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1 Introduction

The starting point of our paper is a map, ∂ : Sn → Sn, that we introduce by using the inversion sets of
permutations; it depends on the total order on the transpositions in Sn. For convenience, we work with
lexicographic ordering. We define our map by viewing the inversions of a permutation as transpositions in
Sn, and then multiplying them in the lexicographic ordering. This map leads us to a distinguished set of
permutations whose count is given by the Catalan numbers, whereby we get to the Tamari lattice Tn.

Our main result is as follows.

Theorem 1.1. Let r ∈ N, and let S
(r)
n denote the image of Sn under the r-fold application of ∂. Denote by

S231
n the set of all 231-avoiding permutations in Sn. For each n ∈ Z+,

1. For each w ∈ Sn, ∂(w) = w if and only if w ∈ S231
n .

2. Sn = S
(0)
n ⊃ S(1)

n ⊃ · · · ⊃ S(tn)
n = S231

n , for some tn ∈ N.

We denote by ≤L (respectively, ≤R) the left weak order (respectively, the right weak order) on Sn. Likewise,
we denote by ≤BC Bruhat-Chevalley order on Sn.

A result of Disanto, Ferrari, Pinzani, and Rinaldi in [5] states that the restriction of the right weak order
on 312-avoiding permutations agrees with the Tamari lattice poset, and the restriction of the Bruhat-Chevalley
order on the same set of permutations gives the Dyck path lattice. The 231-avoiding permutations are the
inverses of 312-avoiding permutations. Thus, we have the following version of the main theorem of the article [5].

1. (S231
n ,≤L) is isomorphic to the Tamari lattice.

2. (S231
n ,≤BC) is isomorphic to the lattice of Dyck paths ordered by inclusion.

Therefore, the order theoretic thrust of our Theorem 1.1 is the systematic construction of a series of subposets
of Sn that converge to the posets (S231

n ,≤L) and (S231
n ,≤BC); each application of ∂ takes the previous iteration

one step closer. This motivates our other results. In addition to our main result, we consider the two novel
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decompositions of permutations, and our subsequent results concerning them, to be interesting in their own
right.

In [13], the second and the third authors considered an order on the equivalence classes of walks on the asso-
ciahedron (Stasheff-Tamari polytope), called the Tamari Block Lattice, which turns out to be anti-isomorphic
to the Higher Stasheff-Tamari Order in dimension 3. Let us note in passing that our map ∂ helps to establish
similar equivalence relations on the walks on the 1-skeleton of the permutohedron.

Reading defined the Cambrian lattices as lattice quotients of the weak order on Sn (more generally any
Coxeter group) modulo certain congruences [16]. It is well-known that the 231-avoiding permutations form a
Cambrian lattice, which is isomorphic to the Tamari lattice. Our focus in the present article is on the existence
of intermediate posets obtained between the weak order and Tamari lattice. We anticipate our ∂ map will lead
to more generalized approaches for studying orders on arbitrary Coxeter groups and Cambrian lattices. In this
regard, there are several questions that remain open. For example, what kind of posets (or lattices) do we get
by using a map that is analogous to our catalanization map for other Coxeter groups?

In Section 2, we introduce notation, and we present some additional motivation for our work. In Section 3,
we prove Theorem 1.1. Open problems are discussed in Section 4.

2 Preliminaries

In this section we review basic definitions, establish notation, and give background information on the orders

(S
(r)
n ,≤L) and Tn.

2.1 Notation

We use [n] to denote the set {1, 2, . . . , n}, and [i, n] for {i, i + 1, . . . , n}. We denote by Sn the set of all
permutations on n distinct elements taken from [n]. It is inferred a subscript i on a permutation w ∈ Sn

means the i-th entry of w (so w1w2 . . . wn is taken as the one-line notation of w). A permutation w ∈ Sn is
231-avoiding, i.e., w ∈ S231

n , if there does not exist i, j, k ∈ [n] with i < j < k and wj > wi > wk. Let us
mention that in the literature 231-avoiding permutations are sometimes called stack sortable permutations.

For P a finite partially ordered set, or poset (see [21] for more on posets), we use s < t (respectively, s > t)
to mean s is less than (respectively, greater than) t, and we use s l t to mean s is covered by t. If P has
an element less than (respectively, greater than) or equal to every element of P , that element is denoted 0̂P
(respectively, 1̂P ). The length of a chain C in P is its number of elements minus one, denoted `(C). A chain
is maximal if it is not contained in a longer chain of P . If every maximal chain of P has the same length n,
then we say P is graded of rank n. If every pair of elements of P have a least upper bound (called a join) and
a greatest lower bound (called a meet) then P is a lattice.

2.2 Tamari lattices

In [8], Huang and Tamari describe Tn as a poset of certain n-tuples of nonnegative integers, where the ordering
is given by the coordinate-wise comparisons. The Tamari lattice, Tn can also be represented as triangulations
of an (n+ 2)-gon with covering relations involving edge flips, as Rambau and Reiner do in [19]. A very natural
encoding of Tn views the vertices of Tn as binary trees, and the covering relations correspond to right rotations
(see [1] for example). In [1], Bernardi and Bonichon represent the Tamari lattice in terms of Dyck paths. [7]
and [12] adapted this to use Young diagrams.

Knuth identifies forests on n nodes with the sequences, (s1, . . . , sn), obtained from the nodes’ descendant
counts; the sequences on 4 nodes are listed in [9, Table 7.2.1.6(2)]. He characterizes and places an order on
the set of sequences of length n, which is another interpretation of Tn [9, Exercise 7.2.1.6(27)]. An equivalent
characterization is given in Knuth’s video lecture [10]. This encoding appears in [3, Definition 9.1] as well. We
make a slight twist to Knuth’s scope sequences (by including the parent node with the descendant counts) as it
was done in [13].

Definition 2.1 ( [13], Definition 2.1). The set of scope sequences of length n, denoted SSn, is the set of
n-tuples, (h1, . . . , hn), such that for each i ∈ [n],

1. 1 ≤ hi ≤ n− i+ 1, and

2. hi+r ≤ hi − r, for 0 < r < hi.

Definition 2.2 ( [13], Proposition 2.2). The Tamari lattice, Tn, may be represented on the set SSn, denoted
TSSn

, where (h1, . . . , hn) ≤ (h′1, . . . , h
′
n) if and only if hi ≤ h′i, for each i ∈ [n].

ECA 2:4 (2022) Article #S4PP7 2



Mahir Bilen Can, Luke Nelson, and Kevin Treat

The bottom and top elements of TSSn are 0̂ = (1, . . . , 1) and 1̂ = (n, n− 1, . . . , 1).

Remark 2.1. Pallo discovered the Tamari lattices independently, and encoded Tn with sequences in the reverse
order as given in Definition 2.1; see [14, Theorems 1,2]. His encoding is also a Catalan set found in Stanley’s
Catalan Numbers [22, Chapter 2 #85].

2.3 The left weak and the Bruhat-Chevalley orders.

Permutations have various representations. For w ∈ Sn, when we write w = w1 . . . wn, we mean that w is the
permutation that maps the number i (i ∈ {1, . . . , n}) to wi. The inversion set of a permutation w = w1 . . . wn

is defined as
inv(w) := {(i, j) | 1 ≤ i < j ≤ n, wi > wj}.

A simple transposition in Sn is a permutation of {1, . . . , n} that interchanges only two consecutive numbers
and keeps everything else fixed. More generally, a transposition is a permutation that interchanges two, but
not necessarily consecutive, numbers and fixes everything else. It is well-known that the map from w ∈ Sn to
inv(w) is one-to-one. The cardinality of the inversion set inv(w) is equal to the minimum number of simple
transpositions that is required to write w as their product. For this reason, |inv(w)| will be called the length of
w, and we will denote it by `(w).

Let i and j be two integers such that 1 ≤ i < j ≤ n. Let si denote the simple transposition si = (i i+1), and
let tij denote the transposition (i j). (In this section, to avoid confusion between the notations of inversion pairs
and transpositions, we do not use commas in the latter. More precisely, if we write (i j) for some i, j ∈ {1, . . . , n}
with i < j, then we mean the permutation tij .) Then the weak order on Sn, denoted by ≤L, is the transitive
closure of the covering relations:

v lL siv ⇐⇒ `(v) = `(siv)− 1 (v ∈ Sn).

The Bruhat-Chevalley order on Sn, denoted by ≤, is the transitive closure of the covering relations:

v lBC vtij ⇐⇒ `(v) = `(vtij)− 1 (v ∈ Sn).

The following facts about these orders are well-known [2]:

1. The definition of the left weak order depends on the multiplication by simple transpositions on the left.
However, we can equally define the Bruhat-Chevalley order by multiplying with transpositions on the left.

2. Every covering relation of ≤L is a covering relation of ≤BC but not conversely.

3. The inclusions of the inversion sets characterize the left weak order: For v, w ∈ Sn, we have

v ≤L w ⇐⇒ inv(v) ⊆ inv(w).

3 The Catalanization map

Now it is time to introduce our catalanization map, ∂ : Sn → Sn. We view every pair of integers (i, j) such that
1 ≤ i < j ≤ n as a transposition (i j) in Sn. More precisely, (i j) is the permutation that interchanges i and j
and does not change any other numbers.

Definition 3.1. Let w = w1 . . . wn be a permutation from Sn, and let {t′1, . . . , t′r} be its inversion set, ordered
lexicographically. Then the catalanization of w, denoted ∂(w), is defined as

∂(w) := t1 · · · tr,

where ti (1 ≤ i ≤ r) is the transposition that is defined by t′i. For the identity permutation, ∂(id) = id.

Example 3.1. Let w = 52341. Then

inv(w) = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 5), (3, 5), (4, 5)},

hence, the catalanization of w is given by

∂(w) = (1 2)(1 3)(1 4)(1 5)(2 5)(3 5)(4 5) = 54123.
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Definition 3.2. Let w ∈ Sn. The inversion cycle decomposition of w, denoted wICD, is the sequence C1, . . . , Cn

defined as follows. Ci, i ∈ [n], is a permutation cycle, called an inversion cycle, written in decreasing order
made up of all the elements in

{j | (i, j) ∈ inv(w)} t {i}.

Note the first part of the union may be empty. In this case, w is a cycle of size one. Hence, it is one of
the cycles, (1), (2), . . . , (n). Any of these cycles is equivalent to the identity permutation cycle. We keep these
cycles throughout the paper in an effort to normalize notation.

It follows that ∂(w) is the product of inversion cycles,

∂(w) = C1C2 · · ·Cn. (1)

For if {(i, j1), (i, j2), . . . , (i, js)} is the set of all inversion pairs with first coordinate i (ordered lexicographically),
then

Ci = (js js−1 . . . j1 i) = (i j1)(i j2) · · · (i js).

The inversion cycles appear in increasing order by the least (and last) entry of each cycle. Due to the fact that
Cj , for j > i, acts as identity on i,

(∂(w))i = (C1C2 · · ·Cn)i = (C1C2 · · ·Ci)i, (2)

(∂(w))([1]) = C1([1]), (∂(w))([2]) = (C1C2)([2]), (∂(w))([3]) = (C1C2C3)([3]), . . . (3)

Example 3.2. Continuing with Example 3.1, the inversion cycle decomposition of 52341 is

52341ICD = (5 4 3 2 1), (5 2), (5 3), (5 4), (5).

There is an important distinction to make between the decomposition and the catalanization map.

Example 3.3. The map that takes w ∈ Sn to wICD is one-to-one (as the inversions may be recovered from the
decomposition), however the catalanization map is not.

41532ICD = (5 4 2 1), (2), (5 4 3), (5 4), (5), ∂(41532) = 51423,

51423ICD = (5 4 3 2 1), (2), (5 4 3), (4), (5), ∂(51423) = 51423.

The next proposition lists equivalent statements for 231-avoiding permutations, which happen to have special
significance to the catalanization map. Note the well-known fact that the numbers |S231

n | are given by the Catalan
numbers.

Proposition 3.1. Let w ∈ Sn. The following are equivalent.

1. w ∈ S231
n .

2. For each inversion cycle of w, the entries of w whose indices appear in the cycle form an interval.

3. Each inversion cycle of w consists of (decreasing) consecutive integers.

4. For any two inversion cycles of w that have a common entry, the one to the left in wICD contains all the
entries of the other.

Proof. (1) ⇒ (2). Suppose some inversion cycle C with least entry i does not satisfy (2). Then there are j, k
with wi > wj > wk such that C has the entry k but not j, which implies j < i < k. Thus w /∈ S231

n .

(2) ⇒ (3). Suppose some inversion cycle C with least entry i does not satisfy (3). Then there are j, k with
i < j < k such that C has the entry k but not j, which implies wj > wi > wk. The inversion cycle with least
entry j has the entry k but not i, so it does not satisfy (2).

(3) ⇒ (4). Assume (3) and suppose C = (l l − 1 · · · k) and C ′ = (j j − 1 · · · i) are two inversion cycles that
have a common entry, with C left of C ′. By construction, k < i, so by assumption, i ≤ l. Thus wk > wi and
wi > wj . So wk > wj which implies j is an entry in C. Thus C contains all the entries of C ′.

(4) ⇒ (1). Supposing w /∈ S231
n . Then there are i < j < k with wj > wi > wk. The inversion cycle C with

least entry i has the entry k, but not j. The inversion cycle C ′ with least entry j has the entry k. Thus C and
C ′ have a common entry, but C does not contain all the entries of C ′.

Remark 3.1. We will add three more equivalent conditions for 231-avoiding permutations. See Proposition 3.3,
Corollary 3.4, and Proposition 3.6.
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Definition 3.3. For r ∈ N, we call ∂r(w) the r-th catalanization of w; we call w a catalanized permutation if
∂(w) = w.

Example 3.4. In this example we list the complete image of ∂ on S4. The catalanized permutations are
highlighted in bold fonts.

w wICD ∂(w) w wICD ∂(w)

1234 (1),(2),(3),(4) 1234 3124 (3 2 1),(2),(3),(4) 3124
1243 (1),(2),(4 3),(4) 1243 3142 (4 2 1),(2),(4 3),(4) 4123
1324 (1),(3 2),(3),(4) 1324 3214 (3 2 1),(3 2),(3),(4) 3214
1342 (1),(4 2),(4 3),(4) 1423 3241 (4 2 1),(4 2),(4 3),(4) 4213
1423 (1),(4 3 2),(3),(4) 1423 3412 (4 3 1),(4 3 2),(3),(4) 4321
1432 (1),(4 3 2),(4 3),(4) 1432 3421 (4 3 1),(4 3 2),(4 3),(4) 4312
2134 (2 1),(2),(3),(4) 2134 4123 (4 3 2 1),(2),(3),(4) 4123
2143 (2 1),(2),(4 3),(4) 2143 4132 (4 3 2 1),(2),(4 3),(4) 4132
2314 (3 1),(3 2),(3),(4) 3124 4213 (4 3 2 1),(3 2),(3),(4) 4213
2341 (4 1),(4 2),(4 3),(4) 4123 4231 (4 3 2 1),(4 2),(4 3),(4) 4312
2413 (3 1),(4 3 2),(3),(4) 3421 4312 (4 3 2 1),(4 3 2),(3),(4) 4312
2431 (4 1),(4 3 2),(4 3),(4) 4132 4321 (4 3 2 1),(4 3 2),(4 3),(4) 4321

A permutation w = w1w2 . . . wn ∈ Sn is a plus-indecomposable permutation (or, connected, or, irreducible
permutation) if there does not exist m < n such that w([m]) = [m] [4, 20]. We denote by Cn the subset of all
plus-indecomposable permutations of Sn.

We may partition the set of permutations w ∈ Sn by the number t ∈ [n] such that w1w2 . . . wt is plus-
indecomposable.

Thus, the following recurrence is readily obtained:

n! = |Sn| = |C1|(n− 1)! + |C2|(n− 2)! + · · ·+ |Cn−1|1! + |Cn|0!,

which leads to the following sequence,

|C1|, |C2|, . . . = 1, 1, 3, 13, 71, 461, 3447, 29093, . . .

The importance of these permutations for algebraic combinatorics stems from the fact that they label
bases for the algebra of free quasi-symmetric functions [6, Section 3.3]. In our setup, plus-indecomposable
permutations are important because the map ∂ preserves the plus-indecomposability.

Proposition 3.2. Let w ∈ Sn, and let t ∈ [n]. Then w([t]) = [t] if and only if (∂w)([t]) = [t]. In particular, w
is plus-indecomposable if and only if ∂(w) is plus-indecomposable.

Proof. Let wICD = C1, . . . , Cn.

(⇒) Suppose w([t]) = [t]. This implies each entry of each Ci, i ∈ [t], is less than or equal to t. Thus

(∂(w))([t]) = (C1C2 · · ·Ct)([t]) = [t].

(⇐) Suppose w([t]) 6= [t], so there is at least one pair i, j with i ≤ t < j and wi > wj . We choose the pair
with i smallest, and to adjudicate tiebreakers, we choose j to be the largest. This means that the largest entry
of Ci is j, and j does not appear in any cycle to the left of Ci in wICD. Thus ∂(w) sends i to j, from which
(∂(w))([t]) 6= [t].

Our next aim is to show that ∂ fixes every 231-avoiding permutation and no others.

Lemma 3.1. Let w = w1w2 . . . wn ∈ Sn and let ∂(w) = w′1w
′
2 . . . w

′
n. Suppose there is 1 ≤ t < n such that

w([t]) = [t]. Let
x = w1w2 . . . wt ∈ St, y = wt+1 − t wt+2 − t . . . wn − t ∈ Sn−t.

Then
∂(x) = w′1w

′
2 . . . w

′
t, ∂(y) = w′t+1 − t w′t+2 − t . . . w′n − t.

Proof. Assume for some 1 ≤ t < n, w([t]) = [t]. Then also w([t+1, n]) = [t+1, n]. Let wICD = C1, . . . , Cn. The
entries of the cycles C1, . . . , Ct are precisely [t], and the entries of the cycles Ct+1, . . . , Cn are precisely [t+ 1, n].
Moreover, x and y maintain the same relative order as their respective entries in w. Thus by equation (2),

(∂(x))i = (C1 · · ·Ct)i = w′i, i ∈ [t],

(∂(y))i = (C1 · · ·Cn)i − t = (Ct+1 · · ·Cn)i − t = w′i − t, i ∈ [t+ 1, n].
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Example 3.5. We demonstrate Lemma 3.1 on w = 2315764 with w([3]) = [3].

∂(2315764) = (3 1)(3 2)(3) (7 4)(7 6 5)(7 6)(7) = 3127465,

∂(231) = (3 1)(3 2)(3) = 312, ∂(2431) = (4 1)(4 3 2)(4 3)(4) = 4132.

Lemma 3.2. Let w = w1w2 . . . wn ∈ Sn and let ∂(w) = w′1w
′
2 . . . w

′
n. Suppose w1 = n. Then w′1 = n and

∂(w2w3 . . . wn) = w′2w
′
3 . . . w

′
n (viewed in Sn−1).

Proof. Suppose w1 = n, and let wICD = C1, . . . , Cn. It follows C1 = (nn − 1 · · · 1), which implies (∂(w))1 =
w′1 = n. After writing

C2C3 · · ·Cn = C−11 ∂(w) = (n 1 2 · · · n− 1) ∂(w),

we observe that

(C2C3 · · ·Cn)1 = 1,

(C2C3 · · ·Cn)i = (∂(w))i + 1 = w′i + 1, i ∈ [2, n],

and finally,
(∂(w2w3 · · ·wn))i−1 = (C2C3 · · ·Cn)i − 1 = w′i, i ∈ [2, n].

Example 3.6. We demonstrate Lemma 3.2 on w = 623541.

∂(623541) = (6 5 4 3 2 1) (6 2)(6 3)(6 5 4)(6 5)(6) = 651243,

∂(23541) = (5 1)(5 2)(5 4 3)(5 4)(5) = 51243.

Proposition 3.3. For w ∈ Sn, ∂(w) = w if and only if w ∈ S231
n .

Proof. We prove this statement by induction on n. The base case n = 1 is clear so suppose n > 1. Let t be
minimum with w([t]) = [t].

Suppose t < n (hence, w is not plus-indecomposable). It’s easy to check that w ∈ S231
n if and only if

x = w1w2 . . . wt ∈ S231
t , and y = wt+1 − t wt+2 − t . . . wn − t ∈ S231

n−t.

Given Lemma 3.1, ∂(w) = w if and only if ∂(x) = x and ∂(y) = y, so this case follows by induction.

Suppose t = n (hence, w is plus-indecomposable). Let wICD = C1, . . . , Cn. Notice that the cycle size of
C1 is the value of w1 (simply by counting inversions), and its maximum entry is (∂(w))1; this latter statement
follows from the two facts (1) the maximum entry of an inversion cycle Ci is (Ci)i, and (2) (∂(w))1 = (C1)1 (by
equation (2)). This means (∂(w))1 ≥ w1 > 1 (if w1 = 1, this would imply t = 1, contradicting that t = n > 1).
There are two subcases to consider.

In the first subcase, suppose (∂(w))1 > w1. This means ∂(w) 6= w, and furthermore it means C1 does not
satisfy Proposition 3.1(3) (thus w /∈ S231

n ).

In the second subcase, suppose (∂(w))1 = w1. This means C1 consists of (decreasing) consecutive integers,
which further implies (from the perspective of the associtated inversions) that w([w1]) = [w1]. So by assumption,
n = t ≤ w1. Then it is clear that w1 = n and C1 = (nn − 1 · · · 1). The proof follows by induction from the
following two facts: (1) ∂(w) = w if and only if ∂(w2w3 . . . wn) = w2w3 . . . wn (Lemma 3.2), and (2) w ∈ S231

n

if and only if w2w3 . . . wn ∈ S231
n−1. Fact (2) is easy to see (with w1 = n).

Corollary 3.1. If w ∈ Sn is not 231-avoiding, then ∂(w) is lexicographically greater than w (in one-line
notation).

Proof. For n ≤ 3, 231 is the only permutation which is not 231-avoiding, and ∂(231) = 312. The proof follows
easily utilizing Proposition 3.3 and Lemmas 3.1, 3.2.

In each application of ∂, unless a permutation is fixed, the resulting permutation is greater in the lexico-
graphic ordering. Therefore, we conclude that, by applying ∂ successively, we reach a fixed point.

Corollary 3.2. Let w ∈ Sn. The sequence ∂0(w), ∂1(w), ∂2(w), . . . converges to a 231-avoiding permutation.

The proof of the main theorem as stated in the introduction readily follows.

Proof of Theorem 1.1. The first claim of our theorem (1) is Proposition 3.3. The second claim (2) is a conse-
quence of Corollary 3.2.
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Example 3.7. We consider w = 2413. Then we have

inv(2413) = {(1, 3), (2, 3), (2, 4)} =⇒ ∂(w) = (3 1)(4 3 2) = 3421

inv(3421) = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} =⇒ ∂2(w) = (4 3 1)(4 3 2)(4 3) = 4312

inv(4312) = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)} =⇒ ∂3(w) = (4 3 2 1)(4 3 2) = 4312.

Example 3.8. We consider the powers of ∂ applied to w = 5714263. The sequence ∂0(w), ∂1(w), ∂2(w), . . .
converges to the 231-avoiding permutation 7654312.

r ∂r(w) (∂r(w))ICD ∂r+1(w)

0 5714263 (7 5 4 3 1),(7 6 5 4 3 2),(3),(7 5 4),(5),(7 6),(7) 7526134
1 7526134 (7 6 5 4 3 2 1),(7 6 5 3 2),(5 3),(7 6 5 4),(5),(6),(7) 7625314
2 7625314 (7 6 5 4 3 2 1),(7 6 5 4 3 2),(6 3),(7 6 5 4),(6 5),(6),(7) 7645321
3 7645321 (7 6 5 4 3 2 1),(7 6 5 4 3 2),(7 6 5 3),(7 6 5 4),(7 6 5),(7 6),(7) 7654312
4 7654312 (7 6 5 4 3 2 1),(7 6 5 4 3 2),(7 6 5 4 3),(7 6 5 4),(7 6 5),(6),(7) 7654312

In the remainder of Section 3, we develop some implications of our main result and pursue some interesting
aspects of ∂.

The last non-identity cycle in the inversion cycle decomposition exhibits a nice property.

Lemma 3.3. For all w ∈ Sn, the last non-identity cycle of wICD consists of (decreasing) consecutive integers.

Proof. Let wICD = C1, . . . , Cn. Suppose some cycle Ci does not consist of decreasing consecutive integers.
Then for some i < j < k, Ci has the entry k but not j, and thus wj > wi > wk. Then Cj (which contains k) is
a non-identity cycle to its right.

Corollary 3.3. Let w ∈ Sn. If wICD has at most one non-identity cycle, then ∂(w) = w.

The code of a permutation w ( [21, Chapter 1.3]) is the sequence

c(w) = (c1, . . . , cn) where ci := |{(i, j) ∈ inv(w)}|, for i ∈ [n]. (4)

Definition 3.4. Let w ∈ Sn. The shifted code of w, denoted by sc(w), is the sequence (c1 + 1, . . . , cn + 1),
where the code of w is (c1, . . . , cn).

Definition 3.5. Let w ∈ Sn. The consecutive cycle decomposition of w, denoted wCCD, is the sequence
D1, . . . , Dn of permutation cycles, called consecutive cycles, with cycle sizes,

(|D1|, . . . , |Dn|) = sc(w) = (s1, . . . , sn),

where each cycle Di consists of decreasing consecutive integers with least entry i,

Di = (si + i− 1 si + i− 2 · · · i).

Remark 3.2. As with wICD, the cycles of wCCD appear in increasing order, according to the least (and last)
entry of each cycle. Moreover, the size of each cycle and the least entry of each cycle in wCCD agree with those
of its respective cycle in wICD.

Example 3.9. We continue Example 3.8 with w = 5714263. Its shifted code is sc(w) = (5, 6, 1, 3, 1, 2, 1). wICD
easily converts to wCCD.

wICD = (7 5 4 3 1), (7 6 5 4 3 2), (3), (7 5 4), (5), (7 6), (7),

⇒ wCCD = (5 4 3 2 1), (7 6 5 4 3 2), (3), (6 5 4), (5), (7 6), (7).

In our next proposition, we show that the product of the cycles of wCCD is actually again w.

Proposition 3.4. The map,

αn : Sn → Sn

w 7→ D1D2 . . . Dn,

with wCCD = D1, D2, . . . , Dn, is the identity map.
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Proof. Let w ∈ Sn. We induct on the number of non-identity cycles, say t, of wCCD. If t ∈ {0, 1}, the proof
follows by Lemma 3.3 and Corollary 3.3, since then wCCD = wICD. Suppose t > 1. Let Dm = (p p− 1 · · · m),
some t ≤ m < p ≤ n, be the last non-identity cycle of wCCD. Again by Lemma 3.3, Dm is also the last
non-identity cycle of wICD, so

wm+1 < wm+2 < · · · < wp < wm < wp+1 < wp+2 < · · · < wn. (5)

It follows (Dm)−1 = (m m+ 1 · · · p), and w(Dm)−1 is obtained from w by replacing

wmwm+1 . . . wp with wm+1 . . . wpwm,

leaving everything else fixed. Furthermore, by equation (5),

(w(Dm)−1)m, (w(Dm)−1)m+1, . . . , (w(Dm)−1)n

is strictly increasing. This implies

(w(Dm)−1)CCD = D1, D2, . . . , Dm−1, (m), (m+ 1), . . . , (n).

(Notice for each i ∈ [m− 1], the cycle size of the ith consecutive cycle in (w(Dm)−1)CCD agrees with the size of
Di.) The proof then follows by induction.

Remark 3.3. The consecutive cycle decomposition wCCD = D1, D2, . . . , Dn of every w ∈ Sn readily provides
for a reduced decomposition of w = D1D2 · · ·Dn simply by rewriting each non-identity cycle as the product of
simple transpositions. Notice the length (number of inversions) is

`(w) =

n∑
i=1

(|Di| − 1),

where |Di| denotes the size of Di. Write the consecutive cycle D = (dt dt−1 · · · d1), of size t > 1, as the product
of the t− 1 simple transpositions,

(dt dt−1)(dt−1 dt−2) · · · (d2 d1).

Example 3.10. Continuing with Example 3.9, we exhibit a reduced decomposition of

w = 5714263 = (5 4 3 2 1)(7 6 5 4 3 2)(3)(6 5 4)(5)(7 6)(7)

with `(w) = 12 in the manner of Remark 3.3:

w = (5 4)(4 3)(3 2)(2 1) (7 6)(6 5)(5 4)(4 3)(3 2) (6 5)(5 4) (7 6).

Corollary 3.4. For each w ∈ Sn, ∂(w) = w if and only if wICD = wCCD.

Proof. (⇒) Suppose ∂(w) = w. Then w ∈ S231
n (Proposition 3.3). The proof follows by Proposition 3.1(3) and

Remark 3.2.

(⇐) Suppose wICD = wCCD. Then w ∈ S231
n (Proposition 3.1(3)). The proof follows by Proposition 3.3.

Corollary 3.5. The map,

βn : Sn → {(s1, . . . , sn) | si ∈ [n− i+ 1], for i ∈ [n]}
w 7→ sc(w),

is a bijection. Moreover, Sn, viewed as αn(Sn), where α is as in Proposition 3.4, is the set of products of
permutation cycles,

{(a1 a1 − 1 · · · 1)(a2 a2 − 1 · · · 2) · · · (an an − 1 · · ·n) | ai ∈ [i, n], for i ∈ [n]}. (6)

Proof. According to Definition 3.5, the size of any cycle Di of wCCD is restricted to |Di| ∈ [n−i+1] just by count-
ing the number of possible inversions. So there are a maximum of n! possible sequences (|D1|, |D2|, . . . , |Dn|).
However, every one of these must be a valid sequence due to Proposition 3.4. The image of αn on Sn is then
given by equation (6).

The first statement of Corollary 3.5 is equivalent to [21, Proposition 1.3.12], for which Proposition 3.4 is an
alternative approach. See Example 3.13 for the complete list of shifted codes on S4.
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Corollary 3.6. Let w ∈ Sn, wICD = C1, . . . , Cn, and wCCD = D1, . . . , Dn. Then for each t ∈ [n],

∂(DtDt+1 · · ·Dn) = CtCt+1 · · ·Cn.

Proof. The case t = 1 is Proposition 3.4. Consider t = 2. Obtain the permutation w′ = D−11 w from w by
increasing entries less than w1 by one, and replacing w1 with 1, thereby maintaining the same relative order in
w′2w

′
3 . . . w

′
n as w2w3 . . . wn. The resulting permutation w′, with w′CCD = (1), D2, D3, . . . , Dn, must then satisfy

w′ICD = (1), C2, C3, . . . , Cn. For arbitrary t,

DtDt+1 · · ·Dn = x1x2 . . . xn,

such that x1x2 . . . xt−1 = 12 . . . t − 1, and such that xtxt+1 . . . xn is made from the entries of {t, t + 1, . . . , n}
with the same relative order as wtwt+1 . . . wn (see Example 3.12).

In general, the map ∂ does not preserve ≤L, hence, it does not preserve ≤BC .

Example 3.11. For example 41523 lL 41532 but ∂(41532) = 51423 lL 51432 = ∂(41523).

Despite these, not so pleasant properties, ∂ preserves parity and is monotone with respect to the length
function.

Corollary 3.7. For every w ∈ Sn, the difference of the lengths, `(∂(w))− `(w), is divisible by 2.

Proof. This is an immediate consequence from the fact that for every w ∈ Sn, the cycle sizes of wCCD agree
with those of wICD. Recall a permutation is odd or even (but not both), based on whether it can be written as
the product of an odd or even, respectively, number of transpositions. An odd (respectively, even) sized cycle
may be written with an even (respectively, odd) number of transpositions.

If multiplication of a permutation p by a transposition t results with the product t p lexicographically greater
than p (in one line notation), then `(t p) > `(p).

Proposition 3.5. For every w ∈ Sn, `(∂(w)) ≥ `(w).

Proof. This is trivial for n = 1, so suppose n > 1. In the notation of Corollary 3.6, let w ∈ Sn with

w = D1D2 · · ·Dn, ∂(w) = C1C2 · · ·Cn,

in terms of consecutive cycles and inversion cycles of w, respectively. We claim

`(CiCi+1 · · ·Cn)− `(Ci+1Ci+2 · · ·Cn) ≥ |Ci| − 1, for i ∈ [n− 1], (7)

where |Cj | denotes the size of Cj (and of Dj). That would imply

`(∂(w))− `(Cn) ≥
n−1∑
i=1

(|Ci| − 1) =

n−1∑
i=1

(|Di| − 1) = `(w)− (|Dn| − 1),

or `(∂(w)) ≥ `(w) (since Cn = Dn = (n) = id). As for the claim, let i ∈ [n− 1] and let

Ci = (cm cm−1 · · · c1 = i), v = 12 . . . i vi+1vi+2 . . . vn = Ci+1Ci+2 · · ·Cn,

with m ≥ 1 and cm > cm−1 > · · · > c1, and with v the one-line notation of the cycle product. Equation (7) is
satisfied in case m = 1 with Ci = (i) = id, so suppose m > 1. In the fashion of Remark 3.3, rewrite Ci as the
product of the m− 1 transpositions,

(cm cm−1)(cm−1 cm−2) · · · (c2 c1).

The validity of the claim stems from the fact mentioned before the proposition. The product (c2 c1) v is
lexicographically greater than v since multiplication by (c2 c1) places c2 into i-th position and does not affect
entries to the left. Similarly, each successive transposition multiplication increases the i-th entry and does not
affect entries to the left. Thus `(Ci v)− `(v) ≥ m− 1 = |Ci| − 1 as advertised.

Example 3.12. We demonstrate Corollary 3.6 by breaking out the consecutive cycles and inversion cycles on
w = 35241.

Consecutive Cycles ` Inversion Cycles `

35241 = (321)(5432)(43)(54)(5) 7 ∂(35241) = (531)(5432)(53)(54)(5) = 53421 9
15342 = (1)(5432)(43)(54)(5) 5 ∂(15342) = (1)(5432)(53)(54)(5) = 15423 5
12453 = (1)(2)(43)(54)(5) 2 ∂(12453) = (1)(2)(53)(54)(5) = 12534 2
12354 = (1)(2)(3)(54)(5) 1 ∂(12354) = (1)(2)(3)(54)(5) = 12354 1
12345 = (1)(2)(3)(4)(5) 0 ∂(12345) = (1)(2)(3)(4)(5) = 12345 0
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We exhibit how multiplication by each successive inversion cycle increases length by at least the cycle size minus
1 (see equation (7)). The length (number of inversions) of the cycle (5 4) is 1 and multiplication by the cycle
(5 3) increases length by 1 (the cycle size minus 1) resulting with `(12534) = 2. Multiplication by (5 4 3 2)
increases length by 3 (again the cycle size minus 1) resulting with `(15423) = 5. Finally, multiplication by
(5 3 1) increases length by 4 (more than the cycle size minus 1) resulting with `(53421) = 9.

The main observation of this section, which leads to a proof of Theorem 1.1, is yet another equivalent
condition to those in Proposition 3.1 for a 231-avoiding permutation.

Proposition 3.6. Let w ∈ Sn. The shifted code of w is a scope sequence if and only if w ∈ S231
n .

Proof. The map that takes a permutation to its shifted code is one-to-one, and every scope sequence in SSn is
the shifted code for a (unique) permutation in Sn (see Definition 2.1(1) and Corollary 3.5). Moreover, SSn and
S231
n are equal sized (Catalan) sets. Thus to complete the proof, it suffices to prove one direction. We show

that if sc(w) is a scope sequence, then w ∈ S231
n .

Let sc(w) = (s1, . . . , sn) and suppose w /∈ S231
n . Then there exists a triple i < j < k, with wj > wi > wk.

Choose one with i largest and then j smallest. This implies wx < wi for i < x < j with j− i−1 entries between
wi and wj . By counting inversions (add one for shifted codes), and the fact that wk is to the right of wj ,
si ≥ j−i+1, sj ≥ si−(j−i−1). After manipulation, this leads to si+(j−i) > si−(j−i), where 0 < j−i < si,
which shows sc(w) is not a scope sequence; see Definition 2.1(2).

Example 3.13. In this example we give the complete listing of shifted codes on S4. Only in the case ∂(w) = w
(w is 231-avoiding) is the shifted code of w a scope sequence (Proposition 3.6). Those catalanized permutations
are highlighted.

w sc(w) ∂(w) w sc(w) ∂(w)

1234 (1,1,1,1) (1)(2)(3)(4)=1234 3124 (3,1,1,1) (3 2 1)(2)(3)(4)=3124
1243 (1,1,2,1) (1)(2)(4 3)(4)=1243 3142 (3,1,2,1) (4 2 1)(2)(4 3)(4)=4123
1324 (1,2,1,1) (1)(3 2)(3)(4)=1324 3214 (3,2,1,1) (3 2 1)(3 2)(3)(4)=3214
1342 (1,2,2,1) (1)(4 2)(4 3)(4)=1423 3241 (3,2,2,1) (4 2 1)(4 2)(4 3)(4)=4213
1423 (1,3,1,1) (1)(4 3 2)(3)(4)=1423 3412 (3,3,1,1) (4 3 1)(4 3 2)(3)(4)=4321
1432 (1,3,2,1) (1)(4 3 2)(4 3)(4)=1432 3421 (3,3,2,1) (4 3 1)(4 3 2)(4 3)(4)=4312
2134 (2,1,1,1) (2 1)(2)(3)(4)=2134 4123 (4,1,1,1) (4 3 2 1)(2)(3)(4)=4123
2143 (2,1,2,1) (2 1)(2)(4 3)(4)=2143 4132 (4,1,2,1) (4 3 2 1)(2)(4 3)(4)=4132
2314 (2,2,1,1) (3 1)(3 2)(3)(4)=3124 4213 (4,2,1,1) (4 3 2 1)(3 2)(3)(4)=4213
2341 (2,2,2,1) (4 1)(4 2)(4 3)(4)=4123 4231 (4,2,2,1) (4 3 2 1)(4 2)(4 3)(4)=4312
2413 (2,3,1,1) (3 1)(4 3 2)(3)(4)=3421 4312 (4,3,1,1) (4 3 2 1)(4 3 2)(3)(4)=4312
2431 (2,3,2,1) (4 1)(4 3 2)(4 3)(4)=4132 4321 (4,3,2,1) (4 3 2 1)(4 3 2)(4 3)(4)=4321

An explicit bijection due to Krattenthaler [11] between the set of Dyck paths (or the associated partitions)
and the catalanized permutations is shown in the next example.

Example 3.14. Let w = w1w2 . . . w8 = 8 3 1 2 7 6 4 5. Then w is a catalanized permutation, and its inversion
cycle decomposition is given by wICD = wCCD = (8 7 6 5 4 3 2 1), (4 3 2), (3), (4), (8 7 6 5), (8 7 6), (7), (8). The
matrix of w is given below to the left. Then we shade the entries of the matrix that are to the left or below a
nonzero entry as shown in the next figure. Clearly, this region of the matrix contains all entries on or below the
main diagonal of the matrix. Thus, the boundary of the non-shaded area defines a Dyck path.

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

Example 3.15. The purpose of this example is to demonstrate how the left weak and Bruhat-Chevalley orders
on S4 transform. In Figure 1, we consider the left weak order, and in Figure 2 we consider the Bruhat-Chevalley
order.
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1234

1243 1324 2134

1342 1423 2143 2314 3124

1432 2341 2413 3142 3214 4123

2431 3241 3412 4132 4213

3421 4231 4312

4321

1234

1243 1324 2134

1423 2143 3124

1432 3214 4123

4132 4213

3421 4312

4321

1234

1243 1324 2134

1423 2143 3124

1432 3214 4123

4132 4213

4312

4321

Figure 1: The catalanization of the left weak order (S4,≤L).

1234

1243 1324 2134

1342 1423 2143 2314 3124

1432 2341 2413 3142 3214 4123

2431 3241 3412 4132 4213

3421 4231 4312

4321

1234

1243 1324 2134

1423 2143 3124

1432 3214 4123

4132 4213

3421 4312

4321

1234

1243 1324 2134

1423 2143 3124

1432 3214 4123

4132 4213

4312

4321

Figure 2: The catalanization of the Bruhat-Chevalley order (S4,≤BC).

4 Open Questions

In this section, we pose several open problems. The first two questions are about enumeration.

1. What are the numbers tn in Theorem 1.1(2)? As we mentioned earlier, tn is minimum for x ≥ 0 such
that ∂x(Sn) = S231

n . Trivially, t1 = 0, for n ∈ {2, 3, 4, 5, 6, 7}, tn = n − 2 by computer analysis. But it
gets tricky after that. We thought for a long time this should be the general pattern but a proof eluded
us. We eventually identified the precisely three counter examples in S8 that make t8 = 7.

w ∂(w) ∂2(w) ∂3(w) ∂4(w) ∂5(w) ∂6(w) ∂7(w)

24163785 35284167 63581427 76384125 87561423 87652413 87653421 87654312
24173586 35284167 63581427 76384125 87561423 87652413 87653421 87654312
24183567 35284167 63581427 76384125 87561423 87652413 87653421 87654312

The combinatorial numbers |S(r)
n | = ∂r(Sn), for arbitrary r, n, also spark interest. Below is a table for

n ∈ [8]. The first number in each row is n! and the last is the Catalan number |S231
n |. The numbers,

24, 15, 14 for n = 4 are the sizes of the posets of Figure 1. What is their formula?

n |S(0)
n | |S(1)

n | |S(2)
n | |S(3)

n | |S(4)
n | |S(5)

n | |S(6)
n | |S(7)

n |
1 1
2 2
3 6 5
4 24 15 14
5 120 56 45 42
6 720 261 169 139 132
7 5040 1437 734 520 442 429
8 40320 9208 3712 2160 1600 1454 1431 1430

2. For a permutation w ∈ Sn, denote by rank(w), the minimum x ≥ 0 such that ∂x(w) ∈ S231
n . For arbitrary

r and n, what is the formula for
| {w ∈ Sn | rank(w) = r} | ?

Below is a table of values for n ∈ [8]. The first column is the sequence of Catalan numbers.
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n \ r 0 1 2 3 4 5 6 7

1 1
2 2
3 5 1
4 14 9 1
5 42 59 15 4
6 132 354 155 62 17
7 429 2059 1407 760 325 60
8 1430 11930 12265 8423 4618 1408 243 3

3. There is a geometric perspective that draws our interest. The Hasse diagram of the weak order gives the
1-skeleton of the permutahedron. Likewise, the Hasse diagram of the Tamari lattice gives the 1-skeleton
of the associahedron. Starting from (Sn,≤L), each application of ∂ gives us a new Hasse diagram (graph).
For n = 4, the intermediate graphs are shown in Figure 1. The convex hulls of the vertex sets of these
graphs give subpolytopes of the permutahedron. In particular, the last polytope in this sequence is the
associahedron. Are the intermediate polytopes equivariant fiber polytopes [18]? Also, are they brick
polytopes [15]?

4. Both of the posets (Sn,≤L) and (S231
n ,≤L) are lattices. Also, both of the posets (Sn,≤BC) and (S231

n ,≤BC)
are ranked. What are the values of n and k for which (∂kSn,≤L) is a lattice? What are the values of n
and k for which (∂kSn,≤BC) is a ranked poset?

5. Since ∂ preserves the plus-indecomposable permutations, it defines an automorphism of the algebra of
free quasi-symmetric functions. What is the algebraic significance of this automorphism for the various
algebras that are defined in [6]?

6. As we hinted at it in the introduction, it is possible (and natural) to develop similar results by varying
1) the total order on the set of inversions, 2) underlying Coxeter group. It would be interesting to know
what kind of posets/lattices one gets by applying the “new” catalanization maps. For example, if we
start with a different underlying Coxeter group (not type A), and apply a generalized catalanization map,
is the resulting poset a Cambrian lattice [16]? Likewise, what kind of poset do we get if we apply the
catalanization map to c-sortable elements of a Coxeter group [17, Theorem 1.2]?
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