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Abstract: Inspired by a 1979 conjecture of former English professor Richard H. Reis, we give formulas for the
number of symmetric q-ary necklaces and the number of q-ary bracelets over the color set {a1, . . . , aq} with ni
beads of color ai for i = 1, . . . , q and co-periods dividing a nonnegative integer v. (The co-period of a necklace
or a bracelet is its length divided by its period.) The proof of the formula for the bracelets utilizes an earlier
formula of the author for the number of q-ary (fixed) necklaces over the color set {a1, . . . , aq} with ni beads of
color ai for i = 1, . . . , q and co-periods dividing v.
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1. Introduction

The period of a (linear) string or word (b1, . . . , bn) over an alphabet A is the smallest positive divisor d of n
with the property bkd+j = bj for k = 0, . . . , nd − 1 and j = 1, . . . , d.

According to Hadjicostas and Zhang [7], a Type I linear palindromic string (b1, . . . , bn) over A with length
n is such that bi = bn+1−i for i = 1, . . . , n, while a Type II linear palindromic string (b1, . . . , bn) over A with
length n is such that either n = 1, or n ≥ 2 and bi+1 = bn+1−i for i = 1, . . . , n − 1. (Only strings of period
d = 1 are of both types.)

A (fixed) necklace over A with length n is the orbit of a word over A with length n under the action of the
cyclic group Cn of order n. The orbit of a necklace is also called the equivalence class or the conjugacy class
of the necklace. All the (linear) strings in the orbit of a necklace have the same period d, and we call d the
period of the necklace, while we call the number n

d the co-period of the necklace. If the period is d = n (and the
co-period is n/d = 1), then the necklace is called aperiodic.

According to Hadjicostas and Zhang [7], a symmetric necklace over A with length n is a necklace whose
equivalence class (under Cn) contains at least one palindromic linear string either of Type I or of Type II. If
the period d of a symmetric necklace is greater than 1, then Hadjicostas and Zhang [7] proved that its orbit
contains exactly two palindromic strings of either type.

If we put the letters of a symmetric necklace on a circle, then the necklace will have one or two axes of
symmetry. If n is odd (and greater than 1), then an axis of symmetry should pass through exactly one of the
letters and through the middle of two consecutive and identical letters on the circle. If n is even, however, then
an axis of symmetry may pass through two (not necessarily identical) antipodal letters on the circle or through
the middle of two antipodal pairs (a, a) and (b, b) of consecutive and identical letters. (If a symmetric necklace
has two axes of symmetry, then it cannot be aperiodic, in which case its co-period is greater than 1.)

If we assume some lexicographic order for the elements of an alphabet A, a Lyndon word over A with length
n is any (linear) word over A with length n that is strictly smaller than all the other elements in its orbit under
Cn. In other words, a Lyndon word is strictly smaller than all its cyclic shifts.

A free necklace or bracelet over A with length n is the orbit of a word over A with length n under the action
of the dihedral group Dn of order 2n. Thus, each of the necklaces mentioned in the previous paragraphs is
called a fixed necklace and comprises the set of all circular shifts of a word, while a free necklace (i.e., a bracelet)
is the set of all circular shifts or reflections (with respect to an axis of symmetry) of a word. (Terminology,
unfortunately, is not standard on this subject. For example, Zagaglia Salvi [20] calls a fixed necklace a ‘cycle’
and a bracelet a ‘necklace’.)

All the (linear) strings in the orbit of a bracelet have the same period d, and we call d the period of the
bracelet, while we call the number n

d the co-period of the bracelet.
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Note that a (fixed) necklace that is symmetric around an axis is also a bracelet (free necklace) that is
symmetric around the same axis, and vice versa. Thus, we may interchangeably use the terms symmetric
necklace and symmetric bracelet.

If d > 1 is the period of (linear) string λ = (λ1, . . . , λn) and λ is a palindromic string, then (λ1, . . . , λd)
is a palindromic string of the same type (either I or II). This implies that the two palindromic strings λA =
(λA1 , . . . , λ

A
n ) and λB = (λB1 , . . . , λ

B
n ) in the equivalence class of a symmetric necklace of length n and period

d > 1 both have period d, and the sets of cyclic shifts of the two substrings (λA1 , . . . , λ
A
d ) and (λB1 , . . . , λ

B
d ) are

identical and correspond to an aperiodic symmetric necklace of length d.
Given q ∈ Z>0, v ∈ Z≥0, and n = (n1, . . . , nq) ∈ (Z≥0)q with |n| :=

∑q
i=1 ni > 0, denote by Mv(n) the

number of q-ary (fixed) necklaces of length |n| over the color set {a1, . . . , aq} with ni beads of color ai for
i = 1, . . . , q and co-periods dividing v.

Hence, for v = 1, M1(n) is the number of aperiodic q-ary (fixed) necklaces of length |n| with ni beads of color
ai for i = 1, . . . , q. In addition, M1(n) is also the number of Lyndon words over the q-ary alphabet {a1, . . . , aq}
of length |n| with ni symbols ai for i = 1, . . . , q (assuming some lexicographic order, say a1 < a2 < · · · < aq).

It is well-known (e.g., see Moree [9]) that

M1(n) =
1

|n|
∑

d| gcd(n)

µ(d)

( |n|
d
n
d

)
, (1)

where µ(d) is the Möbius function evaluated at the positive integer d, and the sum above ranges over all

positive divisors d of gcd(n) = gcd(n1, . . . , nq). Here, for m = (m1, . . . ,mq) ∈ (Z≥0)q, the quantity
(|m|
m

)
=

(
∑q
i=1mi)!/

∏q
i=1mi! is a multinomial coefficient.

Witt [19] proved the identity

1−
q∑
i=1

xi =
∏
n6=0

(
1−

q∏
i=1

xni
i

)M1(n)

. (2)

The outer product on the RHS of Eq. (2) is over the set

{n ∈ (Z≥0)
q

: |n| > 0} .

See also da Costa and Zimmermann [2] and Sherman [14]. These authors study the Sherman identity, which is
a non-trivial special case of the Feynman identity for graphs and is related to the Ising model in Physics. They
also examine how the Sherman identity is related to the above Witt identity (2).

Furthermore, if v = 0, M0(n) is the total number of q-ary (fixed) necklaces over the color set {a1, . . . , aq}
with ni beads of color ai for i = 1, . . . , q, and it is known that

M0(n) =
∑

d| gcd(n)

M1

(n

d

)
=

1

|n|
∑

d| gcd(n)

φ(d)

( |n|
d
n
d

)
, (3)

where φ(d) is Euler’s totient function evaluated at the positive integer d. See, for example, Brysiewicz [1, Section
2] and Reutenauer [13, Corollary 7.3, p. 157].

Using Eqs. (2) and (3), Hadjicostas [6] proved that

∏
d≥1

(
1−

q∑
i=1

xdi

)
=
∏
n6=0

(
1−

q∏
i=1

xni
i

)M0(n)

. (4)

For a general v ∈ Z≥0, Hadjicostas [6] provided an explicit formula for Mv(n) and generalized Eqs. (2)–(4)
using Ramanujan sums. The Ramanujan sum cn(m) is the sum of the mth powers of the nth primitive roots of
unity:

cn(m) =
∑

1≤s≤n
gcd(s,n)=1

(
e

s
n (2π

√
−1)
)m

for n ∈ Z>0 and m ∈ Z≥0.

These sums were originally defined by Kluyver [8] and independently (later) by Ramanujan [11]. Various values
of the Ramanujan sums can be found at the OEIS [16] sequences A054532, A054533, A054534, and A054535.

The Ramanujan sums satisfy the following properties (e.g., see Wintner [18]):

cn(m) =
∑

d| gcd(n,m)

µ
(n
d

)
d and

∑
d|n

cd(m) = nI(n|m). (5)
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Here (and throughout the paper), I(condition) = 1, if the ‘condition’ holds, and 0 otherwise. Note that
cn(0) = φ(n) and cn(1) = µ(n).

More specifically, Hadjicostas [6] proved Theorem 1.1 below. Special cases of the theorem were proved by
Elashvili et al. [3], Fredman [4], and Panyushev [10]. (In Eqs. (7) and (8) below, we use the principal branch of
the logarithm.)

Theorem 1.1. For q ∈ Z>0, v ∈ Z≥0, and n = (n1, . . . , nq) ∈ (Z≥0)q with |n| =
∑q
i=1 ni > 0, we have

Mv(n) =
∑

d| gcd(n,v)

M1

(n

d

)
=

1

|n|
∑

d| gcd(n)

cd(v)

( |n|
d
n
d

)
. (6)

In addition, for all x1, . . . , xq ∈ C with
∑q
i=1 |xi| < 1,

∑
n 6=0

Mv(n)

q∏
i=1

xni
i = −

∑
m≥1

cm(v)

m
log

(
1−

q∑
i=1

xm
i

)
, (7)

∑
n6=0

|n|Mv(n)

q∏
i=1

xni
i =

∑
m≥1

cm(v)

∑q
j=1 x

m
j

1−
∑q
j=1 x

m
j

,

and ∏
n6=0

(
1−

q∏
i=1

xni
i

)Mv(n)

=
∏
d|v

(
1−

q∑
i=1

xdi

)
. (8)

For q ∈ Z>0, v ∈ Z≥0, and n = (n1, . . . , nq) ∈ (Z≥0)q with |n| =
∑q
i=1 ni > 0, let Rv(n) and Bv(n) be

the numbers of symmetric q-ary necklaces and q-ary bracelets, respectively, of length |n| over the color set
{a1, . . . , aq} with ni beads of color ai for i = 1, . . . , q and co-periods dividing v.

In particular, R0(n) counts symmetric q-ary necklaces while B0(n) counts q-ary bracelets of length |n|
over the color set {a1, . . . , aq} with ni beads of color ai for i = 1, . . . , q. On the other hand, R1(n) counts
aperiodic symmetric q-ary necklaces while B1(n) counts aperiodic q-ary bracelets of length |n| over the color
set {a1, . . . , aq} with ni beads of color ai for i = 1, . . . , q.

In this paper, inspired by a conjecture in Reis [12] ∗, we derive explicit formulas for Rv(n) and Bv(n).
(Reis’s [12] original conjecture was for the case v = 0.) See Theorem 1.2 below. The proof of the theorem
appears in Section 3.

For q ∈ Z>0 and n ∈ (Z≥0)q with |n| > 0, let

J(n) :=


1, if the list n has at most two

odd components;

0, otherwise.

(For x ∈ R, we let bxc be the floor of x, i.e., the greatest integer less than or equal to x.)

Theorem 1.2. For q ∈ Z>0, v ∈ Z≥0, and n = (n1, . . . , nq) ∈ (Z≥0)q with |n| =
∑q
i=1 ni > 0, we have

R0(n) = J(n)

( ∑q
i=1

⌊
ni

2

⌋⌊
n1

2

⌋
, . . . ,

⌊nq

2

⌋), (9)

R1(n) =
∑

d| gcd(n)

µ(d)R0

(n

d

)
, (10)

Rv(n) =
∑

d| gcd(n,v)

R1

(n

d

)
, (11)

Bv(n) =
Mv(n) +Rv(n)

2
, (12)

and
Bv(n) =

∑
d| gcd(n,v)

B1

(n

d

)
. (13)

∗Richard H. Reis (1930–2008) was a Professor of English at Southeastern Massachusetts University in N. Darmouth, USA. He
was a friend of Professor Hansraj Gupta with whom he was discussing the enumeration of necklaces and bracelets. See Gupta [5]
and Shevelev [15].
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Corollary 1.1. Consider the notation in Theorem 1.2. If the list n contains at least three odd components,
then

J(n) = R0(n) = R1(n) = Rv(n) = 0,

and the number of q-ary bracelets of length |n| over the color set {a1, . . . , aq} with ni beads of color ai for
i = 1, . . . , q and co-periods dividing v is equal to

Bv(n) =
1

2
Mv(n).

In other words, in such a case, all such bracelets are not symmetric.

Remark 1.1. If q = 1, then

R0(n1) = J(n1) = 1 and R1(n1) =
∑
d|n1

µ(d) = I(n1 = 1).

Therefore, the number of 1-ary symmetric necklaces/bracelets of length n1 with n1 beads of color a1 and
co-period (in this case, n1/1 = n1) dividing v is

Rv(n1) =
∑

d| gcd(n1,v)

I
(n1
d

= 1
)

= I(n1|v).

Using Eqs. (5) and (6), we find that
Mv(n1) = I(n1|v),

which is the number of 1-ary (fixed) necklaces over the color set {a1} with n1 beads of color a1 whose co-period
(in this case, n1) divides v. It then follows from Eq. (12) that the number of 1-ary bracelets over the color set
{a1} with n1 beads of color a1 whose co-period (in this case, n1) divides v is

Bv(n1) =
1

2
(Mv(n1) +Rv(n1)) = I(n1|v).

Remark 1.2. For q = 2 and 0 ≤ k ≤ n, we have that

R0(k, n− k) = A119963(n, k) =

(⌊k
2

⌋
+
⌊
n−k
2

⌋⌊
k
2

⌋ )
in the OEIS [16]. This is the number of symmetric cyclic compositions of n into k parts; see Hadjicostas and
Zhang [7, Section 1]. This result was originally proved by Sommerville [17, pp. 301–304].

2. Examples

The three examples below illustrate Theorems 1.1 and 1.2. We denote by SI(n) and SII(n) the numbers of
Type I and Type II palindromic q-ary strings, respectively, of length |n| over the color set {a1, . . . , aq} with ni
beads of color ai for i = 1, . . . , q. In the first example, we underline those linear strings that are palindromic of
either type. In the second example, there are no palindromic strings.

Example 2.1. Suppose q = 2, n1 = 4, n2 = 2, and v = 2. We enumerate all symmetric necklaces/bracelets
and all bracelets of length n1 + n2 = 6 with n1 = 4 beads of color B and n2 = 2 beads of color W with co-period
that divides v = 2 (i.e., co-period either 1 or 2).

By Theorem 1.1, the total number of (fixed) necklaces of length n1 + n2 = 6 with n1 = 4 beads of color B
and n2 = 2 beads of color W with co-period that divides v = 2 is

M2(4, 2) =
1

6

∑
d| gcd(4,2)

cd(2)

( 6
d

4
d ,

2
d

)
=

1

6

(
c1(2)

(
6

4, 2

)
+ c2(2)

(
3

2, 1

))
=

1

6
((1)(15) + (1)(3)) = 3.

Indeed, here are the equivalence classes (or conjugacy classes) of the above necklaces:

C1 = {BBWBBW,BWBBWB,WBBWBB},
C2 = {BBBBWW,BBBWWB,BBWWBB,BWWBBB,WWBBBB,WBBBBW},
C3 = {BBBWBW,BBWBWB,BWBWBB,WBWBBB,BWBBBW,WBBBWB}.

Necklace C1 has period 3 and co-period 2, while each of the necklaces C2 and C3 has period 6 and co-period 1.
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Note that J(4, 2) = 1 = J(2, 1). Therefore, by Theorem 1.2,

R0(4, 2) =

(
3

2, 1

)
= 3 and R0(2, 1) =

(
1

1, 0

)
= 1.

In addition,

R1(4, 2) =
∑

d| gcd(4,2)

µ(d)R0

(
4

d
,

2

d

)
= µ(1)R0(4, 2) + µ(2)R0(2, 1) = (1)(3) + (−1)(1) = 2 and

R1(2, 1) =
∑

d| gcd(2,1)

µ(d)R0

(
2

d
,

1

d

)
= µ(1)R0(2, 1) = (1)(1) = 1.

Therefore, the number of symmetric necklaces/bracelets of length n1 + n2 = 6 with n1 = 4 beads of color B and
n2 = 2 beads of color W with co-period that divides v = 2 is

R2(4, 2) =
∑

d| gcd(4,2,2)

R1

(
4

d
,

2

d

)
= R1(4, 2) +R1(2, 1) = 2 + 1 = 3.

Indeed, all three necklaces above are symmetric:

• Necklace C1 contains the ‘palindromic’ words BWBBWB and WBBWBB, which when placed on a circle
have an axis of symmetry through the two W’s and another one through the middle points of the two pairs
of consecutive B’s (The first palindromic string is of Type I while the second one is of Type II.)

• Necklace C2 contains the ‘palindromic’ words BBWWBB and WBBBBW, which when placed on a circle
have a single axis of symmetry that passes at a point between two consecutive B’s and a point between two
consecutive W’s. (Both palindromic strings are of Type I.)

• Necklace C3 contains the ‘palindromic’ words BBWBWB and BWBBBW, which when placed on a circle
have a single axis of symmetry that passes through two B’s. (Both palindromic strings are of Type II.)

By Theorem 1.2, the number of bracelets of length n1 + n2 = 6 with n1 = 4 beads of color B and n2 = 2
beads of color W with co-period that divides v = 2 is

B2(4, 2) =
1

2
(M2(4, 2) +R2(4, 2)) =

3 + 3

2
= 3.

Indeed, the equivalence classes of these three bracelets are identical to the equivalence classes of necklaces C1,
C2, and C3 above.

Finally, from the above discussion, we see that SI(4, 2) = 3 = SII(4, 2).

Example 2.2. Suppose q = 3, n1 = n2 = n3 = 1, and v = 2. We enumerate all symmetric necklaces/bracelets
and all bracelets of length n1 + n2 + n3 = 3 with n1 = 1 bead of color B, n2 = 1 bead of color W, and n3 = 1
bead of color Y with co-period that divides v = 2 (i.e., co-period either 1 or 2).

By Theorem 1.1, the total number of (fixed) necklaces of length n1 + n2 + n3 = 3 with n1 = 1 beads of color
B, n2 = 1 bead of color W, and n3 = 1 bead of color Y with co-period that divides v = 2 is

M2(1, 1, 1) =
1

3

∑
d| gcd(1,1,1)

cd(2)

( 3
d

1
d ,

1
d ,

1
d

)
=

1

3
c1(2)

(
3

1, 1, 1

)
=

(1)(6)

3
= 2.

Indeed, here are the equivalence classes (or conjugacy classes) of the above necklaces:

D1 = {BWY,WY B, Y BW} and D2 = {YWB,BYW,WBY }.

Each of the necklaces D1 and D2 has period 3 and co-period 1.
By Theorem 1.2,

R1(1, 1, 1) =
∑

d| gcd(1,1,1)

µ(d)R0

(
1

d
,

1

d
,

1

d

)
= R0(1, 1, 1) = J(1, 1, 1)

(
0

0, 0, 0

)
= 0.

Therefore, the number of symmetric necklaces/bracelets of length n1 + n2 + n3 = 3 with n1 = 1 bead of color B,
n2 = 1 bead of color W, and n3 = 1 bead of color Y with co-period that divides v = 2 is

R2(1, 1, 1) =
∑

d| gcd(1,1,1,2)

R1

(
1

d
,

1

d
,

1

d

)
= R1(1, 1, 1) = 0.
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Table 1: Values of the quantities Mv(n), Rv(n), and Bv(n) for n = (6, 12, 6) and v = 0, 1, . . . , 5

v Mv(n) Rv(n) Bv(n)

0 104110812 18480 52064646
1 104109219 18449 52063834
2 104110758 18468 52064613
3 104109270 18460 52063865
4 104110758 18468 52064613
5 104109219 18449 52063834

By Theorem 1.2, the number of bracelets of length n1 +n2 +n3 = 3 with n1 = 1 bead of color B, n2 = 1 bead
of color W, and n3 = 1 bead of color Y with co-period that divides v = 2 is

B2(1, 1, 1) =
1

2
(M2(1, 1, 1) +R2(1, 1, 1)) =

2 + 0

2
= 1.

Indeed, the equivalence class of the single bracelet is

D = {BWY,WY B, Y BW,YWB,BYW,WBY }.

It has period 3 and co-period 1.
Finally, from the above discussion, we see that SI(1, 1, 1) = 0 = SII(1, 1, 1).

Example 2.3. Suppose q = 3 and n = (n1, n2, n3) = (6, 12, 6). In Table 1, we list the values of Mv(n), Rv(n),
and Bv(n) for v = 0, 1, . . . , 5. Because of Eqs. (6), (11), and (13), and the fact that

gcd(n, 6m+ r) = gcd(6, 12, 6, 6m+ r) = gcd(6, r) for m ∈ Z≥0 and r ∈ {0, 1, . . . , 5},

the three enumerative quantities are periodic with period 6.

3. Proof of Theorem 1.2

Let q ∈ Z>0, v ∈ Z≥0, and n = (n1, . . . , nq) ∈ (Z≥0)q with |n| =
∑q
i=1 ni > 0. In this section, we prove

Theorem 1.2. We divide the proof of the theorem into three steps:

• In Step 1, we prove Eq. (9) about R0(n).

• In Step 2, we prove

(i) Eq. (10) that expresses the quantity R1(n) in terms of the quantity R0(m) and

(ii) Eq. (11) that expresses the quantity Rv(n) in terms of the quantity R1(m) (with m ∈ (Z≥0)q).

• In Step 3, we prove Eqs. (12) and (13) regarding Bv(n).

Step 1. Recall that R0(n) is the number of symmetric q-ary necklaces of length |n| over the color set
{a1, . . . , aq} with ni beads of color ai for i = 1, . . . , q. Here we prove Eq. (9), which is the formula about R0(n)
conjectured in Reis [12].

It follows from the general results † in Sections 1 and 2 of Hadjicostas and Zhang [7] that R0(n) is the average
of the number of Type I and Type II palindromic q-ary strings of length |n| over the color set {a1, . . . , aq} with
ni beads of color ai for i = 1, . . . , q. As before, denote these numbers by SI(n) and SII(n), respectively.

(i) Assume first |n| is even. In a linear palindromic q-ary string of Type I of length |n| over the color set
{a1, . . . , aq} with ni beads of color ai for i = 1, . . . , q, all the ni’s must be even. In such a case,

SI(n) =

( ∑q
i=1

ni

2
n1

2 , . . . ,
nq

2

)
.

In all the other cases, when at least one ni is odd, no such linear q-ary string of Type I of length |n| exists (i.e.,
SI(n) = 0).

†As stated in Hadjicostas and Zhang [7], even though that paper deals with cyclic compositions of positive integers, the results
in Lemmas 2.2–2.4 in that paper apply to general palindromic strings (of both types).
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In a linear palindromic q-ary string (b1, b2, . . . , b|n|) of Type II of length |n| over the color set {a1, . . . , aq}
with ni beads of color ai for i = 1, . . . , q, we consider two cases: (A) beads b1 and b(|n|/2)+1 are of the same
color, and (B) beads b1 and b(|n|/2)+1 are of a different color.

In case (A), we may move bead b1 between beads b|n|/2 and b(|n|/2)+1 and get a palindromic string of Type I
(and this process can be reversed). In such a case, all the ni’s are even, and

SII(n) =

( ∑q
i=1

ni

2
n1

2 , . . . ,
nq

2

)
.

Hence, in the case all the ni’s are even, we have SI(n) = SII(n).
In case (B), there are exactly two of the ni’s, say nr and ns with 1 ≤ r < s ≤ q, that are odd, and the rest

are even. Since nr and ns are odd, only the colors ar and as can appear in beads b1 and b(|n|/2)+1, respectively,
or vice versa. Removing those two beads, we get a palindromic string of Type I of length |n| − 2, where color
ai (with i ∈ {1, . . . , q} − {r, s}) appears ni times, while colors ar and as appear nr − 1 and ns − 1 times,
respectively. Since ⌊m

2

⌋
=
m− 1

2
for m ∈ {nr, ns},

in case (B), we get

SII(n) = 2

( ∑q
i=1

⌊
ni

2

⌋⌊
n1

2

⌋
, . . . ,

⌊nq

2

⌋).
In the case of exactly two of the ni’s being odd, we have SI(n) = 0.

In the above two situations (when all the ni’s are even or when exactly two ni’s are odd), we have J(n) = 1
and

R0(n) =
SI(n) + SII(n)

2
=

( ∑q
i=1

⌊
ni

2

⌋⌊
n1

2

⌋
, . . . ,

⌊nq

2

⌋). (14)

In all the other cases of part (i), we have SI(n) = SII(n) = 0, R0(n) = (0 + 0)/2, and J(n) = 0.
Putting together all of the above situations, we see that we proved Eq. (9) when |n| is even.
(ii) Next, assume |n| is odd. In a linear palindromic q-ary string of either Type I or Type II of length |n|

over the color set {a1, . . . , aq} with ni beads of color ai for i = 1, . . . , q, exactly one ni is odd while the rest are
even. In such a case, J(n) = 1 and Eqs. (14) hold again because

SI(n) =

( ∑q
i=1

⌊
ni

2

⌋⌊
n1

2

⌋
, . . . ,

⌊nq

2

⌋) = SII(n).

In all the other cases of part (ii), we have SI(n) = SII(n) = 0, R0(n) = (0 + 0)/2, and J(n) = 0.
Putting together all of the above situations, we see that we proved Eq. (9) when |n| is odd.
Step 2. Recall that Rv(n) is the number of symmetric q-ary necklaces of length |n| over the color set

{a1, . . . , aq} with ni beads of color ai for i = 1, . . . , q and co-periods dividing v. Here we prove Eqs. (10) and
(11).

According to Lemma 2.2 in Hadjicostas and Zhang [7], if d is the period of the (linear) string λ = (λ1, . . . , λK)
(where d,K ∈ Z>0 with d|K) and λ is palindromic of either Type I or Type II, then the (linear) string
(λ1, . . . , λd) is also palindromic of the same type. In addition, Lemma 2.4 in Hadjicostas and Zhang [7], which is
quite general and deals with cyclic shifts of a string, implies that the equivalence class of a symmetric necklace
contains exactly two palindromic linear strings of either type when the period is d > 1. (If d = 1, then the
equivalence class of the symmetric necklace has only one linear string that is trivially palindromic of both types.)
We use both of these lemmas below.

Denote by R0(n;h) the number of symmetric q-ary necklaces of length |n| over the color set {a1, . . . , aq}
with ni beads of color ai for i = 1, . . . , q with co-period h. In such a case, h must divide each ni, and each
of the palindromic representatives in the equivalence class of such a (symmetric) necklace can be obtained by
repeating h times a representative in the equivalence class of a symmetric aperiodic necklace of length |n|/h
with ni/h beads of color ai for i = 1, . . . , q. It can be easily proved that the above process can be reversed, and
thus

R0(n;h) = R0

(n

h
; 1
)

= R1

(n

h

)
for each h| gcd(n). (15)

We then have
R0(n) =

∑
h| gcd(n)

R0(n;h) =
∑

h| gcd(n)

R1

(n

h

)
.

By Möbius inversion, we get Eq. (10).
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Using the definitions of R0(n;h) and Rv(n) and Eqs. (15), we obtain

Rv(n) =
∑

h| gcd(n,v)

R0(n;h) =
∑

h| gcd(n,v)

R1

(n

h

)
,

which is Eq. (11).
Step 3. Here we prove Eqs. (12) and (13)) regarding Bv(n), which counts q-ary bracelets of length |n| over

the color set {a1, . . . , aq} with ni beads of color ai for i = 1, . . . , q and co-periods dividing v.
Bracelets are divided into symmetric and non-symmetric ones. Each non-symmetric bracelet corresponds

to two different necklaces, each of which can be obtained from the other by changing direction (clockwise to
counterclockwise, or vice versa). Thus,

Bv(n) = Rv(n) +
Mv(n)−Rv(n)

2
=
Mv(n) +Rv(n)

2
.

We thus proved Eq. (12).
Eq. (13) follows immediately from Eqs. (6), (11), and (12).
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