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Abstract: We investigate the combinatorial sequences A(M,n) introduced by W. G. Brown (1964) and W.
T. Tutte (1980) appearing in the enumeration of convex polyhedra. Their formula is

A(M,n) =
2(2M + 3)!

(M + 2)!M !

(4n+ 2M + 1)!

n!(3n+ 2M + 3)!

with n,M = 0, 1, 2, . . ., and we conceive it as Hausdorff moments, where M is a parameter and n enumerates

the moments. We solve exactly the corresponding Hausdorff moment problem: A(M,n) =
∫ R
0
xnWM (x) dx on

the natural support (0, R), R = 44/33, using the method of inverse Mellin transform. We provide explicitly the
weight functions WM (x) in terms of the Meijer G-functions G4,0

4,4, or equivalently, the generalized hypergeometric
functions 3F2 (for M = 0, 1) and 4F3 (for M ≥ 2). For M = 0, 1, we prove that WM (x) are non-negative and
normalizable, thus they are probability distributions. For M ≥ 2, WM (x) are signed functions vanishing on the
extremities of the support. By encoding this problem entirely in terms of Meijer G-representations we reveal
an integral relation that directly furnishes WM (x) based on the ordinary generating function of A(M,n) as an
input. All the results are studied analytically as well as graphically.
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1. Introduction

Combinatorial numbers, which are by necessity positive integers, turn out very often to be related to proba-
bility, as they can be identified as power moments of positive and normalizable functions, i.e. the probability
distributions. In most known cases the support of these distributions are either sets of positive integers, the
positive half-axis, or finite segments of the positive axis in the form (0, R). For instance, many combinatorial
numbers characterizing set partitions [11, 12] turn out to be moments of positive functions. Certain sequences
of numbers contain parameters that permit us to relate them to probability distributions only for limited values
of parameters, see for instance [15]. (As we shall see later, the sequence of (1) also belongs to this category.)
In this work we concentrate on a sequence of combinatorial numbers appearing in the counting of bisections of
convex polyhedra [5, 22], which reads:

A(M,n) =
2(2M + 3)!

(M + 2)!M !

(4n+ 2M + 1)!

n!(3n+ 2M + 3)!
, (1)
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where M,n = 0, 1, . . .. A(M,n) are integers for all M and n. We enumerate below the initial values n = 0, . . . , 5
of A(M,n) for 0 ≤M ≤ 4:

A(0, n) = 1, 1, 13, 68, 399, 2530, . . .

A(1, n) = 2, 5, 20, 100, 570, 3542, . . .

A(2, n) = 5, 21, 105, 595, 3675, 24150, . . .

A(3, n) = 14, 84, 504, 3192, 21252, 147420, . . .

A(4, n) = 42, 330, 2310, 16170, 115500, 844074, . . ..

The sequences A(M,n) for 0 ≤M ≤ 3 are documented and discussed in N. J. A. Sloane’s Online Encyclopedia
of Integer Sequences (OEIS) [19]: A(0, n) = A000260(n), A(1, n) = A197271(n), A(2, n) = A341853(n), and
A(3, n) = A341854(n). However, notice that

A(M, 0) = Cat(M + 1), (2)

where Cat(n) =
(
2n
n

)
1

n+1 are Catalan numbers. We set out to solve the following Hausdorff power moment
problem: find WM (x) satisfying the infinite set of equations:

A(M,n) =

∫ R

0

xnWM (x) dx, n = 0, 1, . . . , (3)

where R is given by the known formula R = limn→∞[A(M,n)]1/n = 44/33, i.e. is independent on M . We shall
employ the method of inverse Mellin transform, which implies for n = s− 1 that

WM (x) =M−1[A(M, s− 1);x].

In Section 2 we shall enumerate and present the conventional tools applied in calculating the inverse Mellin
transforms, including the Meijer G-functions, the generalized hypergeometric functions, and some of their
properties. With the above tools at hand, in Section 3 we shall perform in detail the Mellin inversion and
obtain the explicit closed-form solutions for WM (x) in terms of generalized hypergeometric functions 3F2 and

4F3. We prove the positivity of WM (x) for M = 0, 1 only, whereas for M ≥ 2 we demonstrate that WM (x)
are signed functions. WM (x) are discussed graphically for 0 ≤ M ≤ 4. In Section 4 we derive the closed-form
expression for the ordinary generating function (ogf) of A(M,n), i.e. for G(M, z) =

∑∞
n=0A(M,n)zn, and we

establish a relationship between WM (x) and G(M, z), by rephrasing both of them in the common language
of Meijer G-functions. The aforementioned relation allows constructing explicitly the function WM (x) using
solely the hypergeometric representation of G(M, z). This procedure is strongly evocative of the inversion of
the one-sided, finite Hilbert transform. Section 5 contains the discussion and final remarks.

2. Definitions and preliminaries

The main tool that we employ in the treatment of various moment problems is the Mellin transformM and its
inverse M−1. In the following, we group several definitions and information about the Mellin transform of a
function f(x) defined for x ≥ 0. The Mellin transform is defined for complex s as [20]

M[f(x); s] = f?(s) =

∫ ∞
0

xs−1f(x)dx,

along with its inverse

M−1[f?(s);x] = f(x) =
1

2πi

∫ c+i∞

c−i∞
x−sf?(s)ds.

For the role of constant c consult [20].
If M[f(x); s] = f?(s) and M[g(x); s] = g?(s) then

M−1[f?(s)g?(s);x] =

∫ ∞
0

f
(x
t

)
g(t)

1

t
dt =

∫ ∞
0

g
(x
t

)
f(t)

1

t
dt. (4)

The last two integrals are called Mellin (i.e. multiplicative) convolutions of f(x) with g(x). For fixed a > 0,
h 6= 0, the Mellin transform satisfies the following scaling property:

M[xbf(axh); s] =
1

|h|
a−

s+b
h f?( s+bh ). (5)
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Among known Mellin transforms a very special role is played by those entirely expressible through products
and ratios of Euler’s gamma functions. The Meijer G-function is defined as an inverse Mellin transform [18]:

Gm,np,q

(
x
∣∣∣α1 . . . αp
β1 . . . βq

)
=M−1

[ ∏m
j=1 Γ(βj + s)

∏n
j=1 Γ(1− αj − s)∏q

j=m+1 Γ(1− βj − s)
∏p
j=n+1 Γ(αj + s)

;x

]
(6)

= MeijerG([[α1, . . . , αn], [αn+1, . . . , αp]], [[β1, . . . , βm], [βm+1, . . . , βq]], x). (7)

The notation for Gm,np,q in (7) is motivated by Maple and Mathematica notation∗. We will consequently use
both notations throughout this paper. In (6) empty products are taken to be equal to 1. In (6) and (7) the
parameters are subject of conditions:

z 6= 0, 0 ≤ m ≤ q, 0 ≤ n ≤ p,
αj ∈ C, j = 1, . . . , p; βj ∈ C, j = 1, . . . , q.

See [7,18] for a full description of integration contours in (6), general properties and special cases of the Meijer
G-functions. The convergence of the Mellin inversion in (6) and (7) is conditioned upon specific requirements
involving both chains of parameters (ap) and (bq). The aforementioned conditions will be quoted and checked
in Section 3 on the example of the Mellin inversion derived from (1).

The generalized hypergeometric function pFq is defined as:

pFq

(
a1, . . . , ap
b1, . . . , bq

; z

)
=

∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!
= pFq([a1, . . . , ap], [b1, . . . , bq]; z),

where (a)k = Γ(a + k)/Γ(a) is called the Pochhammer symbol, and neither of bj , j = 1, . . . , q, is a negative
integer, see [21].

We shall also use the following relation linking one pFq with one Gm,np,q , for p ≤ q + 1:

pFq

(
a1, . . . , ap
b1, . . . , bq

; z

)
=

(
q∏

k=1

Γ(bk)/

p∏
k=1

Γ(ak)

)
G1,p
p,q+1

(
−z
∣∣∣ 1− a1, . . . , 1− ap
0, 1− b1, . . . , 1− bq

)
, (8)

see Equation (16.18.1) of [16], where particular attention should be paid to the position of 0 in the lower list
of parameters. For the proof of (8) see Equation (12.3.18) on page 317 of [2]. Additional identities satisfied by
Gm,np,q and used in this work are

Gm,np,q

(
1

z

∣∣∣a1, . . . , ap
b1, . . . , bq

)
= Gn,mq,p

(
z
∣∣∣ 1− b1, . . . , 1− bq
1− a1, . . . , 1− ap

)
(9)

zµGm,np,q

(
z
∣∣∣a1, . . . , ap
b1, . . . , bq

)
= Gm,np,q

(
z
∣∣∣a1 + µ, . . . , ap + µ

b1 + µ, . . . , bq + µ

)
, (10)

see Equations (16.19.1) and (16.19.2) of [16], correspondingly.
For certain conditions satisfied by the parameter lists, the functions Gm,np,q can be represented as a finite sum

of hypergeometric function, see Equation (16.17.2) of [16] and/or Equation (8.2.2.3) of [18], which are sometimes
referred to as Slater relations.

We quote for reference the Gauss-Legendre multiplication formula for the gamma function encountered in
this work:

Γ(nz) = (2π)
1−n
2 nnz−

1
2

n−1∏
j=0

Γ

(
z +

j

n

)
, z 6= 0,−1,−2, . . . , n = 1, 2, . . . . (11)

We also introduce a short notation for a special list of k elements:

∆(k, a) =
a

k
,
a+ 1

k
, . . . ,

a+ k − 1

k
, k 6= 0. (12)

3. Solving the moment problem

In this section, we shall derive the exact and explicit forms of the solutions WM (x) of the Hausdorff moment
problem of (3) where A(M,n) is given by (1). Denote

P (M) =
2(2M + 3)!

(M + 2)!M !
,

∗Notice that in Mathematica notation the Meijer G-function is represented in the form

MeijerG[{{α1, . . . , αn}, {αn+1, . . . , αp}}, {{β1, . . . , βm}, {βm+1, . . . , βq}}, x].
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set in (3) n = s−1, and use twice the Gauss-Legendre formula (11) in transforming (3) to obtain A(M, s−1) ≡
Ã(M, s):

Ã(M, s) = rW (M)R s Γ(s− 1
2 + M

2 )Γ(s− 1
4 + M

2 )Γ(s+ M
2 )Γ(s+ 1

4 + M
2 )

Γ(s+ 1
3 + 2M

3 )Γ(s+ 2
3 + 2M

3 )Γ(s+ 1 + 2M
3 )Γ(s)

, (13)

where

rW (M) =
3

1
2−2M24M+ 1

2

192
√
π

P (M).

We apply now the scaling property (5) along with the definitions of the Meijer G-function (6) and (7) in order
to write the final form of WM (x) =M−1[Ã(M, s);x]:

WM (x) = rW (M)G 4,0
4,4

(
x

R

∣∣∣0,∆(3, 2M + 1)

∆(4, 2M − 2)

)
(14)

= rW (M) MeijerG
([

[ ], [0, 2M3 + 1
3 ,

2M
3 + 2

3 ,
2M
3 + 1]

]
,
[
[M2 −

1
2 ,

M
2 −

1
4 ,

M
2 ,

M
2 + 1

4 ], [ ]
]
,
x

R

)
.

The solutions in (14) are unique. According to the definitions of (6) and (7) the parameter lists (α1, . . . , α4)
and (β1, . . . , β4) for p = q = 4 in (14) can be read off as (αp) = (0,∆(3, 2M + 1) ) and (βq) = ( ∆(4, 2M − 2) ),
using (12). We can now extract the conditions for convergence of integral (6) as a function of (αp) and (βq).
They define the range of variable s for which the convergence is assured with the formula (2.24.2.1) of [18].
Here m = 4, n = 0, and p = q = 4, and the auxiliary parameter c? ≡ m+ n− (p+ q)/2 = 0. Thus, the range of
real s is determined from the inequality:

− min
1≤j≤m

(βj) ≤s ≤ 1− max
1≤j≤n

(αj), which reads

1

4
− M

2
≤s ≤ 1− (−∞), or for s = n′ + 1

1

4
− M

2
≤n′ + 1 ≤ ∞, and finally

−3

4
− M

2
≤n′ ≤ ∞,

where n′ enumerates the moments. We conclude that for WM (x) all the moments
∫ R
0
xn
′
WM (x) dx, for

0 ≤ n′ <∞ are legitimate and converging.
Before embarking on detailed evaluation of (14) we claim that for M = 0, 1 the weight function WM (x) will

be a positive function on x ∈ (0, R). This is based on the Mellin convolution property of (4) which shows that
if two individual functions are positive, then for positive arguments, their Mellin convolution is also positive.
The second element of this reasoning tells us that

M−1
[

Γ(s+ a)

Γ(s+ b)
;x

]
=

(1− x)1−a+bxa

Γ(b− a)
> 0, for 0 < x < 1, b > a, (15)

which is the direct consequence of Equation (8.4.2.3) on page 631 of [18]. Equation (15) is strongly reminiscent
of the classical Euler Beta function. Moreover, the Beta distribution is the probability measure characterized
by the density function gα,β(x) = {Γ(α + β)/[Γ(α)Γ(β)]}xα−1(1 − x)β−1 [1]. The r.h.s. of (15) for 0 < x < 1
and b > a is a positive function.

Suppose that we will be able to order the shifts in four gamma ratios in (13) in such a way that for every
ratio b > a, as in (15). Then the resulting weight function will be a threefold Mellin convolution of positive
functions, and, through the above argument, will itself be positive. Let us first enumerate the gamma shifts
for M = 0 in (14), with u = upper and l = lower shifts. In the formulas (16), (17), and (18) below, the arrow
” =⇒ ” should be understood as: ”can be reordered as”.

M = 0 :

{
u : 0,− 1

2 ,
1
4 ,−

1
4

l : 0, 1, 23 ,
1
3

}
=⇒

{
u : − 1

4 ,−
1
2 , 0,

1
4

l : 0, 13 ,
2
3 , 1

}
(16)

resulting in the gamma ratios:
Γ(s− 1

4 )

Γ(s+ 0)

Γ(s− 1
2 )

Γ(s+ 1
3 )

Γ(s+ 0)

Γ(s+ 2
3 )

Γ(s+ 1
4 )

Γ(s+ 1)
.

Then the resulting W0(x) will be a positive function. We continue with the same argument for M = 1:

M = 1 :

{
u : 1

2 , 0,
3
4 ,−

1
4

l : 0, 53 ,
4
3 , 1

}
=⇒

{
u : − 1

4 , 0,
1
2 ,

3
4

l : 0, 1, 43 ,
5
3

}
, (17)
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resulting in the gamma ratios:
Γ(s− 1

4 )

Γ(s+ 0)

Γ(s+ 0)

Γ(s+ 1)

Γ(s+ 1
2 )

Γ(s+ 4
3 )

Γ(s+ 3
4 )

Γ(s+ 5
3 )
.

Then again, the resulting W1(x) will be a positive function. The situation changes for M = 2, as then

M = 2 :

{
u : 1, 12 ,

5
4 ,

3
4

l : 0, 73 , 2,
5
3

}
=⇒

{
u : 1

2 , 1,
3
4 ,

5
4

l : 0, 53 , 2,
7
3

}
, (18)

and the resulting gamma ratio
Γ(s+ 1

2 )

Γ(s+ 0)

Γ(s+ 1)

Γ(s+ 5
3 )

Γ(s+ 3
4 )

Γ(s+ 2)

Γ(s+ 5
4 )

Γ(s+ 7
3 )

excludes the positivity of W2(x) as here

M−1
[
Γ
(
s+

1

2

)
/Γ(s);x

]
∼ −
√
x/(1− x)3/2 < 0

for 0 < x < 1. Similar arguments exclude the positivity for M > 2. The method of studying the positivity via
multiple Mellin convolution was initiated in [17] and further applied in [4, 6, 7, 13, 14] to various sequences of
combinatorial numbers.

Since A(M, 0) 6= 1, see (2), it is reasonable not to compare WM (x) for different M , but rather to consider
W̃M (x) = WM (x)/A(M, 0), ”normalized” weight functions for different M . Note that zeroth moments of W̃M (x)
are equal to 1, but higher moments of W̃M (x) are not any more integers but are rationals. In order to do so,
we have chosen to represent the Meijer G-functions of (14) as a finite sum of three generalized hypergeometric
functions 3F2 (for M = 0, 1), and 4F3 (for M ≥ 2), employing Equation (8.2.2.3) of [18]. This last formula also
permits writing down the general expression for W̃M (x) = WM (x)/A(M, 0) for arbitrary integer M with the
help of generalized hypergeometric functions. However, due to its complexity, we shall not reproduce this last
formula here. Instead we quote below the explicit forms for W̃M (x) for 0 ≤M ≤ 3, with R = 44/33:

W̃0(x) =
2

π
√
x

3F2

(
− 1

2 ,−
1
6 ,

1
6

1
4 ,

3
4

,
x

R

)
−
√

2

πx1/4
3F2

(
− 1

4 ,
1
12 ,

5
12

1
2 ,

5
4

,
x

R

)
+

√
2x1/4

32π
3F2

(
1
4 ,

7
12 ,

11
12

3
2 ,

7
4

,
x

R

)

=
2

π
√
x

3F2

([
− 1

2 ,−
1
6 ,

1
6

]
,
[
1
4 ,

3
4

]
, xR
)
−
√

2

πx1/4
3F2

([
− 1

4 ,
1
12 ,

5
12

]
,
[
1
2 ,

5
4

]
, xR
)

+

√
2x1/4

32π
3F2

([
1
4 ,

7
12 ,

11
12

]
,
[
3
2 ,

7
4

]
, xR
)
.

In the following three equations we skip the Maple notation.

W̃1(x) =
2
√

2

π
x1/4 3F2

(
− 5

12 ,−
1
12 ,

1
4

1
2 ,

3
4

,
x

R

)
− 5
√
x

2π
3F2

(
− 1

6 ,
1
6 ,

1
2

3
4 ,

5
4

,
x

R

)
+

5
√

2

16π
x3/4 3F2

(
1
12 ,

5
12 ,

3
4

5
4 ,

3
2

,
x

R

)
,

W̃2(x) = −14
√
x

5π
4F3

(
− 5

6 ,−
1
2 ,−

1
6 ,

3
2

1
4 ,

1
2 ,

3
4

,
x

R

)
+

3
√

2

π
x3/4 4F3

(
− 7

12 ,−
1
4 ,

1
12 ,

7
4

1
2 ,

3
4 ,

5
4

,
x

R

)

− 35
√

2

32π
x5/4 4F3

(
− 1

12 ,
1
4 ,

7
12 ,

9
4

5
4 ,

3
2 ,

7
4

,
x

R

)
,

and

W̃3(x) = −4
√

2

π
x5/4 4F3

(
− 3

4 ,−
5
12 ,−

1
12 ,

9
4

1
2 ,

3
4 ,

5
4

,
x

R

)
+

9

π
x3/2 4F3

(
− 1

2 ,−
1
6 ,

1
6 ,

5
2

3
4 ,

5
4 ,

3
2

,
x

R

)

− 21
√

2

8π
x7/4 4F3

(
− 1

4 ,
1
12 ,

5
12 ,

11
4

5
4 ,

3
2 ,

7
4

,
x

R

)
.

We display graphically W̃M (x) for M = 0, 1 on Figure 1, and for M = 2, 3, 4 on Figure 2.
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Figure 1: (Color online) Plot of W̃M (x) for M = 0 (red continuous curve) and M = 1 (blue dashed curve) for
x ∈ (0, R). Notice that W̃0(x) tends to infinity at x = 0 whereas W̃1(x) approaches zero at x = 0. W̃0(x) and
W̃1(x) are normalized probability distributions.

Figure 2: (Color online) Plot of W̃M (x) for M = 2 (red continuous curve), M = 3 (blue dashed curve), and
M = 4 (green dashed-dotted curve) for x ∈ (0, R − 0.48). Notice that W̃M (x) for M ≥ 2 have a negative part
and tend to zero at x = 0.

ECA 3:2 (2023) Article #S2R15 6
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4. Linking generating and weight functions: encoding
via Meijer G-functions

We start with a general Hausdorff moment problem in the form of (3). Solving (3) means to obtain W (x) given
the set ρ(n), n = 0, 1, . . .. We define the ordinary generating function (ogf) of moments ρ(n) as

G(z) =

∞∑
n=0

ρ(n)zn,

with the radius of convergence equal to 1/R, i.e. z < 1/R. We classically observe that

G(z) =

∞∑
n=0

zn

[∫ R

0

xnW (x) dx

]
=

∫ R

0

W (x)

[ ∞∑
n=0

(xz)n

]
dx =

∫ R

0

W (x)

1− zx
dx, (19)

with zx < 1. Since in (19) 0 ≤ x ≤ R, it implies z < 1/R. From (19) it follows that

1

z
G

(
1

z

)
=

∫ R

0

W (x)

z − x
dx, with z > R. (20)

The above equations constitute the seed of the inversion procedure by Stieltjes to solve (20) using the complex
analysis. For singularity analysis of G(z) in complex plane see [10]. For a recent detailed application of Stieltjes
method, along with the exhaustive reference list, see [3]. A very complete exposition of the Stieltjes method
can be found in [8].

The above transformations are fairly standard, however, in view of the results of Section 3, a certain pattern
does appear that permits one to deduce W (x) directly from G(z), via (20). In order to make this pattern
explicit several manipulations with G(z) ≡ G(M, z) are needed.

We use the definition of Pochhammer symbols to write down the ogf G(M, z) of the moments A(M,n), and
it reads

G(M, z) =
2(2M + 1)!

(M + 2)!M !
4F3

(
∆(4, 2M + 2)

∆(3, 2M + 4)
;Rz

)
(21)

=
2(2M + 1)!

(M + 2)!M !
4F3

([
1 + M

2 ,
3
4 + M

2 ,
1
2 + M

2 ,
5
4 + M

2

]
,
[
2 + 2M

3 , 53 + 2M
3 , 43 + 2M

3

]
;Rz

)
, z < R. (22)

We come back to (8) in order to frame (21) in the Meijer G-notation. Carrying out the products of gamma
functions in (8) this furnishes:

G(M, z) = rG(M)G1,4
4,4

(
−Rz

∣∣∣ ∆(4,−2M − 1)

0,∆(3,−2M − 3)

)
(23)

= rG(M)MeijerG
([[
− M

2 ,
1
2 −

M
2 ,

1
4 −

M
2 ,−

1
4 −

M
2

]
,
[ ]]

,
[[

0
]
,
[
− 2

3 −
2M
3 ,− 1

3 −
2M
3 ,−1− 2M

3

]]
,−Rz

)
with

rG(M) =
4

81
√
π

3
1
2−2M24M+ 1

2P (M), (24)

where in obtaining (24) the use of (11) was again made.
Further transformations of (23) are necessary in order to take full advantage of (20). For that purpose we

apply (9) to (23):

G1,4
4,4

(
1

z

∣∣∣a1, . . . , a4
b1, . . . , b4

)
= G4,1

4,4

(
z
∣∣∣ 1− b1, . . . , 1− b4
1− a1, . . . , 1− a4

)
,

where (ap), p = 4, and (bq), q = 4 can be read off (23). Then G(M, z) becomes

G(M, z) = rG(M)G4,1
4,4

(
− 1

Rz

∣∣∣ 1, 43 + 2M
3 , 53 + 2M

3 , 2 + 2M
3

3
4 + M

2 , 1 + M
2 ,

5
4 + M

2 ,
3
2 + M

2

)
,

which permits to evaluate

1

z
G

(
M,

1

z

)
= rG(M)

1

z
G4,1

4,4

(
− z
R

∣∣∣ 1, 43 + 2M
3 , 53 + 2M

3 , 2 + 2M
3

3
4 + M

2 , 1 + M
2 ,

5
4 + M

2 ,
3
2 + M

2

)
. (25)
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Equation (25) will be again transformed now, using (10), where µ = −1:

1

z
G

(
M,

1

z

)
= rG(M)G4,1

4,4

(
− z
R

∣∣∣a′1 − 1, . . . , a′4 − 1

b′1 − 1, . . . , b′4 − 1

)
,

where now (a′4) and (b′4) are read off the lists in (25); it gives finally

1

z
G

(
M,

1

z

)
= −rG(M)

R
G4,1

4,4

(
− z
R

∣∣∣0, 13 + 2M
3 , 23 + 2M

3 , 1 + 2M
3

M
2 −

1
2 ,

M
2 −

1
4 ,

M
2 ,

M
2 + 1

4

)
.

It is instructive to write now (20) exclusively using the Meijer G-function in Maple notation and retaining both
the multiplicative constants rG(M) and rW (M):

− rG(M)

R
MeijerG

([[
0
]
,
[
1
3 + 2M

3 , 23 + 2M
3 , 1 + 2M

3

]]
,
[[
M
2 −

1
2 ,

M
2 −

1
4 ,

M
2 ,

M
2 + 1

4

]
,
[ ]]

,− z
R

)
= rW (M)

∫ R

0

dx

z − x
MeijerG

([[ ]
,
[
0, 13 + 2M

3 , 23 + 2M
3 , 1 + 2M

3

]]
,[[

M
2 −

1
2 ,

M
2 −

1
4 ,

M
2 ,

M
2 + 1

4

]
,
[ ]]

, xR
)
, z > R. (26)

The same formula is presented in the traditional notation, i.e.:

rG(M)

R
G 4,1

4,4

(
− z
R

∣∣∣0; 1
3 + 2M

3 , 23 + 2M
3 , 1 + 2M

3
M
2 −

1
2 ,

M
2 −

1
4 ,

M
2 ,

M
2 + 1

4

)

= rW (M)

∫ R

0

dx

x− z
G 4,0

4,4

(
x

R

∣∣∣ ; 0, 13 + 2M
3 , 23 + 2M

3 , 1 + 2M
3

M
2 −

1
2 ,

M
2 −

1
4 ,

M
2 ,

M
2 + 1

4

)
, z > R, (27)

and in shorter notation of (12), (27) becomes

rG(M)

R
G 4,1

4,4

(
− z
R

∣∣∣0; ∆(3, 2M + 1)

∆(4, 2M − 2)

)
= rW (M)

∫ R

0

dx

x− z
G 4,0

4,4

(
x

R

∣∣∣ ; 0,∆(3, 2M + 1)

∆(4, 2M − 2)

)
, (28)

where z > R. The validity of (27) has been independently verified numerically for various values M . Equations
(27) and (28) appear to be less transparent than (26) and are rather more error-prone. We slightly overstretched
the notation of (6) in (27) by (temporarily) introducing the semicolons to explain the correct position of 0 in
the coefficient lists. We stress that it is essential to keep the multiplicative constants rG(M) and rW (M) on
both sides of (26) and (27) in order to consider these equations as full solutions of (3). The attentive reader
will rapidly notice that rG(M)/rW (M) = R, and after this simplification (26) and (27) become ”bare” relations
between Meijer G-functions.

For reader’s convenience we quote below the formula which results from the functional composition of (8)
- (10) which allows quasi-automatically to arrive at the coefficient lists appearing in 1

zG(M, 1z ) here, as well as
serving for studying related problems.
Starting with pFq(

a1,...,ap
b1,...,bq

;Rz) as in (21) and (22), one obtains:

1

z
pFq

(
a1, . . . , ap
b1, . . . , bq

;
R

z

)
= −

∏q
k=1 Γ(bk)∏p
k=1 Γ(ak)

1

R
G p,1
q+1,p

(
− z
R

∣∣∣0, b1 − 1, . . . , bq − 1

a1 − 1, . . . , ap − 1

)
for p ≤ q + 1, applicable in our context only for the cases when the ogf is a single generalized hypergeometric
function pFq.

In the language of Meijer G-functions (26) and (27) display a visibly regular scheme, which can be symboli-
cally written down if we define the lists L1 = ( 1

3 + 2M
3 , 23 + 2M

3 , 1 + 2M
3 ) and L2 = (M2 −

1
2 ,

M
2 −

1
4 ,

M
2 ,

M
2 + 1

4 ).
Then, neglecting, for now, the multiplicative constants we observe that

1

z
G

(
M,

1

z

)
∼= MeijerG

(
[ [ 0 ], [ L1 ] ], [ [ L2 ], [ ] ],− z

R

)
(29)

and
WM (x) ∼= MeijerG

(
[ [ ], [ 0, L1 ] ], [ [ L2 ], [ ] ],

x

R

)
(30)

are related through the integral formula of (20) whose specific realizations are (26) and (27). From two previous
equations, we note that by reinserting the multiplicative constants one can construct the weight WM (x) by
simply moving the number 0 from the first bracket in (29) to the second bracket in (30), where 0 joins the list
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Figure 3: (Color online) Schematic illustration of relations of (20) for specific case of Tutte numbers of (1) and
(26). The lists L1 and L2 are defined before (29) in the text. We emphasize that both functions illustrated
here are of Meijer G-type, but they are different functions. We neglect any multiplicative numerical constants
in this illustration.

L1. The position of the list L2 stays unchanged in the third bracket, and the argument of WM (x) becomes
x/R. Schematic display of ingredients of (20) are presented in Figure 3.

We believe that the moments A(M,n) belong to a larger family of similar types of moments, for which the
aforementioned reshuffling of lists gives explicitly the weight W (x) from the data of the appropriate ogf G(z), as
in (29) and (30). If so, then there is no need to perform the inverse Mellin transform from the moments, since
all the information are already contained in the ogf G(z). We are searching for possible candidates to extend
the sequence A(M,n) studied here. It should be kept in mind that the analysis of other possible sequences
obeying relations of type (29) and (30) should also allow for exact determination of respective (multiplicative)
constant rG and rW . The integral relation (20) rewritten as (26) can be viewed as a variant of one-sided, finite
Hilbert transform [9]. However, the strict condition z > R imposed by convergence requires special care in all
the manipulations.

5. Discussion and Conclusions

We have exactly solved the moment problem of (3) following two different, and seemingly unrelated paths. The
first method used was the inverse Mellin transform which resulted in exact and explicit expression for the weight
functions WM (x) formulated in the language of Meijer G-functions. The second, less orthodox approach, consists
in ”upgrading” the notation for the ogf of moments G(M, z), which initially was a generalized hypergeometric
function 4F3, to encode it in terms of a Meijer G-function. This procedure has revealed a hitherto hidden relation
between the parameter lists of G(M, z) and the parameter lists of solutions WM (x). That observation is quite
fertile, as it allows one, almost automatically, to obtain explicit forms of WM (x), without having recourse to
any further manipulations. We believe that the sequence A(M,n) of (1) belongs to a larger family of moment
sequences for which analogous relations of type (29) and (30) hold. This feature is under active consideration.
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[17] K. A. Penson and K. Życzkowski, Product of Ginibre matrices: Fuss-Catalan and Raney distributions,
Phys. Rev. E 83 (2011), 061118.

[18] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 3: More Special Functions,
Gordon and Breach, Amsterdam, 1998.

[19] N. J. A. Sloane, Online Encyclopedia of Integer Sequences, http://oeis.org, 2023.

[20] I. N. Sneddon, The Use of Integral Transforms, TATA, New Delhi (1972).
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