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Abstract: A permutation is called Grassmannian if it has at most one descent. In this paper, we investigate
pattern avoidance and parity restrictions for such permutations. As our main result, we derive formulas for
the enumeration of Grassmannian permutations that avoid a classical pattern of arbitrary size. In addition, for
patterns of the form k12 · · · (k−1) and 23 · · · k1, we provide combinatorial interpretations in terms of Dyck paths,
and for 35124-avoiding Grassmannian permutations, we give an explicit bijection to certain pattern-avoiding
Schröder paths. Finally, we enumerate the subsets of odd and even permutations and discuss properties of their
corresponding Dyck paths.
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1 Introduction

A Grassmannian permutation is a permutation having at most one descent. They are a special type of vex-
illary permutation (2143-avoiding) that is associated to Schubert varieties, cf. [3–5]. If Gn denotes the set of
Grassmannian permutations on [n] = {1, . . . , n}, then π ∈ Gn if and only if πrc ∈ Gn, where πrc is the reverse
complement of π. We let Gn(σ) be the subset of Grassmannian permutations on [n] that avoid the pattern σ.

Every subset A of [n] gives rise to an element of Gn obtained by listing the elements of A in increasing order,
followed by the elements of the complement of A, also listed in increasing order. This construction gives 2n

permutations, including n+ 1 copies of the identity permutation idn = 1 · · ·n. Thus,

|Gn| = 2n − n for n ≥ 1.

The first few terms are 1, 2, 5, 12, 27, 58, 121, 248, 503, 1014, . . . . See [7, A000325] for other combinatorial inter-
pretations of this sequence. Moreover, if n > 1 and k ∈ [n− 1], then every π ∈ Gn with π(k) > π(k + 1) must
be of the form

π = π(1) · · ·π(k) | 1π(k + 2) · · ·π(n) or

π = 1 · · · j π(j + 1) · · ·π(k) | (j + 1)π(k + 2) · · ·π(n) for some j ≤ k − 1,

where the symbol | is just used to indicate where the descent of π happens. Therefore, there are
∑k−1
j=0

(
n−j−1
k−j

)
permutations in Gn having their descent at position k.

Equivalently, Grassmannian permutations can be defined using their Lehmer code. Recall that for π ∈ Sn,
the code of π is the word L(π) = c1(π) · · · cn(π), where

ci(π) = #{j : j > i and π(j) < π(i)}.

Note that ci(π) > ci+1(π) if and only if π(i) > π(i + 1), so π ∈ Gn if and only if there is a k such that
c1(π) ≤ · · · ≤ ck(π) and ci(π) = 0 for i > k.

The goal of this paper is to study the enumeration of pattern-avoiding Grassmannian permutations as
well as other related subsets of Gn, including involutions, biGrassmannian permutations (i.e. Gn ∩ G−1n ), and
permutations with an even or odd number of inversions. Most of the arguments presented here are combinatorial,
and for the most part, we will use the standard notation found in the book by Kitaev [2].
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In Section 2, we review some basic (partly known) results regarding the sets Gn ∩ G−1n and Gn ∪ G−1n , and
discuss the structure and enumeration of Grassmannian involutions.

Our main results are presented in Section 3, where we discuss pattern avoidance for patterns of arbitrary
size. It turns out that the cardinality of Gn(σ) only depends on des(σ), the number of descents of σ. More
precisely, Gn(σ) = Gn if des(σ) > 1, |Gn(σ)| is finite if des(σ) = 0, and if |σ| = k and des(σ) = 1, then |Gn(σ)| =
1 +

∑k
j=3

(
n
j−1
)
. For the finite class Gn(1 · · · k), we discuss some formulas and prove that |G2k−2(12 · · · k)| =

1
k

(
2k−2
k−1

)
= Ck−1, giving yet another (possibly new) interpretation of the Catalan numbers.

In Section 4, we give a bijective map between Gn and Dyck paths of semilength n having at most one long
ascent∗, and use that map to provide combinatorial interpretations for Gn(k12 · · · (k − 1)) and Gn(23 · · · k1).
In addition, we use the Lehmer code to establish a connection between the elements of Gn(35124) and certain
pattern-avoiding Schröder paths discussed in [1].

Finally, in Section 5, we discuss odd and even Grassmannian permutations. For these families, we derive
enumeration formulas and provide combinatorial interpretations in terms of Dyck paths. The study of pattern
avoidance for parity restricted permutations is more delicate and will be pursued in future work.

2 Grassmannian related permutations

A permutation π is called biGrassmannian if π and π−1 are both Grassmannian. Observe that if π is Grass-
mannian then π−1 has at most one dip, that is a pair (i, j) with i < j such that π(i) = π(j) + 1. In other words,
a permutation is biGrassmannian if and only if it has at most one descent and at most one dip. For example,
π = 2413 ∈ G4 has two dips and is the only Grassmannian permutation of size 4 that is not biGrassmannian.

Proposition 2.1. A Grassmannian permutation is biGrassmannian if and only if it avoids the pattern 2413.
In other words, Gn ∩ G−1n = Gn(2413) for every n ∈ N. Moreover,

|Gn ∩ G−1n | = 1 +

(
n+ 1

3

)
.

Proof. Since 3142 has two descents, we have Gn ⊂ Sn(3142). Thus G−1n ⊂ Sn(2413) and therefore, Gn ∩ G−1n ⊂
Gn(2413). Conversely, suppose π is Grassmannian and has two dips, say (i1, j1) and (i2, j2) with i1 < i2. Since
π has at most one descent and avoids a 321 pattern, we must have

i1 < i2 < j1 < j2 and π(j1) < π(i1) < π(j2) < π(i2),

which gives a 2413 pattern. In other words, Gn(2413) ⊂ G−1n and so Gn(2413) ⊂ Gn ∩ G−1n . In conclusion,
Gn ∩ G−1n = Gn(2413).

For the enumeration of Gn ∩ G−1n , we organize the permutations by the position of the descent (if any).
There is only one permutation with no descent: π = 1 · · ·n. Moreover, if π ∈ Gn ∩ G−1n starts with a descent,
then it must be of the form

π = n 1 · · · (n− 1) or π = i 1 · · · (i− 1)(i+ 1) · · ·n with i ∈ {2, . . . , n− 1}.

There are
(
n−1
1

)
such permutations.

Now, if π has only one dip and its descent is at a position greater than 1, then its initial ascending run must
consist of at most two consecutive runs with a gap to account for the dip. In other words, π can only take one
of the following forms:

a) π = � i · · · j | 1 τ1 with i, j ∈ {2, . . . , n} and i < j;

b) π = 1 · · · (i− 1) � j | i τ2 with i, j ∈ {2, . . . , n} and i < j;

c) π = 1 · · · (i− 1) � j · · · k | i τ3 with i, j, k ∈ {2, . . . , n} and i < j < k;

where � indicates the gap in the first ascending run of π, and τ1, τ2, τ3 are increasing permutations. Cases a)
and b) give

(
n−1
2

)
permutations each, and case c) gives

(
n−1
3

)
permutations with the desired properties.

In conclusion, there is a total of

1 +

(
n− 1

1

)
+ 2

(
n− 1

2

)
+

(
n− 1

3

)
= 1 +

(
n

2

)
+

(
n

3

)
= 1 +

(
n+ 1

3

)
biGrassmannian permutations of size n.

∗A Dyck path is a lattice path from (0, 0) to (2n, 0) using up-steps U = (1, 1), down-steps D = (1,−1), never going below the
x-axis. A long ascent is a sequence of two or more up-steps.
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Next, we consider the set Gn ∪ G−1n of Grassmannian permutations together with their inverses. This set
can be described in terms of permutations avoiding a pair of patterns.

Proposition 2.2. For n ∈ N, we have Gn ∪ G−1n = Sn(321, 2143). Moreover,

|Gn ∪ G−1n | = 2n+1 −
(
n+ 1

3

)
− 2n− 1.

Proof. Clearly, Gn ⊂ Sn(321, 2143) and so G−1n ⊂ Sn(321, 2143) (note that 321 and 2143 are self-inverses).
Hence Gn ∪ G−1n ⊂ Sn(321, 2143). On the other hand, if π ∈ Sn(321, 2143) has more than one descent, then the
plot of π must be of the form

i j

Pattern avoidance Descent

where π(i) is the top of the most-left descent and π(j) is the bottom of the most-right descent of π. There
cannot be any 21 pattern entirely contained in any of the unshaded regions, and every element to the left of
π(i) and greater than π(j) must be larger than any element to the right of π(j) and less than π(i). Therefore,
π has only one dip, hence π ∈ G−1n . In conclusion, Sn(321, 2143) ⊂ Gn ∪ G−1n .

Finally, |Gn| = |G−1n | implies |Gn ∪ G−1n | = 2|Gn| − |Gn ∩ G−1n | = 2(2n − n)− 1−
(
n+1
3

)
.

The sequence
(
|Gn ∪G−1n |

)
n∈N starts with 1, 2, 5, 13, 33, 80, 185, 411, 885, 1862, . . . ; see [7, A088921] for other

combinatorial interpretations.

We end this section with a description and enumeration of Grassmannian involutions. Before we proceed,
we recall the definitions of skew and direct sums of two permutations. The skew sum, denoted by π1	π2, is the
permutation obtained by listing the elements of π1, each increased by the size of π2, followed by the elements of
π2. The direct sum, π1⊕π2, is the permutation obtained by listing the elements of π1, followed by the elements
of π2 increased by the size of π1.

Proposition 2.3. A permutation π ∈ Gn is an involution if and only if it is of the form

π = idk1 ⊕
(

idk2 	 idk2
)
⊕ idk3

for some k1, k2, k3 ∈ N ∪ {0} with k1 + 2k2 + k3 = n, where id0 = ε is the empty word. Moreover, if in denotes
the number of Grassmannian involutions of size n, then

in =

{
n2+3

4 if n is odd,

n2+4
4 if n is even.

This sequence starts with 1, 2, 3, 5, 7, 10, 13, 17, 21, 26, 31, . . . .

Proof. First, it is clear that permutations of the claimed form are Grassmannian involutions. Suppose now
that π is an involution in Gn. If π is the identity, we can choose k1 = n and k2 = k3 = 0. Otherwise, we
can decompose π = idk1 ⊕ τ ⊕ idk3 with k1, k3 ≥ 0, where τ is a Grassmannian involution of size m ≤ n that
does not start with 1 or end with m. Thus, τ consists of an increasing sequence ending with m followed by
an increasing sequence starting with 1. Moreover, since τ ∈ Gm ∩ G−1m = Gm(2413), it must be of the form
τ = id`	 idr, and since τ is an involution, we must have ` = r.

To enumerate the involutions in Gn, we group them by the size of their indecomposable component τ . For
instance, there are n−1 involutions with τ = 1	1, n−3 involutions with τ = 12	12, and generally, n−(2k−1)
involutions with τ = idk 	 idk. We also have the identity (if τ = ε). In conclusion, if n = 2m or n = 2m + 1,
then we get a total of

in = 1 +

m∑
k=1

(n− (2k − 1)) = 1 +mn−m2

Grassmannian involutions, leading to the claimed formulas.
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Remark 2.1. Grassmannian involutions correspond to standard Young tableaux (SYT) having at most two
rows, and whose second row consists of consecutive numbers. More precisely, if k2 6= 0, the permutation
idk1 ⊕

(
idk2 	 idk2

)
⊕ idk3 corresponds to the SYT of shape (n − k2, k2) whose second row consists of the con-

secutive labels k1 + k2 + 1, . . . , k1 + 2k2.
For example, the 10 Grassmannian involutions of size 6 give:

1 3 4 5 6
2

1 2 4 5 6
3

1 2 3 5 6
4

1 2 3 4 6
5

1 2 3 4 5
6

(1	 1)⊕ 1234 1⊕ (1	 1)⊕ 123 12⊕ (1	 1)⊕ 12 123⊕ (1	 1)⊕ 1 1234⊕ (1	 1)

2 1 3 4 5 6 1 3 2 4 5 6 1 2 4 3 5 6 1 2 3 5 4 6 1 2 3 4 6 5

1 2 5 6
3 4

1 2 3 6
4 5

1 2 3 4
5 6

1 2 3
4 5 6 1 2 3 4 5 6

(12	 12)⊕ 12 1⊕ (12	 12)⊕ 1 12⊕ (12	 12) 123	 123 123456

3 4 1 2 5 6 1 4 5 2 3 6 1 2 5 6 3 4 4 5 6 1 2 3 1 2 3 4 5 6

3 Pattern-avoiding Grassmannian permutations

First of all, note that since Grassmanian permutations have at most one descent, they naturally avoid any
pattern with more than one descent. Thus

Gn = Gn(σ) for every σ with des(σ) > 1.

Moreover, it can be easily checked that Gn(12 · · · k) = ∅ if n ≥ 2k− 1. Thus |Gn(12 · · · k)| gives a sequence with
2k−2 nonzero elements. For example, |Gn(123)| gives 1, 2, 4, 2, 0, . . . , and |Gn(1234)| gives 1, 2, 5, 11, 10, 5, 0, . . . .

Clearly, |Gm(12 · · · k)| = 2m −m for m < k, and |Gk(12 · · · k)| = 2k − k − 1. On the other end, we have the
appearance of the Catalan number Ck−1 = 1

k

(
2k−2
k−1

)
.

Proposition 3.1. For k ≥ 2, |G2k−3(12 · · · k)| = 2Ck−1 and |G2k−2(12 · · · k)| = Ck−1.

Proof. Every π ∈ G2k−2(12 · · · k) is of the form π = τ1 (2k−2) 1 τ2, where τ1 and τ2 are increasing permutations
with |τ1| = |τ2| = k − 2. In addition, for each i ∈ {1, . . . , k − 1} there are at most k − 1 − i elements greater
than π(i) and so at least k − 1 − (k − 1 − i) = i inversions involving i. Therefore, the Lehmer code of π must
be of the form

L(π) = c1 · · · ck−1 0k−1 with ck−1 = k − 1 and i ≤ ci ≤ cj for i < j.

The formula |G2k−2(12 · · · k)| = Ck−1 follows now from the fact that these codes are in one-to-one correspondence
with Dyck paths of semilength k − 1 via the bijective map

c1c2 · · · ck−1 → Uc1DUc2−c1D · · ·Uck−1−ck−2D.

On the other hand, observe that G2k−3(12 · · · k) = Ak−2 ∪̇Ak−1, where Ak−2 is the subset of permutations
in G2k−3(12 · · · k) having their descent at position k−2, and Ak−1 is the subset of elements having their descent
at position k − 1. Removing the largest entry from π ∈ G2k−2(12 · · · k) gives a unique element of Ak−2, and
removing 1 from π gives a unique element of Ak−1. In other words, |Ak−2| = |G2k−2(12 · · · k)| = |Ak−1|, and
therefore we have |G2k−3(12 · · · k)| = 2Ck−1.

More generally, Michael Weiner suggested the following formula, which we were able to verify up to k = 12,
see Table 1.

Conjecture (Weiner). For k ≥ 2 and m ∈ {k, . . . , 2k − 2},

|Gm(12 · · · k)| =
k−bm/2c∑
j=1

(−1)j−1j ·
(

2k −m− j
j

)
Ck−j .

For the rest of this section, we will focus on the avoidance of patterns having one descent.

Lemma 3.1. For σ ∈ {132, 213, 231, 312} and n ∈ N, we have

|Gn(σ)| = 1 +

(
n

2

)
.

ECA 2:4 (2022) Article #S4PP6 4
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k |Gk(12 · · · k)|, . . . , |G2k−2(12 · · · k)|
2 1

3 4, 2
4 11, 10, 5
5 26, 32, 28,14
6 57, 84, 98, 84, 42
7 120, 198, 276, 312, 264, 132
8 247, 438, 687, 924, 1023, 858, 429
9 502, 932, 1584, 2398, 3146, 3432, 2860,1430

10 1013, 1936, 3476, 5720, 8437, 10868, 11726, 9724, 4862
11 2036, 3962, 7384, 12896, 20696, 29926, 38012, 40664, 33592, 16796
12 4083, 8034, 15353, 27976, 47762, 75140, 106964, 134368, 142766, 117572, 58786

Table 1: Number of permutations in Gm(12 · · · k) for k ≤ m ≤ 2k − 2.

Proof. Since |Gn(σ)| = |Gn(σrc)|, it is enough to only consider the patterns 132 and 231. Clearly, π = 1 · · ·n ∈
Gn(σ) if des(σ) > 0. Moreover, the permutation π = n 1 · · · (n− 1) as well as any permutation of the form

π = i 1 · · · (i− 1)(i+ 1) · · ·n for i ∈ {2, . . . , n− 1},

all avoid the patterns 132 and 231. These are the n permutations in Gn(132) ∩ Gn(231). Note that if π has a
descent at position k > 1, then π must contain either a 132 pattern (if π(k − 1) < π(k + 1)) or a 231 pattern
(if π(k − 1) > π(k + 1)). Thus π 6∈ Gn(132) ∩ Gn(231).

If π ∈ Gn(132) \ Gn(231), then it must be of the form

π = i(i+ 1) · · · j 1 τ with i, j ∈ {2, . . . n}, i < j,

where τ is the word consisting of the remaining n− (j− i+ 2) elements of [n] written in increasing order. There
are

(
n−1
2

)
such permutations, so

|Gn(132)| = n+

(
n− 1

2

)
= 1 +

(
n

2

)
.

Similarly, if π ∈ Gn(231) \ Gn(132), then it must be of the form

π = 1 · · · (i− 1) j i τ with i, j ∈ {2, . . . n}, i < j,

leading to the same number of permutations.

Note that Gn(132) = Sn(132, 321), so we could have proved the above lemma by means of [6, Prop. 11]
together with an explicit bijection from Gn(132) to Gn(231).

More generally, for patterns of size k ≥ 3 having only one descent, there is only one Wilf equivalence class
of pattern-avoiding Grassmannian permutations:

Theorem 3.1. If k ≥ 3 and σ ∈ Sk with des(σ) = 1, then

|Gn(σ)| = 1 +

k∑
j=3

(
n

j − 1

)
for n ∈ N.

Proof. For k = 3, the statement was proven in Lemma 3.1. We proceed by induction in k.
We start by discussing how the statement for k = 4 follows from the case when k = 3. Note that, for any

σ ∈ S4 with des(σ) = 1, there is a σ′ ∈ S3 with des(σ) = 1 obtained from σ by removing either the 1 or the 4
as shown in the following table.

σ′ Pattern σ

132 1243, 1324, 1342, 2413

213 1324, 2134, 2413, 3124

231 1342, 2314, 2341, 3412

312 1423, 3124, 3412, 4123

In such instances where there are two options for σ′, either choice leads to the same result.
For example, suppose σ = 2413 and choose σ′ = 213. Since Gn(213) ⊂ Gn(2413), the set Gn(2413) can be

decomposed into disjoint sets

Gn(2413) = Gn(213) ∪̇
(
Gn(2413) \ Gn(213)

)
.

ECA 2:4 (2022) Article #S4PP6 5
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We already know how to count Gn(213), so it remains to enumerate Gn(2413) \ Gn(213). This is the set of
permutations in Gn(2413) that contain a 213 pattern, so their graph must be of the form

i

j

k

where the dots and regions shaded with correspond to the choice of a left-most 213 pattern, and the other
shaded regions represent the restrictions of being Grassmannian ( ) and 2413-avoiding ( ). More precisely,
every π ∈ Gn(2413) \ Gn(213) is of the form

π = τ0 j τ1 i τ2 k τ3 with 1 ≤ i < j < k ≤ n,

where the permutations τ0, τ1, τ2, τ3 are either empty or consist of increasing consecutive numbers. In other
words, π is uniquely determined by a choice of i, j, k ∈ [n]. Therefore,

|Gn(2413) \ Gn(213)| =
(
n

3

)
and |Gn(2413)| = 1 +

(
n

2

)
+

(
n

3

)
.

This coincides with the result from Proposition 2.1.
For any other pattern σ of size 4 with des(σ) = 1, the argument is similar. The only difference occurs

depending on whether the choice of σ′ is the result of removing the 1 or the 4 from σ. If the 1 is removed,
we take the right-most σ′-pattern for the plot, and if the 4 is removed, then we take the left-most σ′-pattern
instead. In any case, the elements of Gn(σ) \ Gn(σ′) are determined by the choice of a left-most/right-most
σ′-pattern. Table 2 shows examples of generic plots for other corresponding (σ, σ′) pairs. In conclusion, for
σ ∈ S4 with des(σ) = 1, we have |Gn(σ)| = 1 +

(
n
2

)
+
(
n
3

)
.

Gn(2134)\Gn(213) Gn(2341)\Gn(231) Gn(2413)\Gn(132) Gn(3412)\Gn(312)

Table 2: Examples for Gn(σ) \ Gn(σ′).

Suppose now that the statement of the theorem is true for patterns of size k − 1 with only one descent,
and let σ ∈ Sk with des(σ) = 1. Then σ must be of the form σ = 1 ⊕ σ′ or σ = σ′ ⊕ 1 with des(σ′) = 1, or
σ = σLk1σR with possibly empty or all increasing permutations σL and σR. In all cases, by removing either the
1 (if σ = 1⊕ σ′ or if σL = ε) or the k (if σ = σ′ ⊕ 1 or σR = ε), we arrive at a permutation σ′ with des(σ′) = 1.

Choose such a σ′ and split Gn(σ) = Gn(σ′) ∪̇
(
Gn(σ) \ Gn(σ′)

)
. By the induction hypothesis, |Gn(σ′)| =

1 +
∑k−1
j=3

(
n
j−1
)
. Now, in order to count the elements of Gn(σ) \ Gn(σ′), we consider a k × k grid and plot the

k−1 elements of the contained pattern σ′. This divides the grid into k2 regions with some of the regions shaded
based on the restrictions on the permutations – being Grassmannian (having only one descent), avoidance of
the pattern σ, and the choice of σ′ being the left-most or right-most pattern.

Through this process, we will end up with exactly k unique unshaded regions, each one in a different row of
the grid, determining the elements of a permutation in Gn(σ) \ Gn(σ′).

First, from the k2 available regions, k(k−2) of them will be shaded because of the Grassmannian condition,
leaving two unshaded regions in each row. Moreover, if σ′ is obtained from σ by removing k (like in our example
for k = 4), then we declare σ′ to be the left-most instance of the pattern and shade the regions having the
elements of σ′ on their top right corner. We also shade the region on the top row of the grid that could produce
a σ-pattern. Similarly, if σ′ is obtained from σ by removing the 1, then we pick the right-most instance of σ′

and shade the regions having the elements of σ′ on their bottom left corner. In addition, we shade the region
on the bottom row that could produce a σ-pattern.

In both cases, the choice of σ′ induces the shading of k− 1 regions of the grid, and the σ-avoiding condition
adds one more forbidden region to the graph. In total, there will be k2−k(k−2)−(k−1)−1 = k distinguishable
unshaded regions available to create a permutation in Gn(σ)\Gn(σ′) with increasing runs of consecutive numbers.

ECA 2:4 (2022) Article #S4PP6 6
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In conclusion, every permutation in Gn(σ)\Gn(σ′) is uniquely determined by the choice of the k−1 elements

of the left-most/right-most instance of σ′, so |Gn(σ)\Gn(σ′)| =
(
n
k−1
)

and therefore |Gn(σ)| = 1+
∑k
j=3

(
n
j−1
)
.

Some of the sequences generated by the enumeration of Gn(σ) are listed in Table 3.

|σ| Sequence |Gn(σ)| OEIS

3 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, . . . A000124

4 1, 2, 5, 11, 21, 36, 57, 85, 121, 166, . . . A050407

5 1, 2, 5, 12, 26, 51, 92, 155, 247, 376, . . . A027927

6 1, 2, 5, 12, 27, 57, 113, 211, 373, 628, . . . n/a

7 1, 2, 5, 12, 27, 58, 120, 239, 457, 838, . . . n/a

8 1, 2, 5, 12, 27, 58, 121, 247, 493, 958, . . . n/a

9 1, 2, 5, 12, 27, 58, 121, 248, 502, 1003, . . . n/a

10 1, 2, 5, 12, 27, 58, 121, 248, 503, 1013, . . . n/a

Table 3: Enumeration of Gn(σ) for a pattern σ with des(σ) = 1.

4 Connection to Dyck and Schröder paths

The OEIS gives several combinatorial interpretations for some of the sequences mentioned in this paper. In this
section, we give explicit bijections connecting (pattern-avoiding) Grassmannian permutations to Dyck paths
and certain pattern-avoiding Schröder paths.

Let Dyck(n) denote the set of Dyck paths of semilength n. We consider a bijective map

ϕ : Dyck(n)→ Sn(321)

that is particularly amenable to Grassmannian permutations. It is defined as follows:

- From left to right, number the down-steps of the Dyck path with [n] in increasing order.

- At each peak UD, label the up-step with the number already assigned to its paired down-step.

- Going through the ascents from left to right, label the remaining up-steps from bottom to top on each
ascent in a greedy fashion.

- The resulting labeling gives a 321-avoiding permutation on [n].

For example, the path in Figure 1 gives the permutation 23174586 ∈ S8(321).

1

4 5

6

3

2 7

8

Figure 1: P ∈ Dyck(8) with ϕ(P ) = 23174586.

Observe that labels at the peaks of a Dyck path P correspond to the right-to-left (RL) minima of the
permutation ϕ(P ). We have ϕ

(
(UD)n

)
= 12 · · ·n, and the number of descents of ϕ(P ) is equal to the number

of long ascents (2 or more up-steps) in P .
The inverse of ϕ is defined as follows. Given a permutation π ∈ Sn(321) with RL minima π(i1) < π(i2) <

· · · < π(i`), write it as π = τi1 · · · τi` , where each τik ends with the RL minimum π(ik). If ak = |τik | and
bk = π(ik+1)− π(ik) for k ∈ {1, . . . , `− 1}, then we let

ϕ−1(π) = Ua1Db1Ua2Db2 · · ·Ua`−1Db`−1U|τi` |Dn+1−π(i`).

For example, if π = 23174586, then τ1 = 231, τ2 = 74, τ3 = 5, and τ4 = 86, so the above construction gives
ϕ−1(π) = U3D3U2D1U1D1U2D3. This is the Dyck path in Figure 1.

As an immediate consequence of the definition of ϕ, we get the following correspondence.
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Proposition 4.1. The set Gn of Grassmannian permutations on [n] is in bijection with the set of Dyck paths
of semilength n having at most one long ascent.

We will call the elements of ϕ−1(Gn) Grassmannian Dyck paths. The path (UD)n is the only path of height
1, and we will refer to it as the identity path. The height of any other Grassmannian Dyck path is the length
of its long ascent. All peaks before the long ascent happen at height 1, and the heights of peaks after the long
ascent form a weakly decreasing sequence. More precisely, every Grassmannian Dyck path different from the
identity must be of the form

(UD)`1UPkD(UD)`2 with `1, `2 ≥ 0, `1 + `2 < n− 1, (1)

where Pk is a Dyck path of semilength n− 1− `1 − `2 having k peaks and avoiding UU except possibly on its
first ascent. In particular, UPkD is an indecomposable Grassmannian Dyck path with k peaks. Moreover,

ϕ
(
(UD)`1UPkD(UD)`2

)
= id`1 ⊕ πk ⊕ id`2 (2)

with πk ∈ Gn−`1−`2 having k RL minima.

Proposition 4.2. For k ≥ 3, the elements of Gn(k12 · · · (k − 1)) are in one-to-one correspondence with the
Grassmannian Dyck paths of semilength n having at most k − 2 peaks at height greater than 1.

Proof. The map ϕ provides the claimed bijection. Observe that because of the discussion around (1) and (2),
it suffices to consider Grassmannian Dyck paths that start with a long ascent and have no peaks at height 1. If
P is such a path of semilength n with ` peaks, then ϕ(P ) is a Grassmannian permutation of the form

ϕ(P ) = τ0 n 1 j2 · · · j` with j2 < · · · < j` and |τ0| = n− `− 1.

Therefore, ϕ(P ) ∈ Gn(k12 · · · (k − 1)) if and only if ` < k − 1.
Suppose now that π ∈ Gn(k12 · · · (k−1)) is indecomposable and has m RL minima. Then, the entries n and

1 make the descent of π and we must have m < k − 1. Hence ϕ−1(π) is a Dyck path with m ≤ k − 2 peaks at
height greater than 1.

Proposition 4.3. For k ≥ 3, the elements of Gn(23 · · · k1) are in one-to-one correspondence with the Grass-
mannian Dyck paths of semilength n and height at most k − 1.

Proof. Once again, because of (2), we only need to consider the correspondence between indecomposable per-
mutations and Dyck paths that start with a long ascent and have no peaks at height 1. Such a path of height
h must be of the form

P = UhDb0UDb1 · · ·UDb` with h ≥ 2 and bi ≥ 1,

which implies ϕ(P ) = τh−1 1 τ` with increasing permutations τh−1, τ`, and |τh−1| = h − 1. Clearly, ϕ(P ) ∈
Gn(23 · · · k1) if and only if h ≤ k − 1. Conversely, every indecomposable permutation π ∈ Gn(23 · · · k1) must
start with an increasing run of size ` < k− 1, followed by the entry 1. So, the height of the corresponding Dyck
path ϕ−1(π) is `+ 1 and has therefore height at most k − 1.

We finish this section with an interesting connection between the elements of Gn(35124) and certain Schröder
paths.

Lemma 4.1. We have π ∈ Gn+1(35124) if and only if its Lehmer code is of the form

L(π) = 0j11j2mj30j4 = 0 · · · 0︸ ︷︷ ︸
j1

1 · · · 1︸ ︷︷ ︸
j2

m · · ·m︸ ︷︷ ︸
j3

0 · · · 0︸ ︷︷ ︸
j4

, (3)

where j1 + · · ·+ j4 = n+ 1, j4 > 0, m ∈ {2, . . . , n}, and m ≤ j4.

Proof. Clearly, L(idn+1) = 0n+1. Suppose π ∈ Gn+1(35124) with des(π) = 1. If π has its descent at position 1,
then π = (`+ 1) 1 · · · ` · · · for some 1 ≤ ` ≤ n, and thus L(π) = ` 0n. Otherwise, the shape of π depends on the
avoidance or containment of a 2413 pattern. More precisely, if π does not have its descent at position 1, then
it must be of the form

π avoids 2413

` elements

or

π contains 2413

m elements
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leading to the codes 0k1`k20k3 with 1 ≤ ` ≤ k3 or 0k11k2mk30k4 with 2 ≤ m ≤ k4. Combining all the above
cases we get that, if π ∈ Gn+1(35124), then L(π) is of the form (3).

On the other hand, if π contains a 35124 pattern, then it must be of the form

π = τ1 c τ2 e τ3 a τ4 b τ5 d τ6 with a < b < c < d < e,

where every τi is either empty or 21-avoiding, and the elements of τ2 (if any) are all larger than c. Let
ia, ib, ic, id, ie denote the positions of the entries a, b, c, d, e, respectively. Note that (ic, ia) and (ic, ib) are
inversions, so the Lehmer code at position ic is some `c ≥ 2. Moreover, (ie, id) is an inversion, and if (ic, j) is
an inversion, so is (ie, j). Therefore, the code at position ie is some `e > `c. In conclusion, the containment of a
35124 pattern guarantees a Lehmer code L(π) with at least two different letters greater than 1, hence it is not
of the form (3).

A Schröder path of semilength n is a lattice from (0, 0) to (2n, 0) using steps U = (1, 1), D = (1,−1), and
H = (2, 0), never going below the x-axis. To each of these paths we can associate a word over the alphabet
{U,D,H} with val(U) = 1, val(D) = −1, and val(H) = 0. A Schröder word is a word w over that alphabet such
that val(w) = 0, and if w = uv, then val(u) ≥ 0. Note that if w corresponds to a Schröder path of semilength
n, then the number of letters in w must satisfy #U + #D + 2(#H) = 2n.

We let Schrn(UUDD) be the set of Schröder words w such that

(i) w = uv =⇒ val(u) ∈ {0, 1},

(ii) (#U in w) ≤ 2.

Conditions (i) and (ii) imply that every element of Schrn(UUDD) must be of the form

w = Hn or w = w1Uw2Dw3 or w = w1Uw2Dw3Uw4Dw5,

where each wi is either empty or consists of H steps only. In other words, Schrn(UUDD) is the set of Schröder
words that avoid the pattern, UUDD, not necessarily consecutively. For more on pattern avoiding Schröder
words, see [1].

For w = u1 · · ·u` ∈ Schrn(UUDD) with ui ∈ {U,D,H}, we let bin(w) be the binary word defined by

bin(w)j = val(u1 · · ·uj) for every j ∈ {1, . . . , `}.

For example,

bin(HHHHH) = 00000, bin(HUHHDH) = 011100, bin(UHDHUDH) = 1100100.

In general, for w ∈ Schrn(UUDD), we have

|bin(w)| = n+ #U,

where #U is 0, 1 or 2. In particular, w = Hn is the only word of length n in Schrn(UUDD). As stated above, if
w has only one U, then

w = w1Uw2Dw3 and therefore bin(w) = 0i11i20i3 ,

where i1 = |w1|, i2 = |Uw2|, i3 = |Dw3|, and i1 + i2 + i3 = n+ 1.
Finally, if w has two U’s, then

w = w1Uw2Dw3Uw4Dw5 and so bin(w) = 0i11i20i31i40i5 ,

where i1 = |w1|, i2 = |Uw2|, i3 = |Dw3|, i4 = |Uw4|, i5 = |Dw5|, and i1 + · · ·+ i5 = n+ 2.

Proposition 4.4. The set Schrn(UUDD) is in bijection with Gn+1(35124).

Proof. For w ∈ Schrn(UUDD), we define α by

α(w) =


0n+1 if w has no U,

bin(w) if w has only one U,

0i11i2−1(i3 + 1)i40i3+i5 if bin(w) = 0i11i20i31i40i5 .

For example,

α(HHHHH) = 000000,

α(HUHHDH) = 011100, and
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α(UHDHUDH) = 130000 since bin(w) = 1100100.

By definition, α(w) is a word of length n+ 1 of the form (3), hence it is the Lehmer code of a permutation in
Gn+1(35124). In fact, the map L−1 ◦α : Schrn(UUDD)→ Gn+1(35124) is a bijection whose inverse is defined as
follows.

If π ∈ Gn+1(35124), then L(π) = 0j11j2mj30j4 with j1 + · · ·+ j4 = n+1, m ∈ {2, . . . , n}, j4 > 0, and m ≤ j4.
If j2 = j3 = 0, then L(π) = 0n+1 and so α−1(L(π)) = Hn. If j3 = 0 and j2 > 0, then L(π) = 0j11j20j4 and we
have α−1(L(π)) = Hj1UHj2−1DHj4−1. Lastly, if j3 > 0, then α−1(L(π)) = Hj1UHj2DHm−2UHj3−1DHj4−m.

5 Odd & Even Grassmannian permutations

A permutation is said to be even if it has an even number of inversions (occurrences of the pattern 21); otherwise,
the permutation is said to be odd. In this section, we give some enumerative results concerning odd and even
Grassmannian permutations.

Theorem 5.1. If G odd
n is the set of odd permutations in Gn, and an = |G odd

n |, then

a1 = 0, a2 = 1, and

an = 2an−2 + 2n−2 for n > 2.

Proof. We start by proving the relations

a2m+1 = 2a2m and a2m+2 = a2m+1 + 22m for m ≥ 1. (4)

For the first relation, we write G odd
2m+1 = A∪ (G odd

2m+1 \ A), where A is the set of permutations in G odd
2m+1 that do

not end with 2m+ 1. Clearly, |G odd
2m+1 \ A| = |G odd

2m | = a2m.
Consider the map ξ : G odd

2m → A defined as follows. If π ∈ G odd
2m does not end with 2m, we let ξ(π) = 1⊕ π,

which is in A. Otherwise, if π ∈ G odd
2m ends with 2m, then we remove 2m from π, shift the remaining elements

up by one, and insert the pair (2m+ 1), 1 at the descent of π. For example,

351246→ 35124→ 46235→ 4671235,

so ξ(351246) = 4671235. Observe that if the descent of π is at position j, then the insertion of 1 creates j
new inversions, and the insertion of 2m + 1 creates 2m − j new inversions. In other words, ξ(π) has 2m more
inversions than π and has therefore the same parity. The map ξ is clearly bijective. Thus |A| = |G odd

2m | = a2m,
and so a2m+1 = 2a2m.

In order to prove the second formula in (4), we now consider the set E of permutations in G odd
2m+2 having their

descent at even position. There is a bijection ψ : G odd
2m+1 → E defined as follows. If π ∈ G odd

2m+1 has its descent
at even position, we let ψ(π) = π ⊕ 1. Otherwise, if π has its descent at odd position, ψ(π) is the permutation
obtained by inserting 2m+ 2 at the descent of π. For example, ψ(35124) = 351246 and ψ(24513) = 245613.

Thus |E| = a2m+1. It remains to verify that the set G odd
2m+2 \E of permutations in G odd

2m+2, having their descent
at odd position, has 22m elements. We proceed with a direct count.

Any permutation π ∈ G odd
2m+2 with descent at position 2k + 1 must be of the form

π = i1 · · · i2k+1 | i2k+2 · · · i2m+2

where i1, . . . , i2k+1, and i2k+2, . . . , i2m+2, are increasing sequences and i2k+1 > i2k+2. The number of inversions
of such a permutation is given by

inv(π) = (i1 − 1) + (i2 − 2) + (i2k+1 − 2k − 1)

= (i1 + · · ·+ i2k+1)− (2k + 1)(k + 1)

≡ (i1 + · · ·+ i2k+1)− k − 1 (mod 2),

so π is odd if and only if i1 + · · ·+ i2k+1 ≡ k (mod 2). Let

Dδ =
{
A ⊂ {1, . . . , 2m+ 2} : |A| = 2k + 1 and

∑
a∈A

a ≡ δ (mod 2)
}
.

Clearly, |D0|+ |D1| =
(
2m+2
2k+1

)
. Moreover, D0

∼= D1 by means of the map

{i1, . . . , i2k+1} 7→ {2m+ 3− i1, . . . , 2m+ 3− i2k+1}.
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In other words, |D0| = |D1| = 1
2

(
2m+2
2k+1

)
gives the number of permutations in G odd

2m+2 having their descent at
position 2k + 1. Therefore,

|G odd
2m+2 \ E| =

m∑
k=0

1

2

(
2m+ 2

2k + 1

)
= 22m.

This finishes the proof of (4). As a consequence, we have

a2m+2 = 2a2m + 22m and a2m+1 = 2(a2m−1 + 22m−2) = 2a2m−1 + 22m−1,

which combined give the claimed formula for an = |G odd
n |.

Remark 5.1. The sequence an = |G odd
n | starts with 0, 1, 2, 6, 12, 28, 56, 120, 240, 496, . . . , and it satisfies the

recurrence relation an = 2an−1 + 2an−2 − 4an−3 for n > 3, cf. [7, A122746].

Corollary 5.1. If bn = |G even
n |, then

b1 = 1, b2 = 1, and

bn = 2bn−2 + 2n−2 + n− 4 for n > 2.

Remark 5.2. From the previous equations, it follows that

|G odd
n | = 2n−1 − 2b

n−1
2 c and |G even

n | = 2n−1 + 2b
n−1
2 c − n.

We conclude this section with a parity classification of Grassmannian Dyck paths.

Proposition 5.1. The set G odd
n is in bijection to the set of Grassmannian Dyck paths of semilength n having

an odd number of peaks at even height. Moreover, the elements of G even
n correspond to Grassmannian Dyck

paths with an even number of peaks at even height.

Proof. We start with an example. Consider the odd Grassmannian permutation

π = 2 3 5 7 8 [11] 1 4 6 9 [10],

which corresponds (by means of the map ϕ from Section 4) to the Dyck path

7

5

4

2

1

4

6

9 10

2

3

5

7

8

11

Observe that (i, j) is an inversion of π if and only if the corresponding Dyck path ϕ−1(π) has the label π(i)
on its long ascent, and π(j) is on a peak. Moreover, if a peak with label π(j) is at height h, then j is part of
h− 1 inversions. For instance, in the above path, label 1 (height 7) contributes to six inversions, label 4 (height
5) gives four inversions, label 6 (height 4) gives three inversions, and labels 9, 10 (height 2) give one inversion
each.

In general, if a Grassmannian Dyck path ϕ−1(π) has k peaks, say p1, . . . , pk, then the number of inversions
of π is given by

inv(π) =

k∑
i=1

(height(pi)− 1) ≡ #{peaks at even height} (mod 2),

since peaks at an odd height contribute to an even number of inversions.
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