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Abstract: We introduce a new parking procedure called MVP parking in which n cars sequentially enter a
one-way street with a preferred parking spot from the n parking spots on the street. If their preferred spot
is empty, they park there. Otherwise, they park there and the car parked in that spot is bumped to the next
unoccupied spot on the street. If all cars can park under this parking procedure, we say the list of preferences
of the n cars is an MVP parking function of length n. We show that the set of (classical) parking functions
is exactly the set of MVP parking functions although the parking outcome (order in which the cars park) is
different under each parking process. Motivating the question: Given a permutation describing the outcome
of the MPV parking process, what is the number of MVP parking functions resulting in that given outcome?
Our main result establishes a bound for this count which is tight precisely when the permutation describing the
parking outcome avoids the patterns 321 and 3412. We then consider special cases of permutations and give
closed formulas for the number of MVP parking functions with those outcomes. In particular, we show that the
number of MVP parking functions that park in reverse order (that is the permutation describing the outcome
is the longest word in Sn, which does not avoid the pattern 321) is given by the nth Motzkin number. We also
give families of permutations describing the parking outcome for which the cardinality of the set of cars parking
in that order is exponential and others in which it is linear.
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1. Introduction

Throughout we let N = {1, 2, 3, . . .} and, for n ∈ N, we denote [n] := {1, 2, . . . , n}. Consider a one-way street
consisting of n parking spots enumerated from 1 to n. There are n cars lined up to enter the street in order,
each of which has a preferred parking spot. Let α = (a1, . . . , an) ∈ [n]n encode the parking spot preferences,
where ai is the preferred spot of car i. The parking process begins when car 1 enters the street and parks in
its preferred spot a1—as it is the first car to enter the street, it finds spot a1 unoccupied. Next, car 2 enters
the street and attempts to park in its preferred spot a2. If spot a2 is unoccupied, it parks there. Otherwise, it
continues driving down the one-way street and parks in the first unoccupied spot in encounters, if any. If car 2
does not encounter any unoccupied spot, we say it is unable to park. The parking process continues similarly
for all subsequent cars. If the preferences α = (a1, . . . , an) allow all cars to park, we say α is a parking function
of length n. Let PFn denote the set of parking functions of length n. For example, (1, 1, 1, 1) is a parking
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function of length four in which all cars prefer the first spot and, based on the parking rule, the cars 1, 2, 3,
and 4 park in the order 1, 2, 3, and 4, respectively.

Parking functions were introduced by Konheim and Weiss in their study of hashing functions [5]. They
established that |PFn| = (n + 1)n−1. Since their foundational result, parking functions have been modified
and/or generalized in various ways. We point the reader to Yan [14] for a comprehensive survey of results.

In this work, we introduce a variant of parking functions in which later cars are considered to be the
“most valuable player” (MVP). We modify the “classical parking rule” (wherein a newly arrived car starts at
its preferred spot and continues driving down the one-way road until it parks in the first unoccupied spot it
encounters if any) as follows. Upon the arrival of car i ∈ [n], it attempts to park in its preferred spot ai. If spot
ai is unoccupied, it parks there. Otherwise, if spot ai is occupied by an earlier-arriving car j ∈ [n] with j < i,
the MVP car i “bumps” car j out of spot ai. Then, the newly bumped car j continues driving down the one-way
street until it parks in the first unoccupied spot it encounters if any. We refer to this parking rule as the “MVP
parking rule.” Note that the bumping of a car out of a spot happens only once—there is no cascading effect in
which a newly bumped car itself bumps further cars while on its search for a new parking spot.

If the preferences α = (a1, a2, . . . , an) ∈ [n]n allow all cars to park under the MVP parking rule, we say α
is an MVP parking function of length n. Let MVPn denote the set of MVP parking functions of length n. For
example, (1, 1, 1, 1) is an MVP parking function of length four in which all cars prefer the first spot and, based
on the MVP parking rule, the cars 1, 2, 3, and 4 park in the order 4, 1, 2, and 3, respectively.

In Section 2, we enumerate and characterize MVP parking functions by leveraging their connection to
(classical) parking functions, and lay groundwork necessary to study their outcome map. Our first result
(Theorem 2.1) establishes that a list of preferences α ∈ [n]n is an MVP parking function (of length n) if
and only if it is a parking function (of length n), readily implying that |MVPn| = (n + 1)n−1. With this
enumeration at hand, we focus on the outcomes of the parking processes (i.e., the order in which the cars
park) and note that these can be vastly different depending on the parking rule. To make this precise, let
Sn denote the symmetric group on n letters. Define the outcome map (under the classical parking rule) as
OPFn

: PFn → Sn given by OPFn
(α) = (π1, π2, . . . , πn), where car πi parks in spot i given the preference list

α—note that this may or may not be the spot it preferred. The outcome map under the classical parking rule
appears in Stanley [10, Exercise 5.49(d,e)] and a detailed proof can be found in [1, Proposition 3.1]. The result
states that if π = (π1, π2, . . . , πn) ∈ Sn, then

|O−1PFn
(π)| := |{α ∈ PFn : OPFn(α) = π}| =

n∏
i=1

`(i;π),

where `(i;π) is the length of the longest subsequence πj , . . . , πi of π such that πk ≤ πi for all j ≤ k ≤ i. The
authors in [1] extend this result to the outcome map under the “k-Naples parking rule,” which allows cars
to back up to k spots if they find their preferred spot occupied prior to continuing forward. They obtain an
analogous result for the size of the fibers of the corresponding outcome map [1, Theorem 3.1] and use it to give
a nonrecursive formula for the number of k-Naples parking functions of length n [1, Theorem 3.1].

Motivated by the results in [1], in Section 2.2 we study the fibers of the outcome map under the MVP
parking rule, OMVPn : MVPn → Sn defined analogously by

OMVPn(α) = (π1, π2, . . . , πn),

where car πi parks in spot i given the preference list α, which again may or may not be the spot it preferred. Note
that even though PFn = MVPn as sets, for an α in these sets that is not a permutation, the outcomes OPFn

(α)
and OMVPn

(α) can be vastly different. As we notice above, α = (1, 1, 1, 1) results in OPF4
(α) = (1, 2, 3, 4) while

OMVP4
(α) = (4, 3, 2, 1).

In Section 3 we study the fibers of the MVP outcome map through the lens of permutation pattern avoidance.
Our first main result (Theorem 3.1) gives an upper bound for the size of the fiber of π ∈ Sn, namely the
cardinality of the set

O−1MVPn
(π) := {v ∈ MVPn : OMVPn

(v) = π}.

We then give a complete characterization for when the bound in Theorem 3.1 is tight based on the associated
permutation (determining the parking order) avoiding the permutation patterns 321 and 3412 (Theorem 3.2).
In Section 4, we consider special families of permutations and give the cardinality of their corresponding fibers.
Among the permutations considered is the longest word w0 = (n, n− 1, . . . , 3, 2, 1) ∈ Sn, for which we establish
that |O−1MVPn

(w0)| is enumerated by the Motzkin numbers∗ (Theorem 4.1). We also give families of permutations
for which the cardinality of the corresponding fiber is exponential and others in which it is linear. We also note
that we provide a python implementation for MVP parking functions and the outcome map, which can be found
in [4]. We conclude the article with some open problems.

∗OEIS https://oeis.org/A001006. The Motzkin numbers first appeared in Motzkin [8]. See Donaghey and Shapiro [2] for a
sample of the settings in which they arise.
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2. Preliminaries on MVP parking functions

In this section, we enumerate and characterize MVP parking functions and provide some initial results setting
up our analysis of the fibers of the outcome map.

2.1 Enumerating and characterizing MVP parking functions

We begin with our first result which establishes the set equality of PFn and MVPn.

Theorem 2.1. Let n ∈ N and α ∈ [n]n. Then, α ∈ PFn if and only if α ∈ MVPn.

Proof. Note that for both the parking rule and the MVP parking rule, which spots are occupied after the arrival
of a car is solely a function of which spots are occupied before its arrival—which cars occupy them is immaterial.
Therefore, for any α ∈ [n]n, it suffices to check that the set of spots occupied throughout the parking process
(and in particular at its conclusion) is consistent among the two parking rules. To do this, for each parking rule
we define a sequence of functions f1, f2, . . . , fn : [n]n → {0, 1}n where for any α = (a1, a2, . . . , an) ∈ [n]n and
any i, j ∈ [n], the jth entry of f i(α), denoted f ij(α), is 1 if spot j is occupied after the arrival of car i given α,
and 0 otherwise.

Given α, let χ(α) = (χ1(α), χ2(α), . . . , χn(α)) ∈ {0, 1}n be the outputs of such functions under the classical
parking rule. Similarly, given α, let ψ(α) = (ψ1(α), ψ2(α), . . . , ψn(α)) ∈ {0, 1}n be the outputs of such functions
under the MVP parking rule. Next, we show that χ(α) = ψ(α).

When the first car arrives, it parks in its preferred spot under either rule. Therefore, χ1(α) = ψ1(α).
Now, suppose by way of induction that χi(α) = ψi(α) for some 1 ≤ i < n. We now need to show that
χi+1(α) = ψi+1(α). Recall ai+1 ∈ [n] is the preferred spot of car i + 1. If χiai+1

(α) = ψiai+1
(α) = 0, car

i + 1 parks in spot ai+1 under either rule and so χi+1(α) = ψi+1(α) with χi+1
ai+1

(α) = ψi+1
ai+1

(α) = 1. If

χiai+1
(α) = ψiai+1

(α) = 1, there are two possible cases. If there exists some j > ai+1 such that χij(α) = ψij(α) = 0,

pick the smallest such j. Under the classical parking rule, car i + 1 parks in spot j and so χi+1
j (α) = 1 while

χiai+1
(α) = χi+1

ai+1
(α) = 1 remains the same. Under the MVP parking rule, car i + 1 parks in spot ai+1 while

the car that was parked in spot ai+1 now parks in spot j. Then, ψiai+1
(α) = ψi+1

ai+1
(α) = 1 remains the same

while ψi+1
j (α) = 1. On the other hand, suppose there does not exist j > ai+1 such that χij(α) = ψij(α) = 0.

Under the classical parking rule, car i+ 1 is unable to park and so χi(α) = χi+1(α). Under the MVP parking
rule, car i + 1 parks in spot ai+1 while the car that was parked in spot ai+1 is now unable to park, and so
ψi(α) = ψi+1(α). In both cases, we have χi+1(α) = ψi+1(α).

As a consequence of Theorem 2.1, classical results on the enumeration and characterization of (classical)
parking functions extend to MVP parking functions. This includes the following.

Corollary 2.1 ( [5], Lemma 1). If n ∈ N, then |MVPn| = (n+ 1)n−1.

Corollary 2.2 (See [14], pp. 836). Let n ∈ N and α ∈ [n]n. Let b(α) = (b1(α), b2(α), . . . , bn(α)) be the
nondecreasing rearrangement of α, so that b1(α) ≤ b2(α) ≤ · · · ≤ bn(α). Then, α ∈ MVPn if and only if
bi(α) ≤ i for all i ∈ [n].

Note that although PFn = MVPn, provided α ∈ PFn \Sn, the outcome maps OPFn
(α) and OMVPn

(α) can
be vastly different, and this is in no way explained by Theorem 2.1. Thus the remainder of the manuscript is
dedicated to the question: Given a permutation π ∈ Sn, can we characterize and enumerate the set of MVP
parking functions α ∈ MVPn which satisfy OMVPn(α) = π?

2.2 MVP parking functions and their outcome map

For a finite set S, let SS denote its set of permutations. For ease of notation, we use Sn to denote S[n]. For
π ∈ Sn, we adopt the following (unusual, but convenient one-line) notation π = (π1, π2, . . . , πn) where, for
j ∈ [n], we denote πj = π(j).

Proposition 2.1. For any n ∈ N, OMVPn
is a well-defined function.

Proof. Let α ∈ MVPn. By definition, after the arrival of cars with preferences in α, each of the n spots is
occupied by one of the n cars—we represent said configuration with π ∈ Sn. That is, πj = i indicates spot j is
occupied by car i, where i, j ∈ [n]. Note that π is solely determined by α and the MVP parking rule. Therefore,

(i) OMVPn
⊆ MVPn ×Sn, where we think of OMVPn

as a binary relation,

(ii) for every α ∈ MVPn, there exists π ∈ Sn such that (α, π) ∈ OMVPn , and
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(iii) for every α ∈ MVPn and every π, π′ ∈ Sn, (α, π), (α, π′) ∈ OMVPn implies π = π′.

That is, OMVPn
⊆ MVPn ×Sn is a total univalent relation†.

For π ∈ Sn, let

O−1MVPn
(π) = {α ∈ MVPn : OMVPn

(α) = π} ⊆ MVPn

be the fiber of π. As we show next, certain fibers are very simple.

Proposition 2.2. For any n ∈ N, O−1MVPn
((1, 2, . . . , n)) = {(1, 2, . . . , n)}.

Proof. Clearly (1, 2, . . . , n) ∈ O−1MVPn
((1, 2, . . . , n)). To see the converse, suppose π = (1, 2, . . . , n) and let

α = (a1, a2, . . . , an) ∈ O−1MVPn
((1, 2, . . . , n)). Recall that car i′ ∈ [n] bumps car i ∈ [n] if and only if i′ > i and

car i occupies the spot preferred by car i′ upon the arrival of the latter. Therefore, if car 1 parks in spot 1, it
must be the case that car 1 prefers spot 1 and no subsequent car prefers spot 1 (i.e., π1 = 1 necessitates a1 = 1
and ai > 1 for all i > 1). Similarly, if car 2 parks in spot 2, it must be the case that car 2 prefers spot 2 and
no subsequent car prefers spot 2 (i.e., π1 = 1, π2 = 2 necessitates a1 = 1, a2 = 2, and ai > 2 for all i > 2). We
can extend this argument inductively to conclude that π = (1, 2, . . . , n) necessitates α = (1, 2, . . . , n).

Proposition 2.2 implies |O−1MVPn
((1, 2, . . . , n))| = 1. This is in fact as small as a fiber as can be—our next

result implies that, for all π ∈ Sn, we have |O−1MVPn
(π)| ≥ 1.

Theorem 2.2. Let π ∈ Sn. Then, OMVPn(π) = π−1.

Proof. It suffices to show that π ∈ O−1MVPn
(π−1). Consider the preference vector α = (a1, a2, . . . , an) where, if

π−1i = j, then aj = i. We have α ∈ O−1MVPn
(π−1) by construction. We claim α ∈ Sn. To prove this, it suffices

to show that for every i ∈ [n], there exists a unique j ∈ [n] satisfying aj = i. By way of contradiction, suppose
there exists i ∈ [n] such that there does not exist a unique j ∈ [n] satisfying aj = i, and fix any such i. If there
is no j ∈ [n] satisfying aj = i, then π−1i /∈ [n], contradicting π−1 ∈ Sn. Similarly, if there are distinct j, j′ ∈ [n]
satisfying aj = aj′ = i, then π−1i = j and π−1i = j′, contradicting π−1 ∈ Sn. Therefore, it remains to show
that α = π, which is to show α · π−1 = (1, 2, . . . , n). Let i ∈ [n]. Then, π−1i = j for some j ∈ [n], in which case
aj = i by construction. That is, (α · π−1)i = i for all i ∈ [n], implying α = π.

Corollary 2.3. For each π ∈ Sn, we have |O−1MVPn
(π)| ≥ 1.

Proof. For each π ∈ Sn, there exists a unique π−1 ∈ Sn such that π · π−1 = (1, 2, . . . , n).

Before starting our next result, we recall that a permutation π is said to be an involution if π = π−1.
Moreover, π is an involution if consists exclusively of fixed points and disjoint transpositions.

Corollary 2.4. If π ∈ Sn is an involution, then OMVPn
(π) = π.

Proof. If π ∈ Sn is an involution, then π · π = (1, 2, . . . , n) (i.e., π = π−1).

3. The outcome map and permutations avoiding (3, 2, 1)
and (3, 4, 1, 2)

Next, we give an upper bound on the cardinality of the fibers of the outcome map. This work relies on the
following definitions.

Definition 3.1. Let π ∈ Sn where πj = i indicates the jth spot is occupied by the ith car. For each j ∈ [n],
find i ∈ [n] such that πj = i. Then, let

Cj(π) := ({π1, π2, . . . , πj−1} ∩ {i+ 1, i+ 2, . . . , n}) ∪ {i}

be the set of cars that arrive after the ith car (i.e., the cars numbered i+ 1, i+ 2, . . . , n) that park to the left of
spot j (i.e., in spots 1, 2, . . . , j − 1), together with the ith car itself.

Definition 3.2. Let π ∈ Sn where πj = i indicates the jth spot is occupied by the ith car. For each j ∈ [n], let

Ωj(π) := {k ∈ [j] : πk ∈ Cj(π)}

be the set of spots on or to the left of the jth spot (i.e., the spots numbered 1, 2, . . . , j) that have a car in the set
Cj(π) parked in them. Note that necessarily j ∈ Ωj(π).

†Recall that a function f : X → Y can be described as a binary relation on a subset R ⊆ X × Y that is univalent, i.e. ∀x ∈ X,
∀y, z ∈ Y , ((x, y) ∈ R ∧ (x, z) ∈ R)→ y = z, and total, i.e. ∀x ∈ X, ∃y ∈ Y , (x, y) ∈ R.
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We remark that Definition 3.1 is similar to a Lehmer code for permutations, which is defined as L(σ) =
(L(σ)1, . . . , L(σ)n) where L(σ)i = #{j > i : σj < σi}, i.e., L(σi) counts the number of terms in (σ1, . . . , σn)
to the right of σi that are smaller than it. For more on Lehmer codes, we point the interested reader to [7].

Example 3.1. Let π = 341526. Then C2(π) := {3, 4, 5, 2} since cars 3, 4, 5 arrived after car 2 and have parked
left of car 2. Then Ω2(π) := {1, 2, 4, 5}, which correspond to the spots cars 3, 4, 5, 2 occupy in π.

With these definitions at hand, we obtain the following upper bound.

Theorem 3.1. If π ∈ Sn, then

|O−1MVPn
(π)| ≤

n∏
j=1

|Ωj(π)|. (1)

Proof. Let α = (a1, a2, . . . , an) ∈ O−1MVPn
(π). Note that for each i, j ∈ [n] with πj = i, it must be the case

that the preference ai of the ith car satisfies ai ∈ Ωj(π). To see this, note that by the MVP parking rule if car
i′ ∈ [n] with i′ > i ultimately parks to the left of the jth spot, it may have bumped car i (this holds if car i
occupies the spot preferred by car i′ upon the arrival of the latter) to spot j.

The bound in Theorem 3.1 is not tight in general since, for example, if π = (1, 4, 6, 5, 2, 3) ∈ S6, then we

have computed‡ that |O−1MVPn
(π)| = 13 < 32 =

∏6
j=1 |Ωj(π)|. However, there are π ∈ Sn for which the bound

in (1) is, in fact, equality. In such cases, we say that π achieves preference independence. We use this wording
to emphasize that one car’s parking preference does not impact the preference of other cars.

Example 3.2. Consider the outcome π = (5, 1, 2, 3, 6, 9, 4, 7, 8). We can check that |O−1MVPn
(π)| = 128 =∏9

j=1 |Ωj(π)|, so π achieves preference independence.

In the remainder of this section, we characterize the conditions under which π ∈ Sn achieves preference
independence. To do so, we need the following definitions.

Definition 3.3. Let (S,≤S) and (T,≤T ) be totally ordered sets on m ∈ N elements. Let s ∈ SS and t ∈ ST .
We say s and t are order-isomorphic if, for all i, j ∈ [m] with i < j, si ≤ sj if and only if ti ≤ tj. We denote
order-isomorphism by s ∼ t.

For example, let S = {1, 2, 3, 4} and T = {3, 4, 6, 9}, both with the standard ordering. Consider s =
(2, 3, 1, 4) ∈ SS and t = (4, 6, 3, 9) ∈ ST , and note that s ∼ t.

Definition 3.4. Let π ∈ Sn and M ⊆ [n]. We say π contains ρ ∈ SM if π has a subpermutation π′ such that
π′ ∼ ρ. Otherwise, we say π avoids ρ.

Example 3.3. Note π = (7, 3, 6, 2, 5, 4, 1) contains (2, 3, 1), since the subpermutation (3, 5, 1) ∼ (2, 3, 1).
Also π = (7, 3, 6, 2, 5, 4, 1) contains (1, 3, 2), since the subpermutation (3, 5, 4) ∼ (1, 3, 2). However, π =
(7, 3, 6, 2, 5, 4, 1) avoids (1, 2, 3) as there is no subpermutation in π that is order-isomorphic to (1, 2, 3).

With these definitions at hand, we are ready to return to our question of interest: For what permutations
does Theorem 3.1 result in preference independence and, hence, an equality in (1)? The following results fully
establish this characterization.

Proposition 3.1. Let π ∈ Sn. If π contains (3, 2, 1) or (3, 4, 1, 2), then

|O−1MVPn
(π)| <

n∏
j=1

|Ωj(π)|.

Proof. Let π ∈ Sn, where πj = i indicates the jth spot is occupied by the ith car.
First, suppose π contains (3, 2, 1). Then, there exist x, y, z ∈ [n] satisfying x < y < z and πx > πy > πz.

By Definition 3.2 we have {x, y, z} ⊆ Ωπz
(π), {x, y} ⊆ Ωπy

(π), and {x} ⊆ Ωπx
(π). Suppose car πx prefers spot

x and car πy prefers spot x. Suppose moreover that car πi prefers spot i for all i ∈ [n] with i 6= x, y, z (recall
Definition 3.2 implies {i} ⊆ Ωi(π) for all i ∈ [n]). We claim car πz cannot prefer spot y. Assume by way of
contradiction that car πz prefers spot y. Since πx > πy > πz, car πz arrives first and parks in spot y. Car πy
arrives later and parks in spot x. Upon the arrival of car πx, car πx parks in spot x and bumps car πy. Since
car πi prefers spot i for all i ∈ [n] with i 6= x, y, z and since spot y is already occupied by some car πu with
u ≥ z and u 6= y, ultimately car πy is bumped to the right of spot y, a contradiction.

‡Code for these computations can be found in [4].
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Next, suppose π contains (3, 4, 1, 2). Then, there exist w, x, y, z ∈ [n] satisfying w < x < y < z, πx > πw >
πz > πy, and πv < πx for any w < v < y with v 6= x—the last condition is to say that car πx is the latest-
arriving car that parks between spots w and y. By Definition 3.2 we have {w, x, z} ⊆ Ωπz

(π), {w, x, y} ⊆ Ωπy
(π),

{x} ⊆ Ωπx
(π), and {w} ⊆ Ωπw

(π). Suppose car πy prefers spot x, car πw prefers spot w, and car πx prefers
spot x. Suppose moreover that car πi prefers spot i for all i ∈ [n] with i 6= w, x, y, z (recall Definition 3.2 implies
{i} ⊆ Ωi(π) for all i ∈ [n]). We claim car πz cannot prefer spot w. Assume by way of contradiction that car
πz prefers spot w. Since πx > πw > πz > πy, car πy arrives first and parks in spot x. Car πz arrives later and
parks in spot w. Car πw arrives later and parks in spot w, bumping car πz. Note that, by the time car πx
arrives, car πz has been bumped to spot y since car πi prefers spot i for all i ∈ [n] with i 6= w, x, y, z and since
car πx is the latest-arriving car that parks between spots w and y. Therefore, upon the arrival of car πx, car
πx parks in spot x and bumps car πy to the right of the already occupied spot y, a contradiction.

Given π ∈ Sn and an arbitrary preference vector α ∈ [n]n, we note that a car of α can always park where
it appears in π, by making the “trivial preference.” This is the rough idea of the following lemma.

Lemma 3.1. Let π = (π1, π2, . . . , πn) ∈ Sn, and let α ∈ [n]n be a preference vector such that car πj can only
prefer spots in Ωj(π), for all j ∈ [n]. Suppose car πi prefers spot i, for some i ∈ [n]. Then car πi ultimately
parks in spot i.

Proof. By Definition 3.2, any car πu > πi cannot prefer spot i. If any car πv < πi is parked in spot i, then car
πi bumps car πv to another spot further down the street. Hence car πi parks in spot i.

Now we prove the converse of Proposition 3.1, which we state using the contrapositive as follows.

Proposition 3.2. If π ∈ Sn avoids (3, 2, 1) and (3, 4, 1, 2), then |O−1MVPn
(π)| =

∏n
j=1 |Ωj(π)|.

Proof. Let π = (π1, π2, . . . , πn). It suffices to show that the preference of one car does not influence how another
car parks in π. This way, we demonstrate that π satisfies preference independence. We proceed by induction on
k, the number of cars π1, π2, . . . , πk starting from the left of π.

In the base case k = 1, note that car π1 can and must prefer spot 1 in order to park there. Now assume that
up to some k < n, the cars π1, π2, π3, . . . , πk can all prefer independently. We show that car πk+1 also prefers
independently. We consider the following cases:

Case 1: There does not exist j ≤ k such that πj > πk+1. Hence the cars parked to the left of car πk+1, which is
parked in spot k+ 1, were in the queue before it, i.e. πi < πk+1 for all 1 ≤ i ≤ k. By Definition 3.2, then,
πk+1 only prefers spot k + 1. It follows that car πk+1 parks in spot k + 1 as desired, by Lemma 3.1.

Case 2: There exists exactly one j ≤ k such that πj > πk+1. In this case, for every i ∈ [n] we plot (i, πi) on
the lattice [n]× [n] and note that the structure of the permutation π is illustrated in Figure 1. We begin

1 2 3 · · · j · · · k + 1 · · · n

Region 3

Region 1

Region 2

Region 4

πj

πk+1

n

...

1

Figure 1: Illustrating π in Case 2. Note that the shaded regions contain no points (i, π) other than the ones
included in the graphic.

by first noting that by Definition 3.2, car πk+1 prefers spots {j, k + 1}. We will show that car πk+1 can
prefer these spots independently.

First, we remark that, by assumption in this case, there exists only one index j where πj > πk+1.
This implies that cars π1, . . . πj−1, πj+1, . . . , πk < πk+1, park in spots {1, . . . , k} \ {j} and hence the
corresponding points (i, πi) for i ∈ {1, . . . , k} \ {j} all lie in Region 3 of Figure 1. This implies that
Region 1 in Figure 1 contains the point (j, πj) and is empty otherwise. Next, since π avoids the pattern
(3, 2, 1), cars πk+2, . . . , πn > πk+1 all must park in spots {k + 2, . . . , n} and hence the corresponding
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points (i, πi) for i ∈ {k+ 2, . . . , n} all lie in Region 4 of Figure 1. This implies that Region 2 of Figure 1
contains the point (k + 1, πk+1) and is empty otherwise.

Now suppose car πk+1 preferred spot j. By our inductive hypothesis, we know that cars

π1, π2, . . . , πj−1, πj+1, . . . , πk

all park independently between spots 1, . . . , k. When car πk+1 enters the street, it parks in spot j, bumping
any other car that may have parked there to a spot m < k + 1. Then car πk+1 gets bumped by car πj
or car πj′ afterwards to spot k + 1, where πk+1 < πj′ < πj . We know that there are no empty spots
between j and k + 1 since by the inductive hypothesis, all the cars π1, . . . , πk have now already parked
independently within those spots. Therefore car πk+1 will park in the first available spot, which is spot
k + 1. Note that car πk+1 will not get bumped out of this spot again since πk+2, . . . , πn > πk+1 and by
Definition 3.2, those cars will never prefer spot k + 1.

On the other hand, suppose car πk+1 preferred spot k + 1. Then car πk+1 parks in spot k + 1 as desired,
by Lemma 3.1.

We have therefore shown that car πk+1, given all of its preferences, parks independently under the as-
sumptions of Case 2.

Case 3: There exist m ≥ 2 and indices j1, j2, . . . , jm, where j1 < j2 < · · · < jm < k + 1, such that πji > πk+1

for all i ∈ [m].

First, notice that if the cars πj1 , . . . , πjm are not in increasing order, then that implies that there exists
two indices ja, jb where 1 < a < b ≤ m and πja > πjb . It follows then that there exists a (3, 2, 1) pattern,
giving rise to a contradiction. Figure 2 illustrates this case.

1 · · · j1 · · · j2 · · · j3 · · · jm · · · k + 1 · · · n

πj1

πk+1

n

...

1

πj2

πj3

πjm

Figure 2: Image showing the case where the cars πj1 , . . . , πjm are not in increasing order. The three circled
points illustrate a sample (3, 2, 1) pattern arising in π. Notice that any such instance of these points not in
increasing order would mean there is a (3, 2, 1) pattern in π.

Therefore, since π avoids (3, 2, 1) we have established that πj1 , . . . , πjm are in increasing order. Also π
must avoid the pattern (3, 4, 1, 2). For this to be true it must be that the cars πk+2, . . . , πn > πjm−1

, and
hence the points (a, πa), with k + 2 ≤ a ≤ n, all lie in Region 3 of Figure 3.

We now consider how car πk+1 parks in this case. By Definition 3.2, we know that car πk+1 prefers spots
{j1, j2, . . . , jm, k + 1}. Suppose car πk+1 prefers spot ji for some i ∈ [m]. Since car πji must park in spot
k + 1, car πk+1 must be bumped from spot ji by car πji or some car πj′i satisfying πk+1 < πj′i < πji .
Once bumped, car πk+1 cannot park in spot u if πu < πk+1, otherwise car πu will park incorrectly due to
spot u being occupied by a car arriving after it, contradicting the inductive hypothesis. Thus, after being
bumped, car πk+1 must park in some spot jt where i < t ≤ m, where it will then be bumped by car πjt
or by some car πj′t satisfying πk+1 < πj′t < πjt . This process is repeated until car πk+1 is bumped past
spot jm. It remains to show that no car other than πk+1 parks in spot k + 1.

By the inductive hypothesis, none of the cars π1, π2, . . . , πk can park in spot k + 1. Moreover, the cars
πk+2, πk+3, . . . , πn are all in Region 3 of Figure 3, so they cannot prefer spot k+1, and jm is the only spot
they can prefer which is left of k + 1. To show that these cars cannot park in spot k + 1 either, suppose
that some of them prefer spot jm. For a1, a2, . . . , au ∈ {k + 2, k + 3, . . . , n}, let πa1 < πa2 < . . . < πau
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be the cars preferring spot jm. By the time car πa1 enters the parking lot, car πk+1 will have already
been bumped past spot jm−1, since πa1 > πjm−1

. If car πk+1 parked in spot k + 1, it parks there and we
are done. If car πk+1 parked in spot jm, then it gets bumped by car πa1 and again parks in spot k + 1;
all the cars πal will get bumped past spot k + 1. Hence none of the cars πai park in spot k + 1 for all
i ∈ [u], as claimed. As these were the only possible cars that could potentially park in spot k+ 1, we have
established that no car other than πk+1 parks in spot k + 1, as desired.

We again note that car πk+1 preferring spot k + 1 is the trivial case. Thus we conclude that car πk+1

prefers independently under this case. Thereby completing the proof of this case.

1 · · · j1 · · · j2 · · · jm−1 · · · jm · · · k + 1 · · · n

πj1

πk+1

n

...

1

πj2

πjm−1

πjm

Region 2

Region 3

Region 1

Figure 3: Structure of case 4. A shaded region implies that that region can have no points (i, πi) other than
the ones included.

Collectively, we have now shown that in each case, car πk+1 prefers independently when the cars π1, π2, π3, . . . , πk
all prefer independently. This completes the inductive step and hence the proof.

Proposition 3.1 and Proposition 3.2 imply the following result.

Theorem 3.2. Let n ∈ N. Then

|O−1MVPn
(π)| =

n∏
j=1

|Ωj(π)|

if and only if π avoids (3, 2, 1) and (3, 4, 1, 2).

Remark 3.1. The set of permutations that avoid the patterns (3, 2, 1) and (3, 4, 1, 2) were studied by Tenner in
the context of the Boolean algebra, the set of subsets of [n] ordered by inclusion [12, Theorem 4.3]. Moreover, the
number of permutations in Sn that avoid (3, 2, 1) and (3, 4, 1, 2) is F2n−1, where Fk denotes the kth Fibonacci
number§, for more details see [3,13]. More recently, Lee, Masuda, and Park provide a summary of the relations
of this result to algebraic geometry [6, Theorem 1.1].

3.1 Applications: k-cycles

In this section, we consider k-cycles with decreasing or increasing consecutive entries. We begin by recalling
that a k-cycle is a permutation consisting of a single cycle of length k. We first consider increasing k-cycles.

Definition 3.5. Let π ∈ Sn. We say π is an increasing k-cycle if, in cycle notation¶, it has the form
〈a, a+ 1, . . . , a+ k − 1〉, for some a ∈ [n].

In one-line notation, these permutations can be described as having entries in increasing order and in which
one entry a ∈ [n] has been moved right by k − 1 spots. Namely, in one-line notation an increasing k-cycle has
the form:

π = (1, 2, . . . , a− 1, â, a+ 1, . . . , a+ k − 1, a, a+ k, . . . , n), (2)

where we shift the smaller entry a by k− 1 indices to the right and each of the entries a+ 1, a+ 2, . . . , a+ k− 1
to the left by one index, while all other entries remain in place. Informally, we think of this as just “moving a

§OEIS https://oeis.org/A000045.
¶Note that we use “〈” and “〉” to denote the cycle notation of a permutation since we use parenthesis to denote the one-line

notation.
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small number to the right.” Note that in (2) we write â to illustrate that we have removed this instance of a
from the permutation.

Example 3.4. The permutation π = 〈2, 3, 4〉 = (1, 3, 4, 2, 5, 6) is an increasing 3-cycle with a = 2, whereas
τ = 〈1, 2, 3, 4, 5〉 = (2, 3, 4, 5, 1) is an increasing 5-cycle with a = 1.

ss

Lemma 3.2. If π = 〈a, a + 1, . . . , a + k − 1〉 = (1, 2, . . . , a − 1, â, a + 1, . . . , a + k − 1, a, a + k, . . . , n) is an
increasing k-cycle, then

|O−1MVPn
(π)| = k.

Proof. We begin by noting that π avoids (3, 2, 1) and (3, 4, 1, 2). Therefore, we can apply Theorem 3.2, i.e.,
preference independence holds in this case. Note that for any car c with c 6= a, car c can only prefer one spot by
Definition 3.2, namely the spot in which it parks. Now, consider car a. Since we move car a to the right, all the
cars left of car a and right of car a− 1 are greater than a. By Definition 3.2, car a can prefer any of the k − 1
spots occupied by these cars. By Definition 3.2, a can also prefer the spot in which it parks. Therefore, the
total number of possible preferences for car a is k. Since all other cars only prefer one spot, then, the product
of all possible preferences is equal to k.

Applying Lemma 3.2 to the permutations of Example 3.4 yields:

|O−1MVPn
((1, 3, 4, 2, 5, 6))| = 3 and |O−1MVPn

((2, 3, 4, 5, 1))| = 5.

We now turn our attention to decreasing k-cycles.

Definition 3.6. Let π ∈ Sn. We say π is a decreasing k-cycle if, in cycle notation, it has the form 〈b, b −
1, . . . , b− k + 1〉, for some b ∈ [n].

In one-line notation, these permutations can be described as having entries in increasing order and in which
one entry b ∈ [n] has been moved left by k− 1 spots. Namely, in the one-line notation, a decreasing k-cycle has
the form:

π = (1, 2, . . . , b− k, b, b− k + 1, . . . , b− 1, b̂, b+ 1, . . . , n), (3)

where we shift the larger entry b by k− 1 indices to the left and each of the entries b− k+ 1, b− k+ 2, . . . , b− 1
to the right by one index, while all other entries remain in place. Informally, we think of this as just “moving
a larger number to the left.” As before, in (3), we write b̂ to illustrate that we have removed this instance of b
from the permutation.

Example 3.5. The permutation π = 〈6, 5, 4〉 = (1, 2, 3, 6, 4, 5) is an decreasing 3-cycle with b = 6, whereas the
permutation τ = 〈5, 4, 3, 2, 1〉 = (5, 1, 2, 3, 4) is an increasing 5-cycle with b = 5.

We now establish the following.

Lemma 3.3. Let 2 ≤ b ≤ n. If π = 〈b, b−1, . . . , b−k+1〉 = (1, 2, . . . , b−k, b, b−k+1, . . . , b−1, b̂, b+1, . . . , n)
is a decreasing k-cycle, then

|O−1MVPn
(π)| = 2k−1.

Proof. We begin by noting that π avoids (3, 2, 1) and (3, 4, 1, 2). Therefore, we can apply Theorem 3.2, i.e.,
preference independence holds in this case. Note that all of the cars left of b are smaller than b and that they
are arranged in increasing order up to b. Therefore, by Definition 3.2, each of these cars can only prefer one
spot, namely the spot in which it parks. Similarly, by Definition 3.2, car b can only prefer one spot, namely the
spot in which it parks. Lastly, cars b + 1, . . . , n can only prefer one spot as well, by the same argument. Now
consider all the cars right of b and left of b+ 1, which are the cars b− k+ 1, b− k+ 2, . . . , b− 1. These cars are
arranged in increasing order but are each less than b. Therefore, by Definition 3.2, each of these cars can only
prefer two spots: the one they currently occupy and that of b. The total number of such cars is k− 1 and since
each car prefers two spots independently, the product of their possible preferences is given by 2k−1. Since all
other cars prefer only one spot, the product of all possible preferences is equal to 2k−1.

Applying Lemma 3.3 to the permutations of Example 3.5 yields:

|O−1MVPn
((1, 2, 3, 6, 4, 5))| = 22−1 = 4 and |O−1MVPn

((5, 1, 2, 3, 4))| = 25−1 = 16.
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4. The outcome map and Motzkin paths

In this section, we give a bijection between Motzkin paths of length n and the elements of O−1MVPn
(w0), where

w0 := (n, n− 1, . . . , 2, 1) is the longest word in Sn.

Definition 4.1. Let n ∈ N. A Motzkin path of length n is a lattice path consisting solely of horizontal steps
(1, 0), upward diagonal steps (1, 1), and downward diagonal steps (1,−1), which begins at (0, 0) and ends at
(n, 0), and which does not fall below the x-axis.

Figure 4 illustrates the nine Motzkin paths of length 4.

Figure 4: Motzkin paths of length 4.

We let Mn denote the set of Motzkin paths of length n ∈ N. The sequence |Mn| for n ∈ N is known as the
Motzkin numbers‖. The sequence begins:

1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, . . .

and has a closed formula

|Mn| =
bn2 c∑
k=0

(
n

2k

)
Ck,

where Ck = 1
k+1

(
2k
k

)
denotes the kth Catalan number∗∗.

For n ∈ N, let Pn be the set of lattice paths of length n beginning at (0, 0) and consisting of upward diagonal,
downward diagonal, and horizontal steps. We begin by constructing lattice paths from MVP parking functions
as follows.

Definition 4.2. Let n ∈ N and v = (v1, v2, . . . , vn) ∈ [n]n. Let Φ : [n]n → Pn, where Φ(v) = φ(1)φ(2) · · ·φ(n)
starts from (0, 0) and is built iteratively as follows. For each j ∈ [n]:

• If |{i ∈ [n] : vi = j}| = 0, then φ(j) = D denoting a downward diagonal step (1,−1).

• If |{i ∈ [n] : vi = j}| = 1, then φ(j) = H denoting a horizontal step (1, 0).

• If |{i ∈ [n] : vi = j}| ≥ 2, then φ(j) = U denoting an upward diagonal step (1, 1).

Example 4.1. Figure 5 illustrates the lattice path corresponding to v = (2, 2, 1, 3), which one constructs based
on the following:

• If j = 1 or j = 3, then |{i ∈ [4] : vi = 1}| = |{i ∈ [4] : vi = 3}| = 1, so φ(1) = φ(3) = H.

• If j = 2, then |{i ∈ [4] : vi = 2}| = 2, so φ(2) = U .

• If j = 4, then |{i ∈ [4] : vi = 4}| = 0, so φ(4) = D.

Hence Φ((2, 2, 1, 3)) = HUHD. Note that this is the same lattice path as that corresponding to v = (2, 1, 2, 3).

The main result of this section is as follows.

Theorem 4.1. If n ≥ 1 and w0 = (n, n − 1, . . . , 3, 2, 1) ∈ Sn (i.e., w0 is the longest word in Sn), then,
|O−1MVPn

(w0)| = |Mn|.

‖OEIS https://oeis.org/A001006.
∗∗OEIS http://oeis.org/A000108. For a comprehensive survey, see Stanley [11].
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Figure 5: Lattice path corresponding to (2, 2, 1, 3) and (2, 1, 2, 3).

In order to prove Theorem 4.1 we establish a bijection between the set of MVP parking functions α satisfying
OMVPn(α) = (n, n− 1, . . . , 3, 2, 1) and the set of lattice paths Φ(α) arising from them, and then we show that
the set Φ(α) is precisely the set Mn. To begin we show that at most two cars can prefer the same spot if α
satisfies OMVPn

(α) = (n, n− 1, . . . , 3, 2, 1).

Lemma 4.1. If α is an MVP parking function satisfying OMVPn
(α) = (n, n − 1, . . . , 3, 2, 1), then any spot in

[n] is preferred by at most two cars.

Proof. Assume for the sake of contradiction that, for some i ∈ [n], there are more than 2 cars that prefer spot
i in α. Since car n− i+ 1 must park at spot i, it must be the last car preferring this spot. Consider three cars
x, y, z that all prefer spot i, where x < y < z, and in which car z = n − i + 1, and no car y < y′ < z prefers
spot i. In this situation, car x is bumped by car y (or some other car) out of spot i, and then car y is bumped
out of spot i by car z. Since any car z′ after z must park at some spot j < i, z′ does not interfere with how
cars x, y, z park, so our MVP parking rule yields OMVPn(α) = (. . . , z, . . . , x, . . . , y, . . .). We have arrived at a
contradiction since the three cars are supposed to park in the order . . . z . . . y . . . x . . ..

For the rest of this section, we restrict the domain of Φ to the set O−1MVPn
((n, n− 1, . . . , 3, 2, 1)).

Lemma 4.2. If α is an MVP parking function satisfying OMVPn
(α) = (n, n − 1, . . . , 3, 2, 1), then for any

i ∈ [n] the lattice path Φ(α) satisfies that the first i steps have at least as many upward diagonals as downward
diagonals.

Proof. For all j ∈ [n], parking spot j corresponds to the jth lattice step in Φ(α). By Lemma 4.1 and by
definition of Φ(α), each upward diagonal corresponds to a spot preferred by exactly two cars, each horizontal
step corresponds to a spot preferred by exactly one car, and each downward diagonal corresponds to a spot
preferred by no cars. For each j ∈ [n], car n− j + 1 must prefer a spot in [j], since it must park at spot j.

Let i ∈ [n]. Among the first i steps, label those that are downward diagonals as i1, i2, . . . , im ≤ i. For each
j ∈ [m], car n − ij + 1 must park at spot ij , but prefers some spot i′j < ij that is not a downward diagonal.
Thus, we have i cars preferring the remaining i−m spots. By Lemma 4.1 and the pigeonhole principle, at least
m of these remaining i−m spots must be preferred exactly twice. Thus, there are at least m upward diagonals
among the first i steps.

Corollary 4.1. If α is an MVP parking function satisfying OMVPn(α) = (n, n− 1, . . . , 3, 2, 1), then the lattice
path Φ(α) always begins at (0, 0) and the first step is either a horizontal step or an upward diagonal step.

Proof. We know from Definition 4.2 that we always start at (0, 0). Now, from Lemma 4.2, we know that we
can never start with a downward diagonal. Therefore, our first step is always going to be a horizontal step or
an upward diagonal.

Lemma 4.3. If α is an MVP parking function satisfying OMVPn(α) = (n, n − 1, . . . , 3, 2, 1), then for any
i ∈ [n] the lattice path Φ(α) satisfies that the last i steps have at least as many downward diagonals as upward
diagonals.

Proof. Assume for the sake of contradiction that there exists i ∈ [n] such that the last i steps of Φ(α) have
m1 downward diagonals and m2 upward diagonals where m1 < m2. Among these last i steps, there are
m3 = i−m1−m2 horizontal ones. By Lemma 4.1, each of the m2 spots that are upward diagonals is preferred
by exactly two cars. It follows that the number of cars preferring the last i spots is 2m2 +m3 = m2 +m3 +m2 =
i −m1 + m2 > i. Thus, at least one of these cars cannot park in these i spots, contrary to α being an MVP
parking function.

We now establish that the lattice paths constructed via Φ(α) when α satisfies OMVPn
(α) = (n, n −

1, . . . , 3, 2, 1) are indeed the set of Motzkin paths. Since the paths Φ(α), by definition, begin at (0, 0) and
consist of upward diagonal, downward diagonal, and horizontal steps, it suffices to establish that these paths
end at (n, 0) and never fall below the x-axis. We establish this result next.

Proposition 4.1. If α satisfies OMVPn
(α) = (n, n− 1, . . . , 3, 2, 1), then Φ(α) ∈Mn.
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Proof. By Lemma 4.2, Φ(α) never falls below the x-axis as Φ(α) has at least as many upward diagonals as
downward ones at each step i ∈ [n]. Taking i = n yields that Φ(α) has at least as many upward diagonals as
downward ones. By Lemma 4.3, Φ(α) has at least as many downward diagonals as upward ones among the last
i steps, for every i ∈ [n]. Taking i = n yields that Φ(α) has at least as many downward diagonals as upward
ones. Thus, Φ(α) has the same number of upward diagonals as downward ones, ensuring that Φ(α) starts at
(0, 0) and ends at (n, 0) and never falls below the x-axis. Thus Φ(α) ∈Mn as desired.

For n ∈ N, we now give the inverse map Φ−1 : Mn → O−1MVPn
((n, n − 1, . . . , 1)), from Motzkin paths of

length n to MVP parking functions with reverse order outcome (n, n− 1, . . . , 2, 1).
Following the convention of parking functions, by i 7→ j we will mean that car i prefers spot j, or we can

view it as “adding” car i to spot j. Let π = (n, n − 1, . . . , 2, 1) be the desired outcome permutation. Given
a Motzkin path P of length n, label these n steps 1, 2, . . ., n corresponding to the n parking spots. From
left to right, we can determine what cars prefer each spot (or what cars to “add” to each spot), depending
on whether that spot is a horizontal line (exactly one car), upward diagonal (exactly two cars), or downward
diagonal (exactly zero cars). A nondecreasing spot is either a horizontal line or an upward diagonal.

We now give a procedure for bracketing (or pairing) the upward diagonals of P with the downward diagonals
of P which we will use shortly in our analysis. Treat an upward diagonal as a left parenthesis “(” and a downward
diagonal as a right parenthesis “)”. By the end of this procedure, all the upward diagonals will be paired with
all the downward diagonals. For each step S of the path P , let φS denote the spot corresponding to S. We
proceed as follows:

1. Find the rightmost upward diagonal U and pair it with the nearest downward diagonal D to its right.
Output the pairs (U,D) and (φU , n− φD + 1). Then remove this pair of diagonals from consideration.

2. Repeat this process until all diagonals have been paired.

Remark 4.1. In what follows, the pair (φU , n − φD + 1) will tell us that car n − φD + 1 prefers spot φU in
order to park at spot φD.

Definition 4.3. Let P be a Motzkin path with n steps. The MVP parking function corresponding to P
is constructed as follows: First note that car i must park in spot n − i + 1, due to the reverse order of w0 =
(n, n−1, . . . , 2, 1), and it must prefer a spot in [n−i+1]. We fill the spots 1, 2, . . . , n with the cars n, n−1, . . . , 1,
as follows:

1. Identify the nondecreasing steps u1, u2, . . . , uk in P .

2. Add car n− ui + 1 to spot ui for each i ∈ [k].

3. Add the remaining cars to the spots that are upward diagonals via the bracketing procedure for diagonals:
For each resulting pair (U,D) of diagonals, add car n− φD + 1 to spot φU .

To display all the diagonals together with their corresponding spots, we put them in a two-line matrix whose
upper row consists of these diagonals and whose lower row consists of their spots. Those positions not appearing
in the bottom row of the matrix correspond to horizontal steps.

Example 4.2. Consider the Motzkin path P of length 9 illustrated in Figure 6.

Figure 6:

By Step (1) we identify the nondecreasing steps: u1 = 1, u2 = 2, u3 = 3, u4 = 6, u5 = 7.
By Step (2) we add car n− ui + 1 to spot ui which yields:

9− 1 + 1 = 9 7→ 1, 9− 2 + 1 = 8 7→ 2, 9− 3 + 1 = 7 7→ 3, 9− 6 + 1 = 4 7→ 6, 9− 7 + 1 = 3 7→ 7.

Now we note that the diagonals of P are:[
U U D D U U D D
1 2 4 5 6 7 8 9

]
In Step (3) we apply the bracketing process between the steps U and D which results in the output (φU , n−φD+1)
and where we let Û and D̂ mean that those steps have been deleted from the path:

ECA 3:2 (2023) Article #S2R11 12



Pamela E. Harris, Brian M. Kamau, J. Carlos Mart́ınez Mori, and Roger Tian

• UUDDU(UD)D outputs pair (7, 9− 8 + 1) = (7, 2),

• UUDD(UÛD̂D) outputs pair (6, 9− 9 + 1) = (6, 1),

• U(UD)DÛÛD̂D̂ outputs pair (2, 9− 4 + 1) = (2, 6), and

• (UÛD̂D)Û ÛD̂D̂ outputs pair (1, 9− 5 + 1) = (1, 5).

Finally, we add car n− φD + 1 to spot φU :

2 7→ 7, 1 7→ 6, 6 7→ 2, 5 7→ 1.

Thus, the corresponding MVP parking function is Φ−1(P ) = (6, 7, 7, 6, 1, 2, 3, 2, 1), which one can readily verify
satisfies OMVPn

(6, 7, 7, 6, 1, 2, 3, 2, 1) = (9, 8, 7, 6, 5, 4, 3, 2, 1).

Example 4.3. Consider the Motzkin path P of length 9:

By Step (1) we identify the nondecreasing steps: u1 = 1, u2 = 2, u3 = 3, u4 = 4, u5 = 7.
By Step (2) we add car n− ui + 1 to spot ui which yields:

9− 1 + 1 = 9 7→ 1, 9− 2 + 1 = 8 7→ 2, 9− 3 + 1 = 7 7→ 3, 9− 4 + 1 = 6 7→ 4, 9− 7 + 1 = 3 7→ 7.

Now we note that the diagonals of P are:[
U U U D D U D D
1 2 4 5 6 7 8 9

]
In Step (3) we apply the bracketing process between the steps U and D which results in the output (φU , n−φD+1)
and where we let Û and D̂ mean that those steps have been deleted from the path:

• UUUDD(UD)D outputs pair (9− 3 + 1, 2) = (7, 2)

• UU(UD)DÛD̂D outputs pair (9− 6 + 1, 5) = (4, 5)

• U(UÛD̂D)ÛD̂D outputs pair (9− 8 + 1, 4) = (2, 4)

• (UÛÛD̂D̂ÛD̂D) outputs pair (9− 9 + 1, 1) = (1, 1)

Finally, we add car n− φD + 1 to spot φU :

2 7→ 7, 5 7→ 4, 4 7→ 2, 1 7→ 1.

Thus, the corresponding MVP parking function is Φ−1(P ) = (1, 7, 7, 2, 4, 4, 3, 2, 1), which one can readily
verify satisfies OMVPn

= (9, 8, 7, 6, 5, 4, 3, 2, 1).

Lemma 4.4. The bracketing procedure on P results in the pairing of the upward diagonals with the downward
diagonals in a one-to-one correspondence.

Proof. Since P is a Motzkin path, its last i steps have at least as many downward diagonals as upward ones, for
any i ∈ [n]. It follows that the bracketing procedure pairs every upward diagonal with exactly one downward
diagonal in an injective manner. Since the upward diagonals are equinumerous with the downward ones, the
two sets are paired in a one-to-one correspondence by the bracketing procedure.

For an upward diagonal U paired with downward one D via bracketing, we call the path connecting U and
D the enclosure of (U,D), denoted enc(U,D); enc(U,D) will also denote the path connecting φU and φD (i.e.
all the spots from φU to φD), when the context is clear.

No diagonal enclosed by a bracketed pair (U,D) of diagonals is paired with a diagonal outside the enclosure.

Lemma 4.5. Suppose the upward diagonal U is paired with the downward diagonal D by the bracketing procedure
on P , with the associated output pair (φU , n−φD + 1). If U ′ and D′ are also paired diagonals with U ′ 6= U and
D′ 6= D, then one of the following is true:
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1. U ′ is right of U and D′ is left of D.

2. U ′ is left of U and D′ is right of D.

3. Both U ′, D′ are left of U .

4. Both U ′, D′ are right of D.

Proof. It suffices to show that the following cases cannot occur:

1. U ′ is between U and D while D′ is right of D.

2. U ′ is left of U while D′ is between U and D.

Suppose Case 1 occurs. Since U ′ is the right of U , U ′ gets paired first. Hence D has not yet been paired at
the time U ′ is getting paired, but D is closer to U ′ than D′ is. Thus, D′ is not paired with U ′, which is a
contradiction.

Suppose Case 2 occurs. Since U is the right of U ′, U gets paired first. Hence D′ has not yet been paired
at the time U is getting paired, but D′ is closer to U than D is. Thus, D is not paired with U , which is a
contradiction.

Remark 4.2. Lemma 4.5 shows that each pair of enclosures are either disjoint or related by containment. This
structural property is often referred to as “laminarity” (see [9, Chapter 13.4]).

An enclosure enc(U,D) is maximal if no other enclosure enc(U ′, D′) contains it, in other words, there exist
no paired diagonals (U ′, D′) with U ′ left of U and D′ right of D. In Example 4.2, there are two maximal
enclosures–one with output pair (6, 1) and one with output pair (1, 5). In Example 4.3, there is one maximal
enclosure with output pair (1, 1).

Corollary 4.2. The Motzkin path P can be partitioned into a sequence of maximal enclosures linked by hori-
zontal steps.

For any enclosure enc(U,D), we define its laminar level to be the length of any maximal sequence of
enclosures enc(U,D), enc(U1, D1), enc(U2, D2), . . ., enc(Uk, Dk) such that

1. enc(U,D) contains enc(U1, D1)

2. enc(Ui, Di) contains enc(Ui+1, Di+1) for all i ∈ [k − 1].

In Example 4.3, the enclosure corresponding to the output pair (1, 1) has laminar level 3.
Next, we show that a car with a smaller index preferring an upward diagonal U always parks at the downward

diagonal D paired with U .

Lemma 4.6. Suppose the upward diagonal U is paired with the downward diagonal D by the bracketing procedure
on P , with the associated output pair (φU , n− φD + 1). Then the cars preferring enc(U,D) are n− φD + 1, n−
φD + 2, . . . , n−φU + 1. Furthermore, by the time car n−φU + 2 enters the parking lot, car n−φD + i will have
parked at its final spot φD − i+ 1, for all i ∈ [φD − φU + 1].

Proof. We proceed via strong induction on the laminar level of enc(U,D). For the base case of laminar level
1, U and D are linked by horizontal steps only. The spots φU , φU + 1, . . . , φD − 1 are nondecreasing, so by
definition, they are preferred by cars n−φU +1, n−φU , . . . , n−φD+2, respectively. Car n−φD+1 also prefers
spot φU , but it is bumped by car n− φU + 1 after the other cars park at the spots they prefer, and hence car
n− φD + 1 parks at spot φD. These cars park without interference from the cars preferring spots left of φU , as
the cars from the latter set that do the bumping are greater than n− φU + 1.

Now suppose that the claim is true for all enclosures of the laminar level at most k. We prove the claim for
enc(U,D) of laminar level k+ 1. The steps between U and D can be partitioned into a sequence, in right-to-left
order, of disjoint enclosures E1, E2, . . . , El linked by horizontal steps, where Ei has the laminar level at most k
for all i ∈ [l]. Again, cars n − φU + 1 and n − φD + 1 both prefer spot φU , with the cars between n − φU + 1
and n − φD + 1 preferring the spots between φU and φD. By the inductive hypothesis, Ei is completely and
correctly parked before the cars preferring Ei+1 start entering the parking lot, for each i ∈ [l − 1]; recall that
Ei+1 is left of Ei. Also, for any horizontal step j, car n− j + 1 parks at its preferred spot j. It follows that all
the steps between U and D are completely and correctly parked before car n − φU + 1 enters the parking lot.
Finally, car n− φD + 1 is bumped by car n− φU + 1 to its final spot φD. Again, the bumping cars preferring
spots left of φU are greater than n− φU + 1, so they do not interfere.

Proposition 4.2. If P ∈Mn, then Φ−1(P ) ∈ O−1MVPn
((n, n− 1, . . . , 2, 1)).
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Proof. By Corollary 4.2, we can partition the steps of P into a sequence of maximal enclosures E1, E2, . . . , Ek
linked by horizontal steps. Any car that gets bumped before parking must prefer one of these enclosures. By
Lemma 4.6, the cars preferring Ei will park correctly within Ei, for all i ∈ [k]. Finally, the cars preferring the
horizontal steps will park where they prefer, since no bumping occurs at any horizontal step.

Now that we have established both Φ and Φ−1, we obtain the following.

Theorem 4.2. The map Φ : O−1MVPn
((n, n− 1, . . . , 2, 1))→Mn is a bijection.

Theorem 4.1 immediately follows as a corollary.

4.1 Applications: Permutations with an increasing tail

We now consider a special subset of permutations in Sn for which we can apply Theorem 4.1 to describe the
size of the fibers of the outcome map. To do this, we formally describe a permutation “with an increasing tail.”

Definition 4.4. Let m > n. For π ∈ Sn define the permutation π′ ∈ Sm as follows:

π′ = π(n+ 1)(n+ 2) · · ·m.

For example, if π = 4231 ∈ S4, then π′ = 42315678 ∈ S8, and if π = 21543 ∈ S5, then π′ = 2154367 ∈ S7.
We can now establish our first result.

Lemma 4.7. For m > n, if π ∈ Sn and π′ = π(n + 1)(n + 2) · · ·m ∈ Sm, as in Definition 4.4, then
|O−1MVPm

(π′)| = |O−1MVPn
(π)|.

Proof. For this proof, it suffices to provide a bijection between O−1MVPm
(π′) and O−1MVPn

(π).
Let π′ = π(n+1)(n+2) · · ·m where π ∈ Sn and m ≥ n. Notice that by Definition 3.2, each car π′n+1, . . . , π

′
m

can only prefer one spot, that is, where it parks and none of them prefer any spots in [n]. Similarly, by
Definition 3.2, the cars in π cannot prefer spots n + 1, n + 2, . . . ,m. This implies that cars π′n+1, . . . , π

′
m park

independently of the cars in π. We now define the map ψ : O−1MVPn
(π)→ O−1MVPm

(π′) given by

ψ(β) = β(n+ 1)(n+ 2) · · ·m.

This means that each car i, with n + 1 ≤ i ≤ m, prefers spot i. We now show that ψ is a one-to-one map.
Consider α, β ∈ O−1MVPn

(π) where ψ(α) = ψ(β). Then note

ψ(α) = α(n+ 1) · · ·m = β(n+ 1) · · ·m = ψ(β)

if and only if α = β, as expected.
We now show that the map ψ is onto, that is that given β ∈ O−1MVPm

(π′), there exists α ∈ O−1MVPn
(π) such

that ψ(α) = β. To begin let β = (b1, b2, . . . , bm) ∈ O−1MVPm
(π′), where π′ = π(n + 1)(n + 2) · · ·m with π ∈ Sn

arbitrary. By definition OMVPm(β) = π(n+1)(n+2) · · ·m. Let α = (b1, b2, . . . , bn). By definition of β, note that
OMVPn

(α) = π. Thus α ∈ O−1MVPn
(π). Now observe that by definition ψ(α) = (b1, b2, . . . , bn, n+1, n+2, . . . ,m).

We now claim that ψ(α) = β. It suffices to show that bj = j for all n+ 1 ≤ j ≤ m, but this is precisely the fact
we established earlier, as car c = n+ 1, . . . ,m can only prefer the spot c.

From Lemma 4.7 and Theorem 4.1 we immediately have the following.

Corollary 4.3. If π′ = w0(n+ 1)(n+ 1) · · · (m− 1)m ∈ Sn with w0 ∈ Sn, then |O−1MVPn
(π′)| = |Mn|.

5. Future work

In our work, we give a complete characterization of when the number of MVP parking functions that park in
a given order satisfies parking independence. Using that result we considered permutations that are increasing
and decreasing k-cycles and gave closed formulas for the size of each outcome map fiber. Then we considered
permutations that did not satisfy the pattern avoidance requirement of Theorem 3.2, including the longest word
and permutations with an increasing tail, cases in which we showed that the number of MVP parking functions
parking in that order is a Motzkin number. One could consider other families of permutations in order to give
new formulas for the fiber sizes.

Moreover, we note that Theorem 2.2 implies that the smallest fiber corresponds to the identity permutation.
In Table 1, we provide computational evidence that the longest word w0 = (n, n − 1, . . . , 2, 1) achieves the
maximum fiber size (given by Motzkin numbers) for 1 ≤ n ≤ 6. However, the permutation w̃0 := (n− 1, n, n−
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n 1 2 3 4 5 6 7 8

O−1MVPn
(w0) 1 2 4 9 21 51 127 323

O−1MVPn
(w̃0) – – 3 8 20 51 131 341

Table 1: Largest fibers for n = 1, 2, . . . , 8

2, n − 3, . . . , 2, 1) has a larger fiber size as soon as n = 7, and this is the largest fiber among all permutations
also for n = 8.

For n ≥ 9, it remains an open problem to determine a characterization for a permutation π ∈ Sn satisfying

|O−1MVPn
(π)| ≥ |O−1MVPn

(τ)|

for all τ ∈ Sn.
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