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Abstract:  Lukasiewicz paths are lattice paths in N2 starting at the origin, ending on the x-axis, and consisting
of steps in the set {(1, k), k ≥ −1}. We give bivariate generating functions and exact values for the number of
n-length prefixes (resp. suffixes) of these paths ending (resp. starting) at height k ≥ 0 with a given type of
step. We make a similar study for paths of bounded height, and we prove that the average height of n-length
paths ending at a fixed height behaves as

√
πn when n→∞. Finally, we study prefixes of alternate  Lukasiewicz

paths, i.e.,  Lukasiewicz paths that do not contain two consecutive steps in the same direction.
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1. Introduction

A  Lukasiewicz path of length n ≥ 0 is a lattice path in N2 starting at the origin (0, 0), ending on the x-axis,
consisting of n steps lying in S = {(1, k), k ≥ −1}. We denote by ε the empty path, i.e., the path of length
zero. These paths constitute a natural generalization of Dyck and Motzkin paths (see [3, 4]), which are made
using steps into the sets {(1, 1), (1,−1)} and {(1, 1), (1, 0), (1,−1)}, respectively. We refer to [1,8,14,17–19] for
some combinatorial studies on  Lukasiewicz paths. Let Ln, n ≥ 0, be the set of  Lukasiewicz paths of length n,
and L =

⋃
n≥0 Ln. For convenience, we set D = (1,−1), F = (1, 0), Uk = (1, k) for k ≥ 1. See Figure 1 for an

illustration of a  Lukasiewicz path of length 18. Note that  Lukasiewicz paths can be interpreted as an algebraic
language of words w ∈ {x0, x1, x2, . . .}? such that δ(w) = −1 and δ(w′) ≥ 0 for any proper prefix w′ of w where
δ is the map from {x0, x1, x2, . . .}? to Z defined by δ(w1w2 . . . wn) =

∑n
i=1 δ(wi) with δ(xi) = i−1 (see [13,15]).

Figure 1: A  Lukasiewicz path of length 18: U5DDFFDU2DDDDU2FU2DDDD.

Any non-empty  Lukasiewicz path L ∈ L can be decomposed (see [6]) into one of the two following forms:
(1) L = FL′ with L′ ∈ L, or (2) L = UkL1DL2D . . . LkDL

′ with k ≥ 1 and L1, L2, . . . , Lk, L
′ ∈ L (see Figure

2). Due to this decomposition, the generating function L(z) =
∑
n≥0 anz

n where an is the cardinality of Ln,

satisfies the functional equation L(z) = 1 + zL(z) +
∑
k≥1 z

k+1L(z)k+1, or equivalently, L(z) = 1
1−zL(z) . Then,

L(z) = 1−
√
1−4z
2z . Therefore, an is the n-th Catalan number an = 1

n+1

(
2n
n

)
(see sequence A000108 in [16]).

In this paper, we provide enumerating results for several classes of partial  Lukasiewicz paths (prefixes and
suffixes of  Lukasiewicz paths, partial alternate  Lukasiewicz paths). More precisely, in Sections 2 and 3, we give
bivariate generating functions and exact values for the number of n-length prefixes (resp. suffixes) of these paths
ending at height k ≥ 0 with a given type of step (down, up, or horizontal step). In Sections 4 and 5, we make
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Figure 2: The two forms of a non-empty  Lukasiewicz path.

a similar study for paths of bounded height. In Section 6, we prove that the average height of n-length paths
ending at a fixed height behaves as

√
πn when n→∞. In Section 7, we focus on partial alternate  Lukasiewicz

paths, i.e.,  Lukasiewicz paths that do contain two consecutive steps with the same direction.
All our explicit formulæ follow from the standard identity

[zn]

(
1−
√

1− 4z

2z

)k
=

(
2n− 1 + k

n

)
−
(

2n− 1 + k

n

)
.

2. Enumeration of Partial Lukasiewicz paths

Partial  Lukasiewicz paths of length n (i.e., n-length prefixes of  Lukasiewicz paths) ending at height k can be
constructed through the following state diagram (Figure 3). The diagram has three types of states ranging from
0 to infinity on three layers; in the drawing, only the first fifth states of each type are shown. The first type of
states (top layer) refers to an up-step leading to a state, the second type (middle layer) refers to a horizontal
step leading to a state, and the third type (bottom layer) refers to a down-step leading to a state. Any path
from the origin to a state of rank k of a layer represents a partial  Lukasiewicz path ending at height k.

Figure 3: The state diagram for the generation of partial  Lukasiewicz paths. Black (resp. red, blue) arrows
correspond to up-steps (resp. down-steps, horizontal steps).

For k ≥ 0, we consider the generating function fk = fk(z) (resp. gk = gk(z), hk = hk(z)), where the
coefficient of zn in the series expansion is the number of partial  Lukasiewicz paths of length n ending at height
k with an up-step Uk, k ≥ 1, (resp. with a down-step D, resp. with a horizontal step F ). Considering the state
diagram in Figure 3, fk (resp. gk, hk) is the generating function in the variable z marking the length of the
paths ending on the (k+ 1)-th state of the top (resp. middle, bottom) layer. So, we easily obtain the following
equations:

f0 = 1, and fk = z
k−1∑̀
=0

f` + z
k−1∑̀
=0

g` + z
k−1∑̀
=0

h`, k ≥ 1,

gk = zfk+1 + zgk+1 + zhk+1, k ≥ 0,

hk = zfk + zgk + zhk, k ≥ 0.

(1)

Now, we introduce bivariate generating functions

F (u, z) =
∑
k≥0

ukfk(z), G(u, z) =
∑
k≥0

ukgk(z), and H(u, z) =
∑
k≥0

ukhk(z).

For short, we also use the notation F (u), G(u) and H(u) for these functions. Summing the recursions in (1),
we have:

F (u) = 1 + z
∑
k≥1

uk
(k−1∑
`=0

f` +

k−1∑
`=0

g` +

k−1∑
`=0

h`

)
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= 1 + z
∑
k≥0

uk+1

1− u
fk + z

∑
k≥0

uk+1

1− u
gk + z

∑
k≥0

uk+1

1− u
hk

= 1 +
uz

1− u
(F (u) +G(u) +H(u)),

G(u) = z
∑
k≥0

uk
(
fk+1 + gk+1 + hk+1

)
=
z

u
(F (u) +G(u) +H(u)− F (0)−G(0)−H(0)),

H(u) =
z

1− z
(F (u) +G(u)),

where F (0) +G(0) +H(0) is the number of  Lukasiewicz paths of length n, i.e.,

F (0) +G(0) +H(0) = L(z) =
1−
√

1− 4z

2z
.

Solving these functional equations, we deduce

F (u) = 1− z −
z
(
1 +
√

1− 4z
)

2u− 1−
√

1− 4z
, G(u) =

√
1− 4z + 2z − 1

2u− 1−
√

1− 4z
, and

H(u) = z +
z
(√

1− 4z − 1
)

2u− 1−
√

1− 4z
,

which implies that

fk = [uk]F (u) =
2kz

(1 +
√

1− 4z)k
= z

(
1−
√

1− 4z

2z

)k
, (2)

gk = [uk]G(u) =
2k(1− 2z −

√
1− 4z)

(1 +
√

1− 4z)k+1

=
(1− 2z −

√
1− 4z)

2

(
1−
√

1− 4z

2z

)k+1

= z

(
1−
√

1− 4z

2z

)k+2

− z
(

1−
√

1− 4z

2z

)k+1

, (3)

and

hk = [uk]H(u) =
2kz(1−

√
1− 4z)

(1 +
√

1− 4z)k+1
=
z(1−

√
1− 4z)

2

(
1−
√

1− 4z

2z

)k+1

= z2
(

1−
√

1− 4z

2z

)k+2

. (4)

Theorem 1. The bivariate generating function for the total number of partial  Lukasiewicz paths of length n
with respect to the height of the end-point is given by

Total(z, u) = 1 +
−1 +

√
1− 4z

2u− 1−
√

1− 4z
,

and we have
[uk]Total(z, u) = [k = 0] + zL(z)k+2.

Finally, we have for n ≥ 1,

[zn][uk]Total(z, u) =
k + 2

n+ k + 1

(
2n+ k − 1

n− 1

)
,

[zn][uk]F (u) =
k

n+ k − 1

(
2n+ k − 3

n− 1

)
,

[zn][uk]G(u) =
k + 3

n+ k + 1

(
2n+ k − 2

n− 2

)
,

[zn][uk]H(u) =
k + 2

n+ k

(
2n+ k − 3

n− 2

)
.
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Here are examples of the series expansions of [uk]Total(z, u) for k = 0, 1, 2, 3 (leading terms):
• 1 + z + 2z2 + 5z3 + 14z4 + 42z5 + 132z6 + 429z7 + 1430z8 + 4862z9,
• z + 3z2 + 9z3 + 28z4 + 90z5 + 297z6 + 1001z7 + 3432z8 + 11934z9,
• z + 4z2 + 14z3 + 48z4 + 165z5 + 572z6 + 2002z7 + 7072z8 + 25194z9,
• z + 5z2 + 20z3 + 75z4 + 275z5 + 1001z6 + 3640z7 + 13260z8 + 48450z9,
which correspond respectively to A000108, A000245, A002057, and A000344 in [16].

According to Theorem 3.1 and Theorem 3.3 in [9], [zn][uk]Total(z, u) counts also standard Young tableaux of
shape (n+2, n−k+1) (see [11,20] for the definition of a standard Young tableau), and Dyck paths of semilength
n+ k starting with at least k up-steps and touching the x-axis somewhere between the two end-points.

3. Partial  Lukasiewicz paths from right to left

In this section, we count partial  Lukasiewicz paths that read from right to left, i.e., paths in N2 starting at the
origin, consisting of steps (1, k), k ≤ 1, and ending at a given height with a given type of step. Of course, this
study is completely equivalent to counting suffixes of  Lukasiewicz paths starting at a given height with a given
type of step. We denote here by fk, gk, and hk the generating functions for the number of these paths (with
respect to the length) ending at height k with an up-step, down-step, or a horizontal step, respectively.

Then we have

f0 = 1, and fk = zfk−1 + zgk−1 + zhk−1, k ≥ 1,

gk = z
∑

`≥k+1

f` + z
∑

`≥k+1

g` + z
∑

`≥k+1

h`, k ≥ 0,

hk = zfk + zgk + zhk, k ≥ 0.

(5)

Considering the bivariate generating functions

F (u) =
∑
k≥0

ukfk(z), G(u) =
∑
k≥0

ukgk(z), and H(u) =
∑
k≥0

ukhk(z),

and summing the recursions in (5), we obtain:

F (u) = 1 + z
∑
k≥1

uk (fk−1 + gk−1 + hk−1)

= 1 + zuF (u) + zuG(u) + zuH(u),

G(u) = z
∑
k≥0

uk
( ∑
`≥k+1

f` +
∑
`≥k+1

g` +
∑
`≥k+1

h`

)

= z
∑
k≥1

1− uk

1− u
fk + z

∑
k≥1

1− uk

1− u
gk + z

∑
k≥1

1− uk

1− u
hk

=
z

1− u
(F (1) +G(1) +H(1)− F (u)−G(u)−H(u)),

H(u) =
z

1− z
(F (u) +G(u)),

with

F (0) +G(0) +H(0) = L(z) =
1−
√

1− 4z

2z
.

Moreover, we have

F (1) +G(1) +H(1) =
L(z)− 1

z
,

since there is a bijection between all partial  Lukasiewicz paths of length n that read from right to left and
 Lukasiewicz paths that read from left to right of length n + 1 (from a  Lukasiewicz path, we remove the first
step, and we read it from right to left).

Solving these functional equations, we deduce

F (u) = − 1 +
√

1− 4z

2zu−
√

1− 4z − 1
, G(u) =

−1 +
√

1− 4z + 2z

2zu−
√

1− 4z − 1
,

H(u) = − 2z

2zu−
√

1− 4z − 1
,
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which implies that

fk = [uk]F (u) =
2kzk

(1 +
√

1− 4z)k
, (6)

gk = [uk]G(u) =
2kzk(1− 2z −

√
1− 4z)

(1 +
√

1− 4z)k+1
, and (7)

hk = [uk]H(u) =
2k+1zk+1

(1 +
√

1− 4z)k+1
. (8)

Theorem 2. The bivariate generating function for the total number of partial  Lukasiewicz paths of length n
(from right to left) with respect to the height of the end-point is given by

Total(z, u) = 1 +
2

1− 2zu+
√

1− 4z
,

and we have
[uk]Total(z, u) = zkL(z)k+1.

Finally, for n ≥ 1, we obtain:

[zn][uk]Total(z, u) =
k + 1

n+ 1

(
2n− k
n

)
,

[zn][uk]F (u) =
k

n

(
2n− k − 1

n− 1

)
,

[zn][uk]G(u) =
k + 3

n+ 1

(
2n− k − 2

n

)
,

[zn][uk]H(u) =
k + 1

n

(
2n− k − 2

n− 1

)
.

Here are examples of the series expansions of [uk]Total(z, u) for k = 0, 1, 2, 3 (leading terms):
• 1 + z + 2z2 + 5z3 + 14z4 + 42z5 + 132z6 + 429z7 + 1430z8 + 4862z9,
• z + 2z2 + 5z3 + 14z4 + 42z5 + 132z6 + 429z7 + 1430z8 + 4862z9,
• z2 + 3z3 + 9z4 + 28z5 + 90z6 + 297z7 + 1001z8 + 3432z9,
• z3 + 4z4 + 14z5 + 48z6 + 165z7 + 572z8 + 2002z9,
which correspond to shifts of A000108, A000245, A002057, and A000344 in [16].

4. Partial  Lukasiewicz paths constrained by height

In this section, we count partial  Lukasiewicz paths bounded by a given height t ≥ 0. We introduce the notation
f tk, gtk, htk for 0 ≤ k ≤ t, F t(u), Gt(u) and Ht(u), which are the counterparts of fk, gk, hk, F (u), G(u) and
H(u). Considering the state diagram of Figure 3 where each layer consists of only t + 1 states, we deduce the
following system of equations:

−1 0 0 0 0 0 0 0 0 · · ·
0 −1 0 z z z 0 0 0 · · ·
z z z − 1 0 0 0 0 0 0 · · ·
z z z −1 0 0 0 0 0 · · ·
0 0 0 0 −1 0 z z z · · ·
0 0 0 z z z − 1 0 0 0 · · ·
z z z z z z −1 0 0 · · ·
0 0 0 0 0 0 0 −1 0 · · ·
0 0 0 0 0 0 z z z − 1 · · ·
...

...
...

...
...

...
...

...
...



·



f t0

gt0

ht0

f t1

gt1

ht1

f t2

gt2

ht2
...



=



−1

0

0

0

0

0

0

0

0
...



.

For a given height t ≥ 0, the previous matrix (denoted At) is square with 3(t + 1) rows. Using classical
properties of the determinant, we can prove that Dt = det(At) satisfies

Dt+2 +Dt+1 + zDt = 0,
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anchored with D0 = z − 1, and D1 = 1− 2z. Then we deduce,

Dt =
z(−1)t+2

(
1−
√

1− 4z
)t+2

2t+1
√

1− 4z
(
1 +
√

1− 4z
) +

z(−1)t+1
(
1 +
√

1− 4z
)t+2

2t+1
√

1− 4z
(
1−
√

1− 4z
) ,

which corresponds to
Dt = (−1)t+1 · Ft,

where Ft is the generalized Fibonacci polynomial (see [7, 12]):

Ft = 1−
(
t+ 1

1

)
z +

(
t

2

)
z2 −

(
t− 1

3

)
z3 + . . . .

For instance, we have D3 = F3 = 1− 4z + 3z2, and D4 = −F4 = −1 + 5z − 6z2 + z3.
Using Cramer’s rule to solve the system, for 0 ≤ k ≤ t, we have

f tk =
N t

3k+1

Dt
, gtk =

N t
3k+2

Dt
, htk =

N t
3k+3

Dt
, (9)

where N t
k is the determinant of the matrix At(k) obtained from At by replacing the (k+ 1)-th column with the

vector (−1, 0, 0, 0, . . . , 0, 0)T .
As we have done for Dt, it is easy to prove that N t

k satisfies the two recurrence relations

N t+2
k +N t+1

k + zN t
k = 0, 1 ≤ k, 1 +

⌈k
3

⌉
≤ t, and

N t+1
k+3 = −N t

k, 4 ≤ k, 1 ≤ t.
Calculating N t

k for (t, k) ∈ {0, 1, 2} × {1, 2, 3}, and for (t, k) ∈ {1, 2, 3} × {4, 5, 6}, we can easily obtain a
closed form for N t

3k+i, 1 ≤ i ≤ 3. See Table 1 for exact values of N t
k when 0 ≤ t ≤ 4 and 1 ≤ k ≤ 12.

k/t 0 1 2 3 4

1 z − 1 1− 2z −(z2 − 3z + 1) 3z2 − 4z + 1 z3 − 6z2 + 5z − 1

2 0 z2 −z2 z2(1− z) −z2(1− 2z)

3 −z z(1− z) −z(1− 2z) z(z2 − 3z + 1) −z(3z2 − 4z + 1)

4 z(1− z) −z(1− 2z) z(z2 − 3z + 1) −z(3z2 − 4z + 1)

5 0 −z2 z2 −z2(1− z)
6 z2 −z2 z2(1− z) −z2(1− 2z)

7 −z(1− z) z(1− 2z) −z(z2 − 3z + 1)

8 0 z2 −z2

9 −z2 z2 −z2(1− z)
10 z(1− z) −z(1− 2z)

11 0 −z2

12 z2 −z2

13 . . .

Table 1: The first values of N t
k for 0 ≤ t ≤ 4 and 1 ≤ k ≤ 12.

In particular, for t ≥ 0, we have N t
1 = Dt (see above for a closed form),

N t
2 =

z2
(
− 2z

1+
√
1−4z

)t
√

1− 4z
−
z2
(
− 2z
−
√
1−4z+1

)t
√

1− 4z
,

N t
3 = −

z2
(
−1 +

√
1− 4z

) (
− 2z

1+
√
1−4z

)t
√

1− 4z
(
1 +
√

1− 4z
) −

z2
(
1 +
√

1− 4z
) (
− 2z
−
√
1−4z+1

)t
√

1− 4z
(
−
√

1− 4z + 1
) ,

and for t ≥ 1,
N t

4 = N t
3, N

t
5 = −N t−1

2 , and N t
6 = N t

2.

Using (9), we can deduce closed forms for f tk, gtk, htk, 0 ≤ k ≤ 1, and k ≤ t. Using the above recurrence
relations for N t

k, we deduce closed forms for f tk, gtk, htk, 2 ≤ k ≤ t.
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Theorem 3. For 2 ≤ k ≤ t, we have

fk = [uk]F (u) =
N t−k+1

3

Dt
(−1)k−1, (10)

gk = [uk]G(u) =
N t−k

2

Dt
(−1)k, and (11)

hk = [uk]H(u) =
N t−k+1

2

Dt
(−1)k−1. (12)

For t = 2, 3, 4, the first terms of the series expansion of f2 are
• z + 2z2 + 5z3 + 13z4 + 34z5 + 89z6 + 233z7 + 610z8 + 1597z9,
• z + 2z2 + 5z3 + 14z4 + 41z5 + 122z6 + 365z7 + 1094z8 + 3281z9,
• z+ 2z2 + 5z3 + 14z4 + 42z5 + 131z6 + 417z7 + 1341z8 + 4334z9, which correspond to the sequences A001519,
A007051, A080937 in [16], that also count Dyck paths of semilength n of height at most t+ 1.

Theorem 4. The generating function [uk]Total t(z, u) for the number of partial  Lukasiewicz paths of height at
most t ≥ 0, ending at height k ≥ 1, is given by

(−1)k−1
N t−k+1

3 −N t−k
2 +N t−k+1

2

Dt
.

Moreover, we have

[u0]Total t(z, u) =
Dt +N t

2 +N t
3

Dt
.

The generating function for the total number of partial  Lukasiewicz paths of height at most t ≥ 0 is given by

Total t(z, 1) = (−1)t+1 ·D−1t = F−1t .

For t = 0, 1, 2, 3, 4, the first terms of the series expansion of Total t(z, 1) are
• 1 + z + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9,
• 1 + 2z + 4z2 + 8z3 + 16z4 + 32z5 + 64z6 + 128z7 + 256z8 + 512z9,
• 1 + 3z + 8z2 + 21z3 + 55z4 + 144z5 + 377z6 + 987z7 + 2584z8 + 6765z9,
• 1 + 4z + 13z2 + 40z3 + 121z4 + 364z5 + 1093z6 + 3280z7 + 9841z8 + 29524z9,
• 1 + 5z+ 19z2 + 66z3 + 221z4 + 728z5 + 2380z6 + 7753z7 + 25213z8 + 81927z9, which correspond to A000012,
A000079, A001906, A003462, A005021 in [16].

Using [12], [zn] Total t(z, 1) counts also paths of length 2n + 1 + t in N2 starting at the origin, ending at
(n+ t+ 1, n), consisting of steps (0, 1), and (1, 0), and such that all its points (x, y) satisfy x− t− 1 ≤ y ≤ x.
It would be interesting to exhibit a constructive bijection between these paths and partial  Lukasiewicz paths of
height at most t ≥ 0.

5. Partial  Lukasiewicz paths constrained by height from
right-to-left

In this section, we count partial  Lukasiewicz paths from right-to-left bounded by a given height t ≥ 0. We
denote here by f tk, gtk, htk for 0 ≤ k ≤ t, F t(u), Gt(u) and Ht(u), the generating functions in the same way as
for Section 4. We deduce the following system of equations:

−1 0 0 0 0 0 0 0 0 · · ·
0 −1 0 z z z z z z · · ·
z z z − 1 0 0 0 0 0 0 · · ·
z z z −1 0 0 0 0 0 · · ·
0 0 0 0 −1 0 z z z · · ·
0 0 0 z z z − 1 0 0 0 · · ·
0 0 0 z z z −1 0 0 · · ·
0 0 0 0 0 0 0 −1 0 · · ·
0 0 0 0 0 0 z z z − 1 · · ·
...

...
...

...
...

...
...

...
...



·



f t0

gt0

ht0

f t1

gt1

ht1

f t2

gt2

ht2
...



=



−1

0

0

0

0

0

0

0

0
...



.
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For a given height t ≥ 0, the previous matrix (denoted A′t) is square with 3(t + 1) rows. Using classical
properties of the determinant, we can prove that

det(A′t) = det(At) = Dt, for t ≥ 0.

Using Cramer’s rule to solve the system, for 0 ≤ k ≤ t, we have

f tk =
N t

3k+1

Dt
, gtk =

N t
3k+2

Dt
, htk =

N t
3k+3

Dt
, (13)

where N t
k is the determinant of the matrix A′t(k) obtained from A′t by replacing the k-th column with the vector

(−1, 0, 0, 0, . . . , 0, 0)T .
As we have done for Dt, it is easy to prove that N t

k satisfies the two recurrence relations

N t+2
k +N t+1

k + zN t
k = 0, 1 ≤ k ≤ 3, 2 ≤ t, and

N t+1
k = −zN t

k−3, 4 ≤ k, 0 ≤ t,

where N t
k is the same as in Section 4 whenever (t, k) ∈ N× {1, 2, 3}.

Theorem 5. For 0 ≤ k ≤ t, we have

fk = [uk]F (u) =
N t−k

1

Dt
(−1)kzk, (14)

gk = [uk]G(u) =
N t−k

2

Dt
(−1)kzk, and (15)

hk = [uk]H(u) =
N t−k

3

Dt
(−1)kzk. (16)

Theorem 6. The generating function [uk]Total t(z, u) for the number of partial  Lukasiewicz paths (from right
to left) of height at most t ≥ 0, ending at height k ≥ 0, is given by

(−1)kzk
N t−k

1 +N t−k
2 +N t−k

3

Dt
.

The generating function for the total number of partial  Lukasiewicz paths (from right to left) of height at
most t ≥ 2 is given by

Total t(z, 1) =
Dt−2

Dt
.

Moreover, we have

Total0(z, 1) =
1

1− z
, and Total1(z, 1) =

1

1− 2z
.

For t = 0, 1, 2, 3, the first terms of the series expansion of Total t(z, 1) are
• 1 + z + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9,
• 1 + 2z + 4z2 + 8z3 + 16z4 + 32z5 + 64z6 + 128z7 + 256z8 + 512z9,
• 1 + 2z + 5z2 + 13z3 + 34z4 + 89z5 + 233z6 + 610z7 + 1597z8 + 4181z9,
• 1 + 2z + 5z2 + 14z3 + 41z4 + 122z5 + 365z6 + 1094z7 + 3281z8 + 9842z9,

which correspond to A000012, A000079, A001519, A007051 in [16].
Note that the two series in Theorem 4 and Theorem 6 coincide when t = 0, 1 since, in these cases, partial

 Lukasiewicz paths bounded by the height t are identical from left-to-right and from right-to-left.

6. The average height of  Lukasiewicz paths

In this section, we prove that the average height of n-length partial  Lukasiewicz paths (from left to right, and
from right to left) ending at a fixed height behaves as

√
πn when n→∞
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6.1 The left-to-right model

We simplify the expressions given in Section 4 using the substitution z = u
(1+u)2 , first used in [2]. Then, we find

Dt = (−1)t+3 1− ut+3

(1− u)(1 + u)t+2
,

N t
2 =

(−1)t+1u2(1− ut)
(1 + u)t+3(1− u)

,

N t
3 =

(−1)t+1u(1− ut+2)

(1− u)(1 + u)t+3
.

We start with paths ending on the x-axis, as the formula is (slightly) different. The generating function of these
paths bounded by t is

L [≤t] =
Dt +N t

2 +N t
3

Dt
=

(1 + u)− ut+2(1 + u2)

1− ut+3
.

Taking the limit when t→∞, we retrieve, as expected,

L [≤∞] = 1 + u =
1−
√

1− 4z

2z
.

Then, the generating function of paths of height at least t+ 1 is

L [>t] = L [≤∞] −L [≤t] =
ut+2(1− u2)

1− ut+3
.

We refer to [10] where a similar instance is worked out with an extensive amount of detail. For the average
height, we have (before normalizing by the Catalan numbers) to compute∑

t≥0

t ·L [=t] =
∑
t≥0

L [>t] =
1− u2

u

∑
t≥3

ut

1− ut
.

The goal is to find the local behavior of u ∼ 1 since it translates to the local behavior of z ∼ 1
4 . To find this,

we set u = e−t and we use the Mellin transform. We do not need to do the actual computation, since we just
cite the result from [10]. First, the factor is simple since we have

1− u2

u
∼ 2(1− u).

Since we only compute the leading term of the asymptotic expansion, we use∑
t≥1

ut

1− ut
∼ − log(1− u)

1− u
,

found in [10] for instance. So, we obtain∑
t≥0

t ·L [=t] ∼ −2 log(1− u) ∼ −2 log(2
√

1− 4z) ∼ − log(1− 4z).

Singularity analysis of generating functions (see [5]) allows us to translate this to the coefficients of zn, with
the result ∼ 4n

n . For Catalan numbers, we have the well-known

1

n+ 1

(
2n

n

)
∼ 4n

n3/2
√
π
.

Finally, the average height of paths ending on the x-axis behaves as

4n

n
4n

n3/2
√
π

=
√
πn.

For path ending at height k ≥ 1, the generating function of paths bounded by t is

L
[≤t]
k = (−1)k−1

N t−k+1
3 −N t−k

2 +N t−k+1
2

Dt
= u(1 + u)k

1− ut−k+1

1− ut+3
.
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The limit for t→∞ is u(1 + u)k, and L
[>t]
k = L

[≤∞]
k −L

[≤t]
k is

u(1 + u)k − u(1 + u)k
1− ut−k+1

1− ut+3
= u−k−1(1 + u)k(1− uk+2)

ut+3

1− ut+3
.

Locally, we have (u ∼ 1)
u−k−1(1 + u)k(1− uk+2) ∼ 2k(k + 2)(1− u).

For the average height (the leading term only, before normalization), we compute

2k(k + 2)(1− u)
∑
t≥1

ut

1− ut
∼ −2k(k + 2) log(1− u),

and

[zn]
(
−2k(k + 2) log(1− u)

)
∼ 2k−1(k + 2)

4n

n
.

For the total number of paths ending at height k, we have

[zn]u(1 + u)k =

(
2n− 1 + k

n− 1

)
−
(

2n− 1 + k

n− 2

)
∼ 4n√

πn3/2
(k + 2)2k−1,

and the average height (k fixed, n→∞) is asymptotic to

2k−1(k + 2) 4n

n
4n√
πn3/2 (k + 2)2k−1

=
√
πn,

as before.
To compute the average height of paths with unspecified endpoints makes no sense in this model since the

number of such paths of length n is infinite.

6.2 The right-to left model

We simplify the expressions given in Section 5 using the substitution z = u
(1+u)2 . We have to analyze

R
[≤t]
k = (−1)kzk

N t−k
1 +N t−k

2 +N t−k
3

Dt
=

uk

(1 + u)k−1
1− ut+2−k

1− ut+3
.

Taking the limit when t→∞, we obtain

R
[≤∞]
k =

uk

(1 + u)k−1
,

and

R
[>t]
k = R

[≤∞]
k −R

[≤t]
k =

ut+2(1− uk+1)

(1 + u)k−1(1− ut+3)
.

For the average, we must compute
(k + 1)(1− u)

2k−1

∑
t≥1

ut

1− ut
,

where we took liberties about two missing terms, which do not influence the main term of the average height.
As before, we get the asymptotic behavior

(k + 1)

2k
4n

n
.

For the total number of paths ending at height k, we get

k + 1

2k
4n√
πn3/2

,

and the average height (k fixed, n→∞) is again asymptotic to
√
πn.

Now we move to the  Lukasiewicz paths with unspecified end and have to consider

R≤t =
Dt−2

Dt
=

(1 + u)3(1− u)

u2
ut+3

1− ut+3
.
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The fact that the formula is different for small values of t and that we start the sum at 1 and not at 3, does not
change the main term. We get

R>t ∼ (1 + u)3(1− u)

u2

∑
t≥1

ut

1− ut
∼ −8 log(1− u),

and the coefficient of zn in it is asymptotic to
4n+1

n
.

For the total number of paths, we get the asymptotic formula

4n+1

√
πn3/2

,

and the average height is again asymptotic to
√
πn.

7. Partial alternate  Lukasiewicz paths

In this section, we study prefixes of alternate  Lukasiewicz paths, i.e.,  Lukasiewicz paths that do not contain two
consecutive steps with the same direction (or equivalently, walks in the state diagram of Figure 3 without two
consecutive arrows of the same color). We refer to Figure 4 for the state diagram associated with these paths.
We denote here by fk, gk, and hk the generating functions for the number of these paths (with respect to the
length) ending at height k with an up-step, down-step, or a horizontal step, respectively.

Figure 4: The state diagram for partial alternate  Lukasiewicz paths. Black (resp. red, blue) arrows correspond
to up-steps (resp. down-steps, horizontal steps).

We have the following equations:

f0 = 1, and fk = zf0 + z
k−1∑̀
=0

g` + z
k−1∑̀
=0

h`, k ≥ 1,

gk = zfk+1 + zhk+1, k ≥ 0,

hk = zfk + zgk, k ≥ 0.

(17)

Considering the bivariate generating functions

F (u, z) =
∑
k≥0

ukfk(z), G(u, z) =
∑
k≥0

ukgk(z), and H(u, z) =
∑
k≥0

ukhk(z),

and summing the recursions in (17), we obtain

F (u) = 1 + z
∑
k≥1

uk
(

1 +

k−1∑
`=0

g` +

k−1∑
`=0

h`

)

= 1 +
zu

1− u
+ z

∑
k≥0

uk+1

1− u
gk + z

∑
k≥0

uk+1

1− u
hk
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= 1 +
zu

1− u
(1 +G(u) +H(u)),

G(u) =
z

u
(F (u) +H(u)− 1−H(0)),

H(u) = z(F (u) +G(u)).

Solving these functional equations, we deduce

F (u) =
uz2(1 + z)H(0) + 2uz3 − u2z + u2 + z2 − u

u2z2 + 2uz3 + u2 + z2 − u
,

G(u) = −
z
(
H(0)(uz2 + u− 1) + 2uz2 + z

)
u2z2 + 2uz3 + u2 + z2 − u

,

H(u) =
z
(
zH(0)(uz − u+ 1)− u2z + u2 − u

)
u2z2 + 2uz3 + u2 + z2 − u

.

Now we apply the kernel method on H(u). We have

H(u) =
z
(
zH(0)(uz − u+ 1)− u2z + u2 − u

)
(1 + z2)(u− s1)(u− s2)

, (18)

with

s1 =
1− 2z3 +

√
4z6 − 4z4 − 4z3 − 4z2 + 1

2z2 + 2
,

s2 =
1− 2z3 −

√
4z6 − 4z4 − 4z3 − 4z2 + 1

2z2 + 2
.

In order to compute H(0), it suffices to plug u = s2 in the numerator of (18). Then, H(0) satisfies
zH(0)(s2z − s2 + 1)− s22z + s22 − s2 = 0, which implies that

H(0) =
s2
z
.

After this, and using s1s2(1+z2) = z2, we simplify of both, numerators and denominators, in F (u), G(u), H(u)
by factorizing them with (u− s2).

F (u) =
(1− z)u− (1 + z2)s1

(1 + z2)(u− s1)
= − z − 1

z2 + 1
− s1z (z + 1)

(u− s1) (z2 + 1)
,

G(u) = − z2s−11 + 2z3

(1 + z2)(u− s1)
= − z2(2zs1 + 1)

(1 + z2)s1(u− s1)
,

H(u) =
z((1− z)u− 1)

(1 + z2)(u− s1)
=

(1− z) z
z2 + 1

− (zs1 − s1 + 1) z

(u− s1) (z2 + 1)
.

Finally, we easily obtain

fk = [uk]F (u) =
z(z + 1)

(1 + z2)sk1
, (19)

gk = [uk]G(u) =
z2(2zs1 + 1)

(1 + z2)sk+2
1

, and (20)

hk = [uk]H(u) =
z((z − 1)s1 + 1)

(1 + z2)sk+1
1

. (21)

Since the series expansion of s1 does not have pretty coefficients, we cannot expect this from our final
answers.

Theorem 7. The bivariate generating function for the total number of partial alternate  Lukasiewicz paths with
respect to the length and the height of the end-point is given by

Total(z, u) =
s21z

2 + s1uz
2 + 2s1z

3 + s21 − s1u+ zs1 + z2

(z2 + 1) (−u+ s1)s1
.

Moreover, we have

[u0]Total(z, u) =
s21z

2 + 2s1z
3 + s21 + s1z + z2

(z2 + 1)s21
,

and for k ≥ 1,

[uk]Total(z, u) =
z(2s21z + 2s1z

2 + s1 + z)

(z2 + 1)sk+2
1

.
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Here are examples of the series expansions of [uk]Total(z, u) for k = 0, 1, 2, 3 (leading terms):
• 1 + z + z2 + 3z3 + 5z4 + 9z5 + 19z6 + 39z7 + 81z8 + 173z9,
• z + 3z2 + 5z3 + 11z4 + 25z5 + 53z6 + 115z7 + 255z8 + 565z9;
• z + 3z2 + 7z3 + 19z4 + 45z5 + 105z6 + 247z7 + 575z8 + 1333z9,
• z + 3z2 + 9z3 + 27z4 + 69z5 + 177z6 + 443z7 + 1087z8 + 2645z9,
which do not appear in [16]. The first terms of the series expansion of the generating function for the number
of alternate  Lukasiewicz paths are

1 + z + z2 + 3z3 + 5z4 + 9z5 + 19z6 + 39z7 + 81z8 + 173z9.

A singularity analysis of the generating function [u0]Total(z, u) gives

[zn][u0]Total(z, u) ∼
√
−6a6 + 4a4 + 3a3 + 2a2(a+ 1)2n

(
−a2 + a+ 1

)n
√
πa2 (a2 + 1)n

3
2

,

with

a =
1

3
−

2 cos
( arctan

(
15

√
111

487

)
6 + π

6

)
3

+
2 sin

( arctan
(

15
√

111
487

)
6 + π

6

)√
3

3
.

The reason that this constant appears, results from the singularity analysis. Indeed, one needs the solution
closest to the origin of 4z6 − 4z4 − 4z3 − 4z2 + 1 = 0, which is a = 0.403031716762 . . . . Maple provides the
curious explicit version if one asks for a simplification.
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199–205.

[16] N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences, available electronically at http://oeis.

org.

[17] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999.

[18] A. Varvak, Lattice path encodings in a combinatorial proof of a differential identity, Discrete Math. 308
(2008), 5834–5840.
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