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Abstract: This note is devoted to the study of inequalities related to the second shifted difference of the
number of integer partitions p(n) and of overpartitions p(n) by an elementary combinatorial approach. Recently
Gomez, Males, and Rolen proved the positivity of ∆2

j (p(n)) = p(n)−2p(n−j)+p(n−2j) by employing the Hardy-

Ramanujan-Rademacher formula for p(n) and Lehmer’s error bound. Our goal is to prove ∆2
j (p(n)) ≥ 0 (resp.

∆2
j (p(n)) > 0) by an explicit description of a non-empty subset, say X2

p(n, j) of the set of integer partitions P (n)

(resp. X2
p(n, j) and the set of overpartitions P (n)) with |X2

p(n, j)| = ∆2
j (p(n)) (resp. |X2

p(n, j)| = ∆2
j (p(n))).
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1. Introduction

A partition of a positive integer n is a finite nonincreasing sequence of positive integers λ = (λ1, . . . , λ`) such

that
∑`
i=1 λi = n, denoted by λ ` n. The set of partitions of n is denoted by P (n) and |P (n)| = p(n). For

λ ` n, we define `(λ) to be the total number of parts of λ and multλ(λi) to be the multiplicity of the part λi
in λ. For λ ` n with λ = (λ1, . . . , λ`) and µ ` m with µ = (µ1, . . . , µ`′ ), define the union λ ∪ µ ` m + n to be
the partition with parts {λi, µj} arranged in nonincreasing order.

Inequalities for the partition function have been studied in many directions and proofs of such inequalities
were by employing analytic tools such as the Hardy-Ramanujan-Rademacher formula for p(n), see [6, 11–13],
and Lehmer’s error bound [7, 8]. Let ∆ be the backward difference operator defined on a sequence a(n) by

∆(a(n)) := a(n) − a(n − 1) and, for r ≥ 1, ∆r(a(n)) := ∆
(

∆r−1(a(n))
)

. In 1977, Good [4] conjectured

that ∆r(p(n)) alternates in sign up to a certain value n = n(r), and then it stays positive. Using the Hardy-
Ramanujan-Rademacher series for p(n), Gupta [5] proved that for any given r ∈ Z≥1, ∆r(p(n)) > 0 for
sufficiently large n. In 1988, Odlyzko [10] proved the conjecture of Good and obtained the following asymptotic
formula for n(r):

n(r) ∼ 6

π2
r2 log2 r as r →∞.

For a more detailed study on ∆(p(n)), we refer to [1]. Recently, Gomez, Males, and Rolen studied the second-
order j-shifted difference of p(n), defined by

∆2
j (p(n)) = p(n)− 2p(n− j) + p(n− 2j)

and proved the following theorem.

Theorem 1.1 (Theorem 1.2, [3]). Let n ≥ 2 and j ≤ 1
4

√
n− 1

24 . Then we have that

∆2
j (p(n)) ≥ 0.

In other words, p(n) satisfies the extended convexity result p(n) + p(n− 2j) ≥ 2p(n− j).
An overpartition of n is a nonincreasing sequence of natural numbers whose sum is n in which the first

occurrence of a number may be overlined. We denote the number of overpartitions of n by p(n) and the
set of overpartitions of n by P (n). For example, the 4 overpartitions of 2 are 2, 2, 1 + 1, 1 + 1. The study



Koustav Banerjee

on overpartitions dates back to MacMahon [9] but under different nomenclature, an extensive study on the
overpartitions began with the work of Corteel and Lovejoy [2]. A Hardy-Ramanujan-Rademacher type series
expansion for p(n) was due to Zuckerman [16]. Recently, Wang, Xie, and Zhang [15] proved that ∆r(p(n)) > 0
for n ≥ n(r), where n(r) is a positive integer depending on r.

The main motivation of this paper is to prove Theorem 1.1 using a combinatorial approach rather than the

analytic one; i.e., by studying an asymptotic estimate of p(n−j)
p(n) as in [3, Theorem 1.1]. Moreover, we will show

∆2
j (p(n)) ≥ 0 for all n ≥ 2j, a weaker assumption in comparison to n ≥ max{2, 16j2 + 1

24} assumed in Theorem

1.1. Moreover, we show ∆2
j (p(n)) > 0 with a similar combinatorial approach as that for p(n). Gomez, Males,

and Rolen [3] proved the positivity of ∆2
j (p(n)) using the asymptotic estimate of the quotient p(n − j)/p(n)

whereas our main objective is to show that (∆2
j (p(n)))n≥2j (resp. (∆2

j (p(n)))n≥2j) can be enumerated by a

non-empty proper subset of P (n) (resp. of P (n)) so as to prove positivity of the respective sequences.
We organize the paper in the following way. Below we list all the theorems, Theorem 1.2-1.5, with two

corollaries Corollary 1.1 and 1.2. The proofs of Theorem 1.2-1.5 are given in Section 2.

Definition 1.1. For all positive integers n and j, define

X1
a(n, j) = A(n) \A(n− j) and |X1

a(n, j)| = ∆1
j (a(n)),

X2
a(n, j) = X1

a(n) \X1
a(n− j) and |X2

a(n, j)| = ∆2
j (a(n)),

where |A(n)| := a(n).

In our context, A(n) is P (n), resp. P (n); consequently, we will considerXi
a(n, j) = Xi

p(n, j), resp. Xi
a(n, j) =

Xi
p(n, j).

Theorem 1.2. For all positive integers n and j with n ≥ j,

X1
p(n, j) =

{
λ ∈ P (n) : 0 ≤ λ1 − λ2 ≤ j − 1

}
. (1)

Remark 1.1. Plugging in j = 1 into Theorem 1.2, X1
p(n, j) is described as the set of non-unitary partitions

of n as well as the set of partitions of n − 1 in which the least part occurs exactly once [14, A002865]. For
any j ≥ 1, the set X1

p(n, j) is also known to be the set of non-j-ary partitions of n, see [3, p. 69]. A detailed
analytic discussion on Theorem 1.2 has been documented in [3, Theorem 1.1].

Theorem 1.3. For all positive integers n and j with n ≥ 2j,

X2
p(n, j) =

{
λ ∈ X1

p(n, j) : 0 ≤ multλ(1) ≤ j − 1
}
. (2)

Remark 1.2. Plugging in j = 1 into Theorem 1.3, X2
p(n, j) is described as the set of partitions of n− 2 with

all parts > 1 and with the largest part occurring more than once [14, A053445].

Corollary 1.1. For all positive integers n and j with n ≥ 2j,

∆2
j (p(n)) ≥ 0. (3)

Proof. For j = 1 and n ∈ {3, 5, 7}, X2
p(n, 1) = ∅ and so ∆2

1(p(n)) = 0 and for n = 2, ∆2
1(p(n)) = 1. Next, if

n = 2k with k ≥ 2, then λ = (k, k) ∈ X2
p(2k, 1), and if n = 2k + 1 with k ≥ 4,

λ =

(⌈
2k + 1

3

⌉
,

⌈
2k + 1

3

⌉
, (2k + 1)− 2

⌈
2k + 1

3

⌉)
∈ X2

p(2k + 1, 1),

as (2k + 1)− 2

⌈
2k + 1

3

⌉
> 1 for all k ≥ 4. So, ∆2

1(p(n)) ≥ 0 for all n ≥ 2.

Finally, for j ≥ 2 and n = 2m ≥ 2j, observe that λ = (m,m) ∈ X2
p(n, j) and for n = 2m + 1 > 2j,

λ = (m+ 1,m) ∈ X2
p(n, j). Therefore, ∆2

1(p(n)) > 0 for all n ≥ 2j with j ≥ 2.

Remark 1.3. A combinatorial proof of Corollary 1.1 is also provided in [3, p. 77]. But our proof of ∆2
j (p(n)) ≥

0 is based on studying the elements of residual set X2
p(n, j).

Theorem 1.4. For all positive integers n and j with n ≥ j,

X1
p(n, j) =

{
λ ∈ P (n) : 0 ≤ λ1 − λ2 ≤ j − 1 and λ1, λ2 may be overlined

}
∪
{
λ ∈ P (n) : λ1 − λ2 = j and λ2 is overlined

}
.

(4)
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Theorem 1.5. For all positive integers n and j with n ≥ 2j,

X2
p(n, j) =

{
λ ∈ X1

p(n, j) : 0 ≤ multλ(1) ≤ j − 1 and 0 ≤ multλ(1) ≤ 1
}
. (5)

Corollary 1.2. For all positive integers n and j with n ≥ 2j,

∆2
j (p(n)) > 0. (6)

Proof. For j = 1 and n = 2, ∆2
j (p(n)) = 1. For j ≥ 1, n = 2k ≥ 2j with k ∈ Z≥2, λ = (k, k) ∈ X2

p(n, j) and

when n = 2k + 1 > 2j with k ∈ Z≥1, λ = (k + 1, k) ∈ X2
p(n, j). This concludes the proof.

2. Proofs of Theorem 1.2-1.5

Proof of Theorem 1.2: For all positive integers n, j with n ≥ j, we define an injective map i1 : P (n−j) −→ P (n)
by

λ = (λ1, λ2, . . . , λr) 7→ i1(λ) = (λ1 + j, λ2, . . . , λr). (7)

It is immediate that i1(λ) ∈ P (n), and the image set can be described as

Im(i1) =
{
π ∈ P (n) : π1 − π2 ≥ j

}
.

Note that i1 is an injective map: for any two partitions, say, for λ, µ ∈ P (n − j), there are two possible cases,
either `(λ) = `(µ) or `(λ) 6= `(µ). When `(λ) 6= `(µ), `(i1(λ)) 6= `(i1(µ)) and therefore i1 is injective. If
`(λ) = `(µ), then i1(λ) = i1(µ) immediately implies that λm = µm for all 1 ≤ m ≤ `(λ). Hence,

P (n) \ i1(P (n− j)) =
{
π ∈ P (n) : 0 ≤ π1 − π2 ≤ j

}
= X1

p(n, j).

Proof of Theorem 1.3: For all positive integers n, j with n ≥ 2j, we first define an injective map i2 :
X1
p(n− j, j) −→ X1

p(n, j) by

λ = (λ1, λ2, . . . , λr) 7→ i2(λ) = (λ1, λ2, . . . , λr) ∪ (1, 1, . . . , 1︸ ︷︷ ︸
j times

). (8)

Now i2(λ) ∈ X1
p(n, j) and consequently,

Im(i2) =
{
π ∈ X1

p(n, j) : multπ(1) ≥ j
}
.

Clearly, i2 is an injective map, since we adjoin the partition of j with all parts being 1 to any partition
λ ∈ X1

p(n− j, j). Therefore,

X1
p(n, j) \ i2(X1

p(n− j, j)) =
{
π ∈ X1

p(n, j) : 0 ≤ multπ(1) ≤ j − 1
}

= X2
p(n, j).

Proof of Theorem 1.4: For all positive integers n, j with n ≥ j, we define an injective map i1 : P (n− j) −→
P (n) by

λ = (λ1, λ2, . . . , λr) 7→ i1(λ) = (λ1 + j, λ2, . . . , λr) ∈ P (n). (9)

Here we consider two separate cases depending on whether λ1 = λ2 or λ1 6= λ2.
For λ1 = λ2, we observe that only the first occurrence of λ1 can be overlined and the image of i1 is given by

Im(i1) =
{
π ∈ P (n) : π1 − π2 = j and π2 is not overlined

}
.

For the other case λ1 6= λ2,

Im(i1) =
{
π ∈ P (n) : π1 − π2 ≥ j and π1, π2 may be overlined

}
.

Clearly, i1 is an injective map in each of the cases. Therefore

P (n) \ i1(P (n− j)) =
{
π ∈ P (n) : 0 ≤ π1 − π2 ≤ j − 1 and π1, π2 may be overlined

}
∪
{
π ∈ P (n) : π1 − π2 = j and π2 is overlined

}
=X

1

p(n, j).
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Proof of Theorem 1.5: For all positive integers n, j with n ≥ 2j, we define an injective map i2 : X
1

p(n −
j, j) −→ X

1

p(n, j) by

λ = (λ1, λ2, . . . , λr) 7→ i2(λ) = (λ1, λ2, . . . , λr) ∪ (1, 1, . . . , 1︸ ︷︷ ︸
j times

) ∈ X1

p(n, j). (10)

Consequently,

Im(i2) =
{
π ∈ X1

p(n, j) : multπ(1) ≥ j
}
.

Note that i2 is an injective map as we adjoin the overpartition of j with all parts being 1 to any overpartition

λ ∈ X1

p(n− j, j). Therefore,

X
1

p(n, j) \ i2(X
1

p(n− j, j)) =
{
π ∈ X1

p(n, j) : 0 ≤ multπ(1) ≤ j − 1 and 0 ≤ multπ(1) ≤ 1
}

= X
2

p(n, j),

since if 1 is a part of an overpartition, say π ∈ P (n), then according to the definition 0 ≤ multπ(1) ≤ 1.
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