is defined to be the minimal distance between any
two distinct entries of σ. Explicitly:

br(σ) = mini,j∈[n],i6=jdσ(i, j).

Example 2.2. For σ = 5371426 we have dσ(2, 5) = 4, dσ(1, 4) = 7, dσ(1, 2) = 3 and its breadth is br(σ) = 3

In order to characterize cylindrical king permutations in a similar way, we modify in Section 6 the concepts
of (Manhattan) distance and breadth to cyclic (Manhattan) distance and cyclic breadth respectively.

For a permutation σ ∈ Sn and 1 ≤ k ≤ n − 1, the maximal possible number of distinct permutations
π ∈ Sn−k which are contained in σ is

(
n
k

)
. Indeed, such a permutation π, is obtained from σ by deletion of

k entries from the one-line notation of σ. Following [2], our interest is in those permutations σ ∈ CKn which
contain maximally many patterns π ∈ CKn−k.

We are interested in characterizing the cylindrical king permutations which contain a maximal number of
distinct cylindrical king patterns. To this aim, we use and modify the following concept of k-prolific permutation
which was defined in [2]:

Definition 2.3. A permutation σ ∈ Sn is called k-prolific if |{π ∈ Sn−k|π ≺ σ}| =
(
n
k

)
.

In other words, a permutation σ = σ1 · · ·σn is k-prolific if each (n− k)-subset of entries of σ forms a unique
pattern in Sn−k. It is known (see [5]) that σ ∈ Sn is 1-prolific if and only if σ is a king permutation, and this
happens exactly when br(σ) ≥ 3.

In Section 6 we first prove that omitting a single entry from a permutation may decrease the cyclic breadth
by at most one, and that for σ ∈ CKn, there are n distinct permutations σ′ ∈ CKn−1 such that σ′ ≺ σ if and
only if the cyclic breadth of σ is greater than 3 (see Proposition 6.1 and Proposition 6.2 respectively). Then,
using these propositions and our modification to the concept of k-prolific, we get generalizations of Theorem
2.25 in [2] to king permutations and cylindrical king permutations respectively:

1. A permutation σ is k-prolific in Kn if and only if its breadth is greater than or equal to k + 3. (see
Theorem 6.1).

2. A permutation σ is k-prolific in CKn if and only if its cyclic breadth is greater or equal to k + 3. (see
Theorem 6.2).
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2.5 The poset structure

Another aspect of cylindrical king permutations is the structure of their poset. For σ ∈ Sn and π ∈ Sk, (k < n),
we say that σ contains π if there is a sub-sequence of (the one line notation of) σ that is order-isomorphic to
that of π. If this is the case, we write π ≺ σ. In this study we are interested in the sub-poset CK =

⋃
n≥1

CKn

of the poset S =
⋃
n≥1

Sn with respect to the containment relation.

Here is an example of the downset of the cylindrical king permutation 5246173 in CK:

1

41352 52413

524163524613

5246173

In Section 7 we investigate the structure of the poset of cylindrical king permutations. That section is a
direct continuation of our previous paper [5], which discusses the structure of the poset of king permutations.
Since the set of cylindrical king permutations is a distinguished subset of the set of king permutations, we
examine which properties of the poset of the cylindrical king permutations have inherited from the kings poset
and which features are different. We identify the building blocks of the poset of cylindrical king permutations:

• For every σ ∈ CKn (n ≥ 5) there is some π ∈ CK5 such that π � σ (see Theorem 7.1).

Another result is that if σ ∈ CKn covers π ∈ CKm in the poset CK, then n−m ≤ 4:

• Let σ ∈ CKm and π ∈ CKk be such that π ≺ σ and m − k > 4. Then there is some τ ∈ CK such that
π ≺ τ ≺ σ (see Theorem 7.2).

2.6 General definitions

Throughout this paper, we will make use of the following definitions.

Definition 2.4. For σ ∈ Sn and 1 ≤ i ≤ n let ∇∗i (σ) be the permutation in Sn−1 obtained from σ by omitting
the value i and relabeling the rest of the values by the set {1, . . . , n − 1} in an order preserving way (this is
usually called standardization).

Occasionally we use the term “omitting the element i from σ” instead of the notation ∇∗i (σ).

The following definition is inspired by definition 3 in [11].

Definition 2.5. For σ ∈ Sn, 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ n+ 1 let ∆i(σ, j) be the permutation τ ∈ Sn+1 obtained
from σ by adding the value i− 1

2 before place j and relabeling the rest of the values by the set {1, . . . , n, n+ 1}
in an order preserving way.

Occasionally we use the term “adding the element i in the j-th place of sigma” instead of the notation
∆i(σ, j).

For example if σ = 31425 then ∇∗2(σ) = 2134 and ∇∗3(σ) = 1324, ∆4(σ, 2) = 341526 and ∆1(σ, 6) = 425361.

3. Cyclic bonds and their effect on cylindrical king per-
mutations

3.1 The number of regular bonds vs. the number of cyclic bonds

Recall that for each π ∈ Sn we denote by bnd(π) the number of regular bonds in π and by cbnd(π) the number
of cyclic bonds in π.

Let Cn be the cyclic sub-group of Sn, generated by the cycle ω = (12 · · ·n). Note that the parameter cbnd
is invariant under the right action of Cn (left cyclic shift of the one-line notation of π). Explicitly:

cbnd(π) = cbnd(πωi) for 1 ≤ i ≤ n− 1. (1)

ECA 2:4 (2022) Article #S4PP5 4



Eli Bagno, Estrella Eisenberg, Shulamit Reches, and Moriah Sigron

Example 3.1. For n = 4 one can easily see that if π = 2134 then πω = 1342, πω2 = 3421 and πω3 = 4213.
All of them have exactly 2 cyclic bonds.

In order to count the permutations in Sn+1 with exactly k cyclic bonds, we count only those permutations
whose last element is n+ 1, and multiply by n+ 1. Formally,

|{π ∈ Sn+1 : cbnd(π) = k}| = (n+ 1)|{π ∈ Sn+1 : cbnd(π) = k and πn+1 = n+ 1}| (2)

Consider a permutation π ∈ Sn+1 such that πn+1 = n+1, and define π′ ∈ Sn such that π′i = πi for 1 ≤ i ≤ n.
Then we have:

cbnd(π) =

{
bnd(π′) + 1 if π′n = n or π′1 = n

bnd(π′) otherwise.
(3)

Now, we discuss the connection between the distributions of bonds and cyclic bonds (using Definition 2.1).
For n ≥ 2 let

B1
n(t) =

∑
π∈Sn,π1=n

tbnd(π)

and
Bnn(t) =

∑
π∈Sn,πn=n

tbnd(π).

If we denote
CBnn(t) =

∑
π∈Sn,πn=n

tcbnd(π)

then according to (2) we have:
CBn+1(t) = (n+ 1)CBn+1

n+1(t). (4)

Then we have by (3) for n ≥ 2 :

CBn+1
n+1(t) = (Bn(t)−B1

n(t)−Bnn(t)) + t(B1
n(t) +Bnn(t)). (5)

Indeed B1
n(t) = Bnn(t) and thus

CBn+1
n+1(t) = Bn(t)− 2B1

n(t) + 2tB1
n(t) (6)

and according to (4) and (6):

CBn+1(t) = (n+ 1)[Bn(t)− 2B1
n(t) + 2tB1

n(t)]
= (n+ 1)Bn(t) + 2(n+ 1)(t− 1)B1

n(t).
(7)

In addition for n ≥ 2 :

B1
n(t) = (Bn−1(t)−B1

n−1(t)) + tB1
n−1(t) = Bn−1(t) + (t− 1)B1

n−1(t),

where B1
1(t) = 1. A simple induction will show that for n ≥ 2 :

B1
n(t) =

n∑
i=1

(t− 1)i−1Bn−i(t).

Using (7) we have for n ≥ 2:

CBn+1(t) = (n+ 1)Bn(t) + 2(n+ 1)(t− 1)B1
n(t) = (n+ 1)Bn(t) + 2(n+ 1)(t− 1)

n∑
i=1

(t− 1)i−1Bn−i(t).

According to the above calculations we obtain the following theorem.

Theorem 3.1. Let n ≥ 2. Then

CBn+1(t) = (n+ 1)Bn(t) + 2(n+ 1)

n∑
i=1

(t− 1)iBn−i(t),

where the initial conditions are as in Definition 2.1.

In Theorem 3.1 we expressed the generating function of the cyclic bonds in terms of the regular bonds of
lower levels. The next theorem presents Bn(t) directly in terms of CBn(t) and its derivative.
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Theorem 3.2. Let n ≥ 1. Then we have

Bn(t) = CBn(t) +
1

n
(1− t)CB′n(t).

Proof. Let π ∈ Sn be such that cbnd(π) = k, and denote by [π] the orbit of π under the right action of Cn.
The contribution of [π] to the polynomial CBn(t) is ntk, and thus its contribution to the right hand side is
ntk + (1 − t)ktk−1. In order to complete the proof, we have to find the contribution of [π] to Bn(t). Writing
π = π1 · · ·πn, each representative of its orbit starts with some πi, 1 ≤ i ≤ n. The number of regular bonds in
πiπi+1 · · ·π1 · · ·πi−1 is k − 1 if (πi−1, πi) is a cyclic bond and k otherwise. We conclude that the contribution
of [π] to Bn(t) is exactly ktk−1 + (n− k)tk = ntk + (1− t)ktk−1 as required.

Combining Theorems 3.1, and 3.2, we can create a recursion for the generating function of the cyclic bonds
based only on terms of cyclic bonds only.

Theorem 3.3. Let n ≥ 2. Then

CBn+1(t) = (n+ 1)[CBn(t) + 2

n∑
i=1

(t− 1)iCBn−i(t)] +
n+ 1

n
(1− t)[CB′n(t) + 2

n∑
i=1

(t− 1)iCB′n−i(t)],

where the initial conditions are as in Definition 2.1.

3.2 The number of kings vs. the number of cylindrical king permutations

Recall that a king permutation is actually a permutation without bonds. As a result, we get that |Kn| = Bn(0).
Moreover, a permutation is a cylindrical king if and only if it has no cyclic bonds, thus |CKn| = CBn(0). By
Theorem 3.1, we have the following corollary.

Corollary 3.1. For n ≥ 2,

|CKn+1| = (n+ 1)|Kn|+ 2(n+ 1)

n∑
i=1

(−1)i|Kn−i|

while |K0| = 1.

4. Another recursion and the asymptotic value of |CKn|
|Kn|

In this section, we introduce another recursion connecting the sizes of the sets of cylindrical king permutations
and non-cylindrical king permutations and present a combinatorial proof for this recursion. Eventually, this
will allow us to prove that the proportion of the set of cylindrical king permutations in the entire set of king
permutations is asymptotically 1.

First, define for each n ≥ 1 the set of king permutations which are not cylindrical:

An = Kn \ CKn.

Theorem 4.1. We have the following recursion for each n ≥ 2:

|An| = 2|Kn−1|+ |An−2|.

Proof. The recursion can be verified by brute force for n = 2 and n = 3, then for 4 ≤ n, every permutation
π ∈ An can be written in one of the following forms:

• A0
n : π = k, k + 2, · · · , k − 1, k + 1 or its reverse for 2 ≤ k ≤ n− 2.

• A1
n : π = k, l, . . . , k − 1, k + 1 or its reverse for l 6= k + 2 and 2 ≤ k ≤ n− 1.

• A2
n : π = k, k + 2, . . . ,m, k + 1 or its reverse for m 6= k − 1 and 1 ≤ k ≤ n− 2.

• A3
n : π = k, l, . . . ,m, k + 1 or its reverse where m 6= k − 1, l 6= k + 2 and 1 ≤ k ≤ n− 1.

This is a partition of the set An into the 4 disjoint sets Ain for 0 ≤ i ≤ 3.
Throughout this proof, we use the terms “omitting” and “adding” according to Definitions 2.4 and 2.5.
We define the following maps:
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1. A bijection f0 : A0
n → An−2 which implies that |A0

n| = |An−2|.

2. Two bijections f1 : A1
n → An−1 and f2 : A2

n → An−1 which imply that |A1
n| = |An−1| = |A2

n|.

3. A 2 to 1 mapping f3 : A3
n → CKn−1, which implies that 2|CKn−1| = |A3

n|.

An = A0
n A1

n A2
n A3

n

2Kn−1 +An−2 = An−2 An−1 An−1 2CKn−1

f0 f1 f2 f3

We start by defining a bijection f0 : A0
n → An−2 in the following way: f0(π) = ∇∗k

(
∇∗k+1(π)

)
.

For example, let π = 426153 ∈ A0
6. Then f0(π) = 2413 ∈ A4.

In order to show that f0 is bijective, we present the inverse function. Explicitly, for σ = a− 1 · · · a ∈ An−2
(or σ = a · · · a− 1 ∈ An−2) f0

−1(σ) is obtained from σ by adding the element a sequentially at the two sides of
σ, first to the side of a− 1 and then to the other side.

For example, let σ = 2413. Then we first add 3 to the left of σ to get σ′ = 32514 and then add again 3 to
the right of σ′ to get 426153 ∈ A0

n.
Next, we construct a function f1 : A1

n → An−1 by omitting from π = π1 · · ·πn the element max{π1, πn}.
For example: Let π = 5137246, then f1(π) = 513624.

In a similar way, define f2 : A2
n → An−1 by omitting the element min{π1, πn}. For instance, f2(5724136) =

624135.
Now, we show the inverse of the function f1. First, if σ = a · · · a−1 ∈ An−1, then f−11 (σ) = a, l . . . , a−1, a+

1 ∈ A1
n (note that l 6= a+2 since otherwise σ /∈ An−1). If σ = a−1 · · · a then f−11 (σ) = a+1, a−1, . . . , l, a ∈ A1

n,
(l 6= a+ 2).

Similarly, we show the inverse of f2. First, if σ = a · · · a− 1 ∈ An−1, then f−12 (σ) = a− 1, a+ 1 . . . l, a ∈ A2
n

(note that l 6= a − 2). If σ = a − 1 · · · a then f−12 is obtained by adding a − 1 at the end of σ, i.e. f−12 (σ) =
a, l . . . , a+ 1, a− 1 ∈ A2

n (since l 6= a− 2).
Next, we construct a mapping f3 : A3

n → CKn−1 which is 2 to 1, i.e. each element of CKn−1 will have
exactly two preimages. For π ∈ A3

n, the function f3 omits from π the maximum of its two extreme elements.
For example, let π = 364152 ∈ A3

6. Then f3(π) = 53142 ∈ CK5. Note that we also have that f3(531426) =
53142. In order to see that the function f3 is indeed 2 to 1, we show how to go back from an arbitrary element
of CKn−1 to its two preimages. Let σ = a · · · b ∈ CKn−1, then we have that a 6= b± 1, so we define π to be the
permutation obtained by adding a+ 1 after b and let π′ be the permutation obtained by adding b+ 1 before a.
It is easy to see then that f3(π) = f3(π′) = σ.

From this data we have that

|An| = |A0
n|+ |A1

n|+ |A2
n|+ |A3

n| = |An−2|+ 2|An−1|+ 2|CKn−1| = |An−2|+ 2|Kn−1|.

Using the above theorem we can prove the following conclusion.

Corollary 4.1. The asymptotic value of |CKn|/|Kn| is equal to 1

Proof. By Theorem 4.1 we have that |An| = 2|Kn−1|+ |An−2|.
Thus, |Kn| − |CKn| = 2|Kn−1|+ |Kn−2| − |CKn−2| and we obtain:

|CKn|
|Kn|

= 1− 2|Kn−1|
|Kn|

− |Kn−2|
|Kn|

+
|CKn−2|
|Kn|

. (8)

According to Robbins [15], when n tends to infinity, the probability of picking a king permutation from Sn
approaches e−2. Thus, the asymptotic value of |Kn| is n!e−2 and thus the asymptotic value of |Kn−1|

|Kn| is 1
n → 0

and the asymptotic value of |Kn−2|
|Kn| is 1

n2 → 0. As a result,

0 ≤ |CKn−2|
|Kn|

≤ |Kn−2|
|Kn|

. (9)

Since we know that lim
n→∞

|Kn−2|
|Kn| = 0, we conclude that lim

n→∞
|CKn−2|
|Kn| = 0, and therefore |CKn|

|Kn| → 1

ECA 2:4 (2022) Article #S4PP5 7



Eli Bagno, Estrella Eisenberg, Shulamit Reches, and Moriah Sigron

5. The distribution of cylindrical king permutations

5.1 The distribution of cyclic bonds

In [11], Homberger calculated the distribution of the number of bonds. He used it, inter alia, to evaluate
the number of king permutations, while considering them as permutations without bonds. In this section, we
introduce the distribution of our new concept, the cyclic bonds, and use it to calculate the distribution of the
cylindrical king permutations. In our recent paper [4] the concept of marked permutations is used. Here, we
use again this concept in order to calculate the distribution of the cyclic bonds over Sn. We start with the
following definition.

Definition 5.1. A marked permutation is a permutation π ∈ Sn such that each cyclic bond is either marked
or not. If several consecutive cyclic bonds are marked, then they form a run. An entry that is not marked is
considered to be a run of length 1 (a trivial run). Note that a cyclic run of a permutation might be ascending
or descending.

Note that each marked permutation π ∈ Sn can be presented as a concatenation of runs. In order to identify
the runs of a marked permutation, we put each run between two delimiters. This is done in a cyclic way.
For example, the permutation 83124567 contributes the marked permutation 8|3|12|4567 (which consists of the
three runs: 3, 12, 45678), the marked permutation 8|3|12|4567| (which consists of the four runs: 8, 3, 12, 4567),
as well as the marked permutation 8|3|1|2|4567| (which consists of the five runs: 8, 3, 1, 2, 4567) and many more.
Moreover, a marked permutation π ∈ Sn with m runs can be uniquely characterized by the following data: a
vector containing the lengths of the runs (which is a composition λ of n) and their directions (increasing or
decreasing), a permutation σ ∈ Sm which determines their locations and the number r of places the last run
occupies at the beginning of the permutation π. This idea will be best explained by an example.

Example 5.1. Let π = 2|45|6|1|987|3. We write π as a triple consisting of a ‘directed’ composition of m = 5
parts λ, a permutation σ ∈ S5 and r = 1. First, write π as a sequence of runs: b1 = 1, b2 = 32, b3 = 45, b4 =
6, b5 = 987. Each run contributes its length to the composition. Then for each part, we add the sign ↑ if the
corresponding run is increasing, the sign ↓ if the run is decreasing and no arrow if the run is of length 1. In
our case we get λ = (1, 2 ↓, 2 ↑, 1, 3 ↓). Now, σ ∈ S5 is the permutation induced by the order of the blocks. In
our case, since the block b1 = 1 is located as the third block of π, we get σ(3) = 1, (note that the digit 2 does not
constitute a separate block but a part of the last block 32). Likewise, b2 = 3 is located as the fifth block of π, so
σ(5) = 2 etc. We have: σ = 34152. The marked permutation π is now uniquely defined by the triple (λ, σ, r).
Note that the marked permutation τ = 45|6|1|987|32| has the same data except that now r = 0.

In order to calculate the distribution of the number of cyclic bonds, we count marked permutations and use
the inclusion-exclusion principle to obtain the desired distribution.

The next theorem presents a generating function for the number of cyclic bonds.
For each k, n ≥ 0, we denote

an,k = |{π ∈ Sn | cbnd(π) = k}|.

Furthermore, let

H(z, u) =
∑
n≥1

∑
k≥0

an,kz
nuk

be the generating function of the number of cylic bonds. We have now:

Theorem 5.1.

H(z, u) = 2z2(u− 1)2 +
∑
m≥1

m!zm
(

1 + z(u− 1)

1− z(u− 1)

)m−1
1 + 2z(u− 1)− z2(u− 1)2

1− 2z(u− 1) + z2(u− 1)2
.

Proof. We first calculate the generating function of marked cyclic bonds. Let

F (z, u) =
∑
n≥1

∑
k≥0

fn,kz
nuk

where fn,k is the number of permutations of order n with k marked cyclic bonds. We count the marked
permutations by considering each run separately. Let m be the number of runs in a permutation. There are
m! ways to arrange the runs in each marked permutation. For each such arrangement, we distinguish between
the last run of a permutation and the other runs (if there is only one run then it will be considered the last
one). We start with the first m − 1 runs. Each run of length one contributes z, while each run of length
k ≥ 2 has k − 1 regular bonds and can be increasing or decreasing, so it contributes 2zkuk−1. This gives us
(z + 2z2u+ 2z3u2 + 2z4u3 + . . .)m−1.
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Now we discuss the last run that starts at the end of the permutation and may also emerge at the beginning
of the permutation (like the run 1234 in the permutation 4|67|5|123). If it is of length 1 then it contributes z.
If it has length k ≥ 2 then it has k − 1 cyclic bonds and may be decreasing or increasing. Moreover, its k − r
first digits are placed at the end of the permutation, and the other r digits at the beginning of the permutation
for 0 ≤ r ≤ k − 1. Thus its contribution is 2kzkuk−1. This gives us (z + 2 · 2z2u+ 2 · 3z3u2 + 2 · 4z4u3 + . . .).
This leads to

F (z, u) =
∑
m≥1

m!(z + 2z2u+ 2z3u2 + 2z4u3 + . . .)m−1(z + 4z2u+ 6z3u2 + 8z4u3 + . . .)

=
∑
m≥1

m!zm−1
(1 + zu

1− zu
)m−1

(z +
2z(2zu− (zu)2)

(1− zu)2
)

=
∑
m≥1

m!zm
(1 + zu

1− zu
)m−1 1 + 2zu− z2u2

1− 2zu+ z2u2
.

Now, we can use F (z, u) to obtain H(z, u). Since F (z, u) counts the marked cyclic bonds and H(z, u) counts
every cyclic bond, using the inclusion–exclusion principle it follows that H(z, u) = F (z, u− 1).

Using the above technique, we actually overcount the marked permutations 12 and 21 in F . Explicitly,
1|2|, 2|1|, 12|, 1|2, 21| and 2|1 contribute z2, z2, z2u, z2u, z2u and z2u respectively so that the contribution to
H(z, u) = F (z, u− 1) is 4z2u− 2z2.

On the other hand, according to Definition 2.1, we consider 12 and 21 as having two cyclic bonds each, and
so we expect them to contribute only 2z2u2 to H(z, u). Hence, we have to add 2z2(u− 1)2. Thus:

H(z, u) = 2z2(u− 1)2 +
∑
m≥1

m!zm
(

1 + z(u− 1)

1− z(u− 1)

)m−1
1 + 2z(u− 1)− z2(u− 1)2

1− 2z(u− 1) + z2(u− 1)2
.

5.2 The distribution of cylindrical king permutations

Substituting u = 0 in Theorem 5.1 we can easily find a generating function for cylindrical king permutations,
i.e., a function of the form CK(z) =

∑
n≥1
|CKn|zn.

Theorem 5.2.

CK(z) = 2z2 +
∑
m≥1

m!zm
(

1− z
1 + z

)m−1(
(1− 2z − z2)

(1 + z)2

)
.

Note that the corresponding formula for K(z) is due to Carlitz (see [18] pp. 6–7).

6. Cyclic breadth and k-prolific cylindrical king permu-
tations

We are interested in characterizing the cylindrical king permutations and analyzing some properties of their
downsets in CK. In particular, in this section, we focus on those cylindrical king permutations which contain
as many distinct patterns as possible in the poset CK. There is a close relationship between the breadth of
a permutation and the number of distinct patterns it contains. Moreover, as mentioned above, one way to
identify a king permutation is by verifying that its breadth is greater than or equal to 3. In order to be able
to identify cylindrical king permutations in a similar way, and especially those whose downsets in CK have
maximal size, we modify the definitions of the (Manhattan) distance and the breadth, introducing the cyclic
(Manhattan) distance and the cyclic breadth of a permutation σ ∈ Sn.

Throughout this section we consider a permutation σ = σ1 · · ·σn as if it was located on a circle in such a
way that σ1 occupies the topmost point of the circle (see Figure 1).

Definition 6.1. For 1 ≤ i < j ≤ n, we denote by ((i, j)) the shortest path on the circle leading from i to j. We
also set ||j − i|| = |((i, j))|, i.e. ||j − i|| = min(j − i, n− j + i).

Definition 6.2. Let σ ∈ Sn and let i < j ∈ [n]. Let the cyclic (Manhattan) distance between the i− th and the
j − th entries be defined as:

cdσ(i, j) = |σj − σi|+ ||j − i||.
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The cyclic breadth of σ ∈ Sn is then defined to be:

cbr(σ) = mini,j∈[n],i6=jcdσ(i, j).

Example 6.1. Let σ = 724915836 ∈ S9. Then cdσ(1, 2) = (7 − 2) + ||2 − 1|| = 6, while cdσ(1, 9) = (7 − 6) +
||9− 1|| = 2. The breadth of σ is cbr(σ) = 2

We compare now between the regular (Manhattan) distance and the cyclic (Manhattan) distance as follows:

Observation 6.1. • For each σ ∈ Sn and for each i, j ∈ [n], cdσ(i, j) ≤ dσ(i, j) and so cbr(σ) ≤ br(σ).

• For every i, j ∈ [n], we have dσ(i, j) = dσ−1(σi, σj) and thus br(σ) = br(σ−1) which means that the regular
(Manhattan) breadth is invariant under inversion.

• The cyclic breadth cbr(σ) is not always equal to cbr(σ−1). For example, if σ = 72415836 ∈ S8 then
σ−1 = 42735816, so that cbr(σ) = cdσ(1, 8) = 2 but cbr(σ−1) = cdσ−1(1, 2) = 3.

Using our new definitions, we can identify the cylindrical king permutations as follows.

Observation 6.2. A permutation σ of order n > 1 is a cylindrical king permutation if and only if its cyclic
breadth is greater than or equal to 3.

Omitting a single entry from a permutation σ ∈ Sn (and then standardising) produces a permutation
σ′ ∈ Sn−1 such that σ′ ≺ σ. In Proposition 2.24 of [2], Bevan and Homberger proved a proposition that
partially controls the change in breadth of permutations in Sn: omitting a single entry from a permutation
decreases the breadth by at most one. We now present and prove a proposition that extends the above result,
considering the cyclic breadth rather than the regular breadth. This enables us to characterize the cyclic breadth
of permutations σ′ which are contained in a certain permutation σ.

σ3 = 4

σ2 = 6i = 2

σ1 = 2

σ8 = 7

σ7 = 3 j = 7

σ6 = 8
σ5 = 5

σ4 = 1

Figure 1: σ = 26415837 located on a circle in such a way that σ1 occupies the topmost point of the circle.
cdσ(2, 7) = |6− 3|+ ||7− 2|| = 6 where ||7− 2|| = min{7− 2, 8 + 2− 7}.

Proposition 6.1. Omitting a single entry from a permutation may decrease the cyclic breadth by at most one.

Proof. Let σ ∈ Sn and let 1 ≤ i < j ≤ n be such that without loss of generality σi < σj . Recall that cdσ(i, j)
is composed of the position part ||j − i|| and the value part |σj − σi|. Let σ′ be the permutation obtained from
σ by omitting an element σk for some k /∈ {i, j}. We discuss the effect of omitting σk on each one of the parts
of cdσ(i, j).

Observe that if σk > σj or σk < σi then this omission does not affect the value part of cdσ(i, j). On the
other hand, if σi < σk < σj then, its omission decreases the value part of cdσ(i, j) by 1.
Similarly, the omission of σk affects the position part if and only if k ∈ ((i, j)). In case there is an effect, the
difference is 1.

We conclude, that the omission of σk decreases cdσ(i, j) of σ by 2 if and only if σi < σk < σj and k ∈ ((i, j)),
in all other cases the difference is 0 or 1.

Now, let i < j be such that cbr(σ) = cdσ(i, j). Assume to the contrary that there is k ∈ [n] such that
cbr(σ′) = cbr(σ)−2, where σ′ is obtained from σ by omitting σk. This means that k ∈ ((i, j)) and σi < σk < σj .
We have now:

cbr(σ) ≤ cdσ(i, k) = σk − σi + ||k − i|| < σj − σi + ||j − i|| = cdσ(i, j),

a contradiction.
Finally, we show that for cbr(σ) = cdσ(i, j), an omission of one of the elements σi or σj also decreases the

cyclic breadth by at most one. Without loss of generality let us consider the omission of σj .
Indeed, for every m, l 6= j we have cbr(σ) = cdσ(i, j) ≤ cdσ(m, l). If cdσ(i, j) < cdσ(m, l) then the omission

of σj decreases cdσ(m, l) by at most 2 to a value that is greater or equal to cdσ(i, j)− 1. If cdσ(i, j) = cdσ(m, l)
then cbr(σ) = cdσ(m, l), and due to the previous discussion, the omission of σj decreases cdσ(m, l) by at most
one. Therefore if σ′ is obtained from σ by omitting σj then also cbr(σ′) ≥ cbr(σ)− 1.
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Remark 6.1. Note that omitting an element σk might also increase the breadth of a permutation σ. For
example if σ = 351246 then cbr(σ) = cd(3, 4) = 2. If we omit σ3 = 1, we get σ′ = 24135 with cbr(σ′) = 3.

In [9], Coleman demonstrates that maximizing the distance between every two elements in a permutation
tends to increase the number of distinct sub-permutations (patterns).

The next proposition characterizes the permutations σ ∈ CKn which contain n different patterns σ′ ≺ σ
such that σ′ ∈ CKn−1.

Proposition 6.2. For σ ∈ CKn, there are n distinct permutations σ′ ∈ CKn−1 such that σ′ ≺ σ if and only
if cbr(σ) > 3.

Proof. Let σ ∈ CKn and suppose that there are n distinct permutations σ′ ∈ CKn−1 such that σ′ ≺ σ, which
means that by omitting any entry of σ, we get a cylindrical king permutation. Since σ ∈ CKn, according to
Observation 6.2, cbr(σ) ≥ 3. Assume to the contrary that cbr(σ) = 3, thus there are entries i and j, i < j such
that cbr(σ) = cdσ(i, j) = 3, and hence that ||j − i|| = 1 and |σj − σi| = 2 or vice versa. Assume without loss of
generality that σi < σj .

• If ||j − i|| = 1 and σj − σi = 2 then by omitting the value σi + 1 we get σ′ = ∇∗σi+1(σ) /∈ CKn−1, a
contradiction.

• If ||j − i|| = 2 and σj − σi = 1 then by omitting the value located between σi and σj , σi+1, we get
σ′ = ∇∗σi+1

(σ) /∈ CKn−1, a contradiction.

Now, suppose that cbr(σ) > 3. By corollary 7 of [11], a permutation σ ∈ Sn has maximum number of
patterns σ′ ≺ σ with σ′ ∈ Sn−1, if and only if it has no bonds. The permutation σ ∈ CKn has no bonds as a
cylindrical king, thus there are n distinct permutations σ′ ∈ Sn−1 such that σ′ ≺ σ. We show now that each
one of them is a cylindrical king permutation. According to Proposition 6.1, omitting a single entry from a
permutation may decrease the cyclic breadth by at most one. Thus, each σ′ ∈ Sn−1 such that σ′ ≺ σ satisfies
cbr(σ′) ≥ 3 and by Observation 6.2, σ′ ∈ CKn−1 .

Recall that a permutation σ ∈ Sn is k-prolific if each (n− k)-subset of entries of σ forms a unique pattern.
In other words, σ is k-prolific if it contains the maximal possible number of distinct permutations π ∈ Sn−k
such that π ≺ σ. The breadth of a permutation affects its being k-prolific as shown in Theorem 2.25 in [2]: σ is
k-prolific if and only if br(σ) ≥ k + 2. This idea can be extended to the poset of king permutations as well as
to the poset of cylindrical king permutations. This is the motivation of the following definition.

Definition 6.3. We say that a permutation σ ∈ Kn, (resp. CKn) is k-prolific in Kn, (resp. CKn) if each
(n− k)-subset of the entries of σ = σ1 · · ·σn forms a unique pattern in Kn−k, (resp. CKn−k).

Using the above definition, we prove the following theorem.

Theorem 6.1. A permutation σ is k-prolific in Kn if and only if br(σ) ≥ k + 3.

Proof. Assume to the contrary that σ is k-prolific but br(σ) < k + 3. This means that there are 1 ≤ i, j ≤ n
such that dσ(i, j) < k + 3. For the sake of convenience, we assume that i < j and σi < σj .

Now, let
S = {σm| i < m < j or σi < σm < σj}.

Obviously, |S| ≤ j − i − 1 + σj − σi − 1 so that |S| + 2 ≤ dσ(i, j) < k + 3 and thus |S| ≤ k. Omitting the
elements of S from σ, we get a permutation σ′ ∈ Sn−|s| such that σ′ ≺ σ and σ′ contains a pair u < v such that
dσ′(u, v) = 2, i.e. (σu, σv) is a bond. For example, let σ = 972415836 and let i = 1 and j = 4. Then we have
S = {7, 2, 5, 6, 8} and after omitting the elements of S, we get σ′ = 4312 which indeed has a bond.

Now, if |S| = k, this means that σ′ /∈ Kn−k so that σ can not be k-prolific in Kn. If |S| < k then we can omit
from σ′ a set of k − |S| elements which does not contain the bond mentioned above and get an (n− k)-subset
of the entries of σ which creates a descendant of σ which is not a member of Kn−k, so again σ can not be
k-prolific.

On the other hand, assume that br(σ) ≥ k + 3 and we prove that σ is k-prolific in Kn. First, by Theorem
2.25 of [2], br(σ) ≥ k + 2 if and only if σ is k-prolific in Sn, so that each omission of a k-set from σ yields a
different permutation in Sn−k. To show that each such π ∈ Sn−k is indeed a king permutation, note that by
Proposition 2.24 of [2], omitting a single entry from a permutation may decrease the breadth by at most one.
Thus, omitting each k-set of elements forms a permutation π with br(π) ≥ 3 which implies that π ∈ Kn−k.

The following theorem is the generalization of Theorem 6.1 for the poset of cylindrical king permutations.

Theorem 6.2. A permutation σ is k-prolific in CKn if and only if cbr(σ) ≥ k + 3.
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The proof is almost identical to the proof of Theorem 6.1 except for some necessary changes. Instead of the
set S, we define the set:

Scyclic = {σm|m ∈ ((i, j)) or σi < σm < σj}.

Then we replace the breadth br by its cyclic parallel breadth cbr. At the end of the proof, we use Proposition
6.1 of this article instead of Proposition 2.24 of [2].

7. The structure of the poset of cylindrical king permu-
tation

It is easy to observe that for σ ∈ Sn, and a regular bond (a, a + 1) in σ, either omitting a or omitting a + 1
gives the same permutation. In other words

∇∗a(σ) = ∇∗a+1(σ). (10)

Example 7.1. For σ = 523641, ∇∗2(σ) = ∇∗3(σ) = 42531.

This enables one to count for each permutation σ ∈ Sn, the number of permutations π ∈ Sn−1 such that
π ≺ σ.

Unfortunately, Equation (10) does not hold anymore when we deal with edge bonds. For example, if
σ = 246351, then ∇∗2(σ) = 35241 while ∇∗1(σ) = 13524. In order to overcome this problem, we consider circular
permutations. In order to do that, we define an equivalence relation based on considering each permutation as
if it was written on a circle and not on a line. For example, according to this new view, the permutations 35241
and 13524 are considered identical. We formally address this identification in the next definition.

Definition 7.1. Recall that Cn is the sub-group of Sn generated by the cycle ω = (1 · · ·n). Define an equivalence
relation on Sn by σ ∼ τ if and only if there is some 1 ≤ i ≤ n such that τ = σ ·ωi and let Sn/Cn be the quotient
space. Also, let us denote by orb(σ) the equivalence class of σ.

Example 7.2. Let σ = 23154 ∈ S5. Then

orb(σ) = {23154, 31542, 15423, 54231, 42315}.

We now aim to characterize the permutations that serve as building blocks for the poset of cylindrical king
permutations.

Recall from Equation (1) that, if σ ∼ τ then σ and τ have the same number of cyclic bonds. Therefore,
σ ∈ CKn if and only if τ ∈ CKn.

In the next theorems we use the concept of cyclic separators, the definition of which we give now: In our
recent paper [4], we defined a new concept, called separator. A separator in a permutation σ = σ1 · · ·σn ∈ Sn
is an element σi whose omission forms a new bond. In particular, if σ ∈ Kn is a king permutation, then the
permutation obtained by the omission of σi is a king permutation if and only if σi is not a separator in σ. In
order to characterize the structure of the poset of cylindrical king permutations, we need a cyclic version of that
concept. We start by recalling the definition of the (regular) separator (see Definition 2.1 in [4]).

Definition 7.2. For σ = σ1 · · ·σn ∈ Sn we say that σi = a separates σj1 from σj2 in σ if by omitting the
element a from σ we get a new bond. This happens if and only if one of the following cases holds:

1. j1, i, j2 are subsequent numbers and |σj1 − σj2 | = 1, i.e

σ = . . . , b, a = σi , b ± 1 , . . .

In this case we say that a is a vertical separator.

2. σj1 , σi = a, σj2 is an increasing or decreasing sub sequence of subsequent numbers, and |j1 − j2| = 1, i.e,

σ = . . . , a, . . . , a ± 1 , a ∓ 1 , . . .

or
σ = . . . , a ± 1 , a ∓ 1 , . . . , a, . . . .

In this case we say that a is a horizontal separator.

Cylindrical king permutations are actually permutations having no cyclic bonds. In order to be able to deal
with edge bonds, we have to modify the Definition 7.2 of the separator.
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Definition 7.3. Let σ = σ1 · · ·σn ∈ Sn. An element σi will be called an edge separator if omitting it produces
a new edge bond. This happens when one of the following holds:

1. If |σ1 − σn−1| = 1 then σn is a (vertical) edge separator.

2. If |σn − σ2| = 1 then σ1 is a (vertical) edge separator.

3. If for some 1 < i < n we have that σ1, σi, σn is an increasing or decreasing sub sequence of subsequent
numbers, then we say that σi is a (horizontal) edge separator.

We say that an element σi is a cyclic separator if it is a regular or an edge separator. In this case, we say
that σi cyclically separates some element from another.

Example 7.3. Let σ = 52341, then σ5 = 1 is a (vertical) edge separator in σ. Let σ = 6257134, then σ3 = 5
is a (horizontal) edge separator in σ. If σ = 246135, then σ6 = 5 is a vertical edge separator and a horizontal
(regular) separator in σ.

Theorem 7.1. For every σ ∈ CKn (n ≥ 5) there is some π ∈ orb(31425) ∪ orb(24135) such that π � σ.

Proof. We prove by induction on n, the case n = 5 being trivial, since CK5 = orb(31425) ∪ orb(24135). We
assume that each cylindrical king permutation of order n − 1 contains at least one of the permutations of
orb(31425) ∪ orb(24135) and prove that each cylindrical king permutation of order n contains at least one
element of this set.

Let n > 5 and assume to the contrary that there is σ = σ1 · · ·σn ∈ CKn which does not contain any of the
permutations in orb(31425) ∪ orb(24135). Then for every 1 ≤ i ≤ n, the permutation ∇∗i (σ), contains neither
of them as well. By the induction hypothesis, ∇∗i (σ) /∈ CKn−1, which implies, that every element of σ is a
cyclic separator. In particular, 1 is a cyclic vertical separator. Hence, we have: σ ∈ orb(. . . , a, 1, a + 1, . . .) or
σ ∈ orb(. . . , a + 1, 1, a, . . .). Since σ ∈ CKn, we know that a > 2. Without loss of generality, assume that
σ ∈ orb(. . . , a, 1, a+1, . . .). By the above, the element a+1 is a cyclic separator of σ. We have now two options
as a+ 1 is horizontal or vertical:

• If a + 1 is horizontal then σ ∈ orb(. . . a + 2, a, 1, a + 1, . . .). For the same reasons as above, a is also
a cyclic horizontal separator of σ. Thus σ ∈ orb(. . . a + 2, a, 1, a + 1, a − 1 . . .). But the sub sequence
a+2, a, 1, a+1, a−1 is a pattern which is isomorphic to 53142, so that σ contains an element of orb(31425).

• If a+1 is vertical then σ ∈ orb(. . . a, 1, a+1, 2 . . .). As we saw above, a is also a cyclic separator of σ which
must be horizontal so that a = 3. This implies that σ ∈ orb(. . . 3, 1, 4, 2 . . .). Since the element 5 has to
be somewhere in σ, we must have σ ∈ orb(. . . , 3, 1, 4, 2, . . . , 5, . . .) which contains the pattern 31425.

In Proposition 3.14 of [5], we proved that for each two king permutations σ ∈ Kn and π ∈ Kn−2 such that
π ≺ σ there is a king permutation τ such that π ≺ τ ≺ σ. This does not hold for cylindrical king permutations.
For example, for σ = 18463527 ∈ CK8 and π = 635241 ∈ CK6, even though π ≺ σ, there is no τ ∈ CK7 such
that π ≺ τ ≺ σ.

Moreover, in Theorem 3.15 of [5] we claimed that if σ ∈ Kn, π ∈ Km such that π ≺ σ and n−m > 3 then
there exists a king permutation τ ∈ Kk such that π ≺ τ ≺ σ and m − k ∈ {1, 3}. This implies that for every
π ∈ Km and σ ∈ Kn such that σ covers π in the poset K, one has n−m ≤ 3. This property does not hold true
anymore in the poset CK as the following example verifies.

Example 7.4. Let σ = 579683142 and π = 13524 which is obtained from σ by removing the elements 3, 1, 4, 2.
It is easy to observe that there is no τ ∈ CK such that π ≺ τ ≺ σ.

We claim now that if σ ∈ CKn covers π ∈ CKm in the poset CK, then n−m ≤ 4.

Theorem 7.2. Let σ ∈ CKn and π ∈ CKm be such that π ≺ σ and n −m > 4. Then there is some τ ∈ CK
such that π ≺ τ ≺ σ.

The proof of Theorem 7.2 is very subtle and messy. It consists of many similar sub-cases which recur over
and over. In order not to be too exhaustive, we present some basic observations and lemmas and then show how
to deal with a few typical sub-cases and leave the rest of the proof for the reader. For the sake of simplifying
the proof, we present a series of claims.

Observation 7.1. Let σ be a permutation, let π ∈ CK, and let i be such that π ≺ ∇∗i (σ). If ∇∗i (σ) contains
the cyclic bond consisting of the elements j and k (of σ) then π ≺ ∇∗k(σ) or π ≺ ∇∗j (σ),

Moreover, if the bond is not an edge bond then both π ≺ ∇∗k(σ) and π ≺ ∇∗j (σ).
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Example 7.5. In the left picture of Figure 2, σ = 264159837 ∈ S9, π = 241635 ∈ CK6, such that π ≺ σ,
π ≺ ∇∗5(σ). In ∇∗5(σ) = 25418736 there is a regular bond (5, 4) (the elements 4 and 6 in σ), we get that
π ≺ ∇∗4(σ) and π ≺ ∇∗6(σ).

In the right picture σ = 264159837 ∈ S9, π = 253146 ∈ CK6, such that π ≺ σ, π ≺ ∇∗7(σ). In ∇∗7(σ) =
26415873 there is an edge bond (2, 3) (the elements 2 and 3 in σ) , we get that π ≺ ∇∗3(σ) but π ⊀ ∇∗2(σ) .

σ = 264159837

5, (5 in σ)

25418736

4 or 5 (4/6)

2417635

6 or 7 (8/9)

π = 241635

σ = 264159837

7 (7)

26415873

7 or 8 (8/9)

2641573

3 (3)

π = 253146

2 (2)

531462

Figure 2:

Definition 7.4. Let us denote by ∇∗A(σ) the permutation ∇∗i1(∇∗i2(. . . (∇∗ik(σ))) where A = {i1, . . . , in} and
i1 < · · · < ik. For example σ = 264159837 ∈ S9, π = 241635 ∈ CK6, so that π ≺ σ. If we let A1 =
{4, 5, 8}, A2 = {4, 5, 9}, A3 = {5, 6, 8}, A4 = {5, 6, 9}, we get π = ∇∗Ai

(σ) for 1 ≤ i ≤ 4.

In the following observation, when we write ‘adjacent’, we take it in the cyclic meaning, i.e. in a1 · · · an, the
elements a1 and an are considered here as adjacent.

Observation 7.2. Let σ ∈ CK be such that σ contains the (cyclic) block (a+2, a+4, a+1, a+3) or its reverse.

1. If we remove any single element i from the block (a+ 2, a+ 4, a+ 1, a+ 3) in σ then ∇∗i (σ) will contain a
cyclic bond. Moreover, we will not obtain a cylindrical king permutation out of ∇∗i (σ) unless we omit at
least 3 elements from the block, in which case, it contracts to the element a+ 1.

2. If the elements a and a+ 5 are not placed adjacent to the block (a+ 2, a+ 4, a+ 1, a+ 3) or its reverse in
σ, then by omitting any 3 elements of the block we get a cylindrical king permutation.

For example, let σ = 391426857 with the block (6, 8, 5, 7). Note that τ = ∇∗7(σ) = 38142675 which contains
the bond (6, 7), ∇∗6(τ) = 3714265 with the bond (6, 5), but ∇∗{5,6,7}(σ) = 361425 which is a cylindrical king
permutation.

3. If b ∈ {a, a + 5} is placed adjacent to the block (a + 2, a + 4, a + 1, a + 3) or its reverse in σ, then by
removing either b or the entire block we get a cylindrical king permutation. This is due to the fact that in
this case a and a+ 5 can not be cyclic separators of any type in σ. For example, let σ = 319246857 with
the block (6, 8, 5, 7). Note that τ = ∇∗4(σ) = 31825746 ∈ CK8.

Lemma 7.1. Let σ ∈ CKn, π ∈ CKm be such that π ≺ σ and n−m > 4. Assume that

• There is some element a ∈ N such that σ ∈ orb(. . . , a+ 2, a+ 4, a+ 1, a+ 3, . . .) or σ ∈ orb(. . . , a+ 3, a+
1, a+ 4, a+ 2, . . .) .

• There is some 1 ≤ i ≤ 4 such that π ≺ ∇∗a+i(σ).

Then there is some τ ∈ CKk such that π ≺ τ ≺ σ and n− k ≤ 4.

Proof. Assume without loss of generality that π ≺ ∇∗a+2(σ) and that σ contains the block (a+2, a+4, a+1, a+3).
The proof depends on the location of this block in σ. The possibilities are: σ = . . . , a+ 2, a+ 4, a+ 1, a+ 3 or
σ = a+ 2, a+ 4, a+ 1, a+ 3, . . . or σ = . . . , a+ 2, a+ 4, a+ 1, a+ 3, . . . or σ = a+ 1, a+ 3, . . . , a+ 2, a+ 4 or
σ = a+ 3, . . . , a+ 2, a+ 4, a+ 1 or σ = a+ 4, a+ 1, a+ 3, . . . , a+ 2.

Here we show only the first case: σ = . . . , a+ 2, a+ 4, a+ 1, a+ 3 which seems to be the most general case
in the sense that it contains all the arguments we need. The other cases can be proved using the same method.

According to Observations 7.1 and 7.2.1, π ≺ ∇∗A(σ) for A = {a+ 2, a+ 3, a+ 4}. If ∇∗A(σ) ∈ CK then we
are done (just take τ = ∇∗A(σ) = . . . , a+ 1). Otherwise, according to 7.2.2, either a or a+ 5 is adjacent to the
block (a+ 2, a+ 4, a+ 1, a+ 3). Assume without loss of generality. that a is adjacent to the above block. We
have 2 possibilities.
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• If σ = . . . , a, a + 2, a + 4, a + 1, a + 3 then ∇∗A(σ) = . . . , a, a + 1 and according to Observation 7.1,
π ≺ ∇∗a(∇∗A(σ)) = ∇∗A′(∇∗a(σ)) ≺ ∇∗a(σ) for A′ = {a+ 1, a+ 2, a+ 3} and so by 7.2.3 τ = ∇∗a(σ) and we
are done.

• If σ = a · · · b, a + 2, a + 4, a + 1, a + 3 (where b 6= a + 5) then ∇∗A(σ) = a · · · a + 1. By Observation 7.1,
π ≺ ∇∗a(∇∗A(σ)) ≺ ∇∗a(σ) or π ≺ ∇∗B(σ) for B = A ∪ {a+ 1}. We divide in two cases, depending on
whether π ≺ ∇∗a(σ) or not.

1. If π ≺ ∇∗a(σ) then we are done since according to 7.2.3., τ = ∇∗a(σ) is a cylindrical king permutation.

2. If π ⊀ ∇∗a(σ) then if ∇∗B(σ) is a cylindrical king permutation then we are done by taking τ = ∇∗B(σ).
(Note that this is the single case in which n− k = 4). Otherwise, the permutation ∇∗B(σ) contains a
cyclic bond, leading to one of the following two possibilities:

(a) We have σ = a, a+ 5, . . . , a+ 2, a+ 4, a+ 1, a+ 3 which is impossible since then ∇∗B(σ) is of the
form a, a+ 1, . . . and by 7.1 we get π ≺ ∇∗a(σ) which contradicts the assumption.

(b) We have σ = a, . . . , a − 1, a + 2, a + 4, a + 1, a + 3 and according to Observation 7.1, π ≺
∇∗a−1(∇∗B(σ)) ≺ ∇∗a−1(σ) . We claim that ∇∗a−1(σ) is a cylindrical king permutation. Indeed,
otherwise σ = a, a − 2 . . . , a − 1, a + 2, a + 4, a + 1, a + 3 and ∇∗a−1(σ) contains a regular bond
consisting of the elements a so that a− 2 of σ. Hence, due to 7.1, π ≺ ∇∗a(σ) which contradicts
the assumption. Now, we can take τ = ∇∗a−1(σ) and we are done.

Now we return to the proof of Theorem 7.2. Let σ ∈ CKn, π ∈ CKm be such that π ≺ σ, and n −m > 4
and let us prove that there is τ ∈ CKk such that π ≺ τ ≺ σ and n− k ≤ 4.

Proof of Theorem 7.2. Since CK ⊂ K, we have that π ∈ Km and σ ∈ Kn. Thus, according to Theorem 3.15
in [5], there is τ ∈ Kk such that π ≺ τ ≺ σ and n − k ∈ {1, 3}. If n − k = 3 then according to the proof of
Theorem 3.15 in [5], σ contains the block (a+ 2, a+ 4, a+ 1, a+ 3) or its reverse and π is obtained from σ by
omitting 3 elements from this block. This means that the conditions of Lemma 7.1 hold and so our claim is
proved.

Assume now that n− k = 1. If τ ∈ CK then we are done. Otherwise, τ = ∇∗b(σ) = a · · · a+ 1, for some edge
separator b of σ. If b is a vertical separator, then without loss of generality, we assume that b > a + 1 and we
have σ = a, . . . , a+1, b. Else b is a horizontal separator and so σ = a, . . . , b = a+1, . . . , a+2 (or their reverses).
Here we consider only the vertical case: σ = a, · · · , a + 1, b. Since π ≺ ∇∗b(σ) = a, . . . , a + 1, by Observation
7.1, π ≺ ∇∗a(σ) or π ≺ ∇∗a+1(σ).

We consider here only the case π ≺ ∇∗a+1(σ) but π ⊀ ∇∗a(σ). If ∇∗a+1(σ) ∈ CK then we are done. Otherwise
∇∗a+1(σ) contains a cyclic bond. Thus we have for σ one of the following options: either σ = a, . . . , b±1, a+ 1, b
or σ = a, a+ 2 . . . , a+ 1, b. Let us consider again the first case, σ = a, . . . , b+ 1, a+ 1, b. In this case, ∇∗a+1(σ)
has a regular bond consisting of the elements b and b + 1 of σ and so by Observation 7.1, π ≺ ∇∗b(σ) and
π ≺ ∇∗b+1(σ). If ∇∗b+1(σ) is a cylindrical king permutation, we are done. Otherwise, the omission of the element
b+ 1 from σ produces a cyclic bond. Again, there are two options for the structure of σ. Either a = b+ 2 and
thus σ = a, . . . , a− 1, a+ 1, a− 2, so by Lemma 7.1 we are done, or (if a 6= b+ 2) σ = a, . . . , a+ 2, b+ 1, a+ 1, b.
In this case ∇∗A(σ) = a, . . . , a + 1, b for A = {a + 2, b + 1} is a cylindrical king permutation. (Indeed, the pair
(a+ 1, b) is not a bond since a+ 1 and b are adjacent in σ. The elements a+ 1 or a− 1 can not appear next to
the element a since σ is a cylindrical king permutation). This completes the proof.

8. Directions for further research

• In [2], Bevan, Homberger and Tenner proved that a k-prolific permutation in Sn must be at least of size
k2

2 + 2k + 1. A challenge may be to find a lower bound for the size of a k-prolific permutation in Kn and
in CKn.

• In the chess game, one can further enable the pieces also to go off a column and reappear at the beginning
of that column, thus obtaining a ‘chess on the torus’. This variant is counted by OEIS A089222. The per-
mutations describing non-attacking kings on this board are called toric king permutations and constitute
a sub-poset of their own. The work on these permutations is in progress.
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