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1. Introduction

A partition is a finite weakly decreasing sequence of positive integers λ = (λ1, λ2, . . . , λl) [1]. Each summand
λi is called a part of the partition λ and the number of parts is called the length of λ, denoted by `(λ). The
weight of λ is the sum of its parts, denoted by |λ|. If |λ| = n, then λ is called a partition of n. To distinguish
from other types of partitions, partitions with no restrictions on parts are referred to as ordinary partitions if
needed.

In 1999, Schmidt [7] proposed the following interesting problem.

Let s(n) denote the number of partitions (λ1, λ2, λ3 . . .) satisfying λ1 > λ2 > λ3 > · · · and λ1 +λ3 +
λ5 + · · · = n. Then s(n) equals the number of all partitions of n for n ≥ 1.

This problem was immediately confirmed by Mork [6] with eight other independent solvers. However, the
problem has not received much attention until the recent work of Andrews and Paule. In 2022, Andrews and
Paule [2] explored Schmidt’s problem using MacMahon’s Partition Analysis, which leads to numerous interesting
results.

A Schmidt k-partition of n is defined to be a partition (λ1, λ2, λ3, . . .) with λ1 > λ2 > λ3 > · · · and
λ1 +λk+1 +λ2k+1 + · · · = n; an unrestricted Schmidt k-partition of n is defined to be a partition (λ1, λ2, λ3, . . .)
with λ1 ≥ λ2 ≥ λ3 ≥ · · · and λ1 + λk+1 + λ2k+1 + · · · = n.

Schmidt’s result can be restated as follows.

Theorem 1.1. The number of Schmidt 2-partitions of n equals the number of all partitions of n.

Remark 1.1. In [8], Uncu proved this theorem of Schmidt as an example in his study of weight Rogers–
Ramanujan partitions. Wang and Xu [9] found a strong refinement of Theorem 1.1 considering a partition
statistic, namely the minimal excludant.

A k-tuple (α1, α2, . . . , αk) is called a k-multipartition of n if each αi is a partition and |α1|+|α2|+· · ·+|αk| =
n. We adopt the terminologies bipartitions and triple partitions for 2-multipartitions and 3-multipartitions,
respectively. A partition λ is called k-distinct if two adjacent parts differ by at least k. For the special case
when k = 1, we call strict partitions for short.

In [2], generalizing the result of Schmidt, Andrews and Paule established some connections between Schmidt
k-partitions and bipartitions or triple partitions for k = 2, 3.
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Theorem 1.2 (Andrews–Paule [2]). The number of unrestricted Schmidt 2-partitions of n equals the number
of bipartitions of n.

Theorem 1.3 (Andrews–Paule [2]). Schmidt 3-partitions of n with 3t or 3t − 1 parts are equinumerous with
triple partitions (α, β, γ) of n where α is a 2-distinct partition of length t, β is a strict partition of length t and
γ is an ordinary partition of length at most t.

Remark 1.2. In [8], Uncu proved Theorem 1.2 using generating function manipulations. Recently, Ji [5] gave
a combinatorial proof of Theorem 1.2, from which a four-variable refinement follows. Also, in [3], Chern and
Yee generalized this theorem in another direction considering diagonal hooks of partitions.

In [2], Andrews and Paule viewed partition diamonds as Schmidt-type partitions and investigated the
arithmetic properties of k-elongated partition diamonds. To give the precise definition of k-elongated parti-
tion diamonds, we first introduce an order � on integer sequences. Given two sequences (a1, a2, . . . , am) and
(b1, b2, . . . , bn), we say

(a1, a2, . . . , am) � (b1, b2, . . . , bn) if and only if min{a1, . . . , am} ≥ max{b1, . . . , bn}.

Also, for a sequence (a) of length 1, we will write it as a.
A k-elongated partition diamond of n is a nonnegative integer sequence π = (π1, . . . , πt(2k+1)+1) for some

t ≥ 1 such that

(i) π1 + π2k+2 + π4k+3 + · · ·+ π(t−1)(2k+1)+1 = n;

(ii) for i = 0, . . . , t− 1,

πi(2k+1)+1 � (πi(2k+1)+2, πi(2k+1)+3) � · · · � (π(i+1)(2k+1)−1, π(i+1)(2k+1)) � π(i+1)(2k+1)+1, (1)

where πt(2k+1)+1 = 0. Each subsequence in (1) is a building block of the k-elongated partition diamond π. The
length of π is defined to be the number of its building blocks, i.e., t.

A k-elongated partition diamond π can be regarded as a geometric configuration. Each element πi is
represented as a node, and an arrow pointing from πi to πj is interpreted as πi ≥ πj . Then π is a chain obtained
by gluing its building blocks together. Figure 1 gives an example of the first building block, and Figure 2
illustrates a k-elongated partition diamond of length t.

π1
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π2k−2
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π2k+1

π2k+2

Figure 1: The first building block.
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πt(2k+1)+1 = 0

Figure 2: A k-elongated partition diamond of length t.

Let dk(n) denote the number of k-elongated partition diamonds of n. Andrews and Paule [2] then obtained
the following generating function formula for dk(n):

∞∑
n=0

dk(n)qn =
(q2; q2)k∞
(q; q)3k+1

∞
, (2)
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where (a; q)∞ =
∞∏
i=0

(1− aqi). Since

(q2; q2)k∞
(q; q)3k+1

∞
=

(−q; q)k∞
(q; q)k∞

1

(q; q)k+1
∞

,

we can interpret the above generating function using overpartitions. Recall that an overpartition [4] is a partition
in which the final occurrence of a part may be overlined. The identity in (2) can be restated as follows.

Theorem 1.4 (Andrews–Paule [2]). The number of k-elongated partition diamonds of n equals the number of
(2k+1)-multipartitions (α1, α2, . . . , α2k+1) of n such that α2, α4, . . . , α2k are overpartitions while the others are
ordinary partitions.

The main purpose of this paper is to study the combinatorics of Schmidt-type partitions. More specifically,
we give generating function formulas for Schmidt k-partitions and unrestricted Schmidt k-partitions, which
generalize the result of Schmidt (Theorem 1.1) and the results of Andrews and Paule (Theorems 1.2 and 1.3),
respectively. We also introduce Schmidt-type overpartitions and give analogous results. All our results are
proved in a unified combinatorial way.

The rest of this paper is organized as follows. In Section 2, we establish a bijection Φ between k × t
integer matrices and integer sequences of length kt, which plays a central role in our later combinatorial proofs.
In Section 3, we focus on the combinatorics of Schmidt k-partitions and unrestricted Schmidt k-partitions
connecting them to k-multipartitions. In Section 4, we discuss the combinatorial properties of k-elongated
partition diamonds and present a refinement of Theorem 1.4. In Section 5, we establish overpartition analogues
of Schmidt-type partition theorems.

2. The key bijection

In this section, we establish a bijection Φ from the set of k× t integer matrices with the sum of all entries being
n to the set of integer sequences (λ1, λ2, λ3, . . . , λkt) of length kt with

λ1 + λk+1 + λ2k+1 + · · ·+ λ(t−1)k+1 = n.

Let A be a k× t matrix whose (i, j)-entry is ai,j . We now introduce an operation φ on each entry ai,j which
is defined by

φ(ai,j) =


∑k

s=1 as,j , if i = 1;∑k
s=i as,t, if j = t;∑k
s=i as,j +

∑i−1
s=1 as,j+1, otherwise.

For 1 ≤ i ≤ k and 1 ≤ j ≤ t, set λ(j−1)k+i = φ(ai,j). Define Φ(A) to be the sequence

λ := (λ1, λ2, . . . , λkt).

Clearly, Φ(A) is an integer sequence of length kt. Moreover, for 1 ≤ j ≤ t,

λ(j−1)k+1 = φ(a1,j) =

k∑
i=1

ai,j .

We now can conclude that

λ1 + λk+1 + λ2k+1 + · · ·+ λ(t−1)k+1 =

t∑
j=1

k∑
i=1

ai,j ,

which is the sum of all entries in A.
For example, given a 3× 4 matrix

A =

 5 5 4 3
7 4 1 0
−5 −9 0 1

 ,

we have

λ1 = 5 + 7− 5 = 7, λ4 = 5 + 4− 9 = 0, λ7 = 4 + 1 + 0 = 5, λ10 = 3 + 0 + 1 = 4,
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λ2 = 7− 5 + 5 = 7, λ5 = 4− 9 + 4 = −1, λ8 = 1 + 0 + 3 = 4, λ11 = 0 + 1 = 1,

λ3 = −5 + 5 + 4 = 4, λ6 = −9 + 4 + 1 = −4, λ9 = 0 + 3 + 0 = 3, λ12 = 1.

Therefore,
Φ(A) = (7, 7, 4, 0,−1,−4, 5, 4, 3, 4, 1, 1).

We now show that Φ is invertible. Given an integer sequence

λ = (λ1, λ2, . . . , λkt)

of length kt, we can recover the k × t matrix A as follows. First, let

ak,t = λkt,

ak−1,t = λkt−1 − ak,t,
...

a1,t = λkt−k+1 − a2,t − a3,t − · · · − ak,t.

For j from t− 1 to 1 and i from k to 1, let

ai,j =


λ(j−1)k+1 −

k∑
s=2

as,j , if i=1;

λ(j−1)k+i −
k∑

s=i+1

as,j −
i−1∑
s=1

as,j+1, otherwise.

Let A be the matrix with (i, j)-entry being ai,j . Then A is a k × t matrix and Φ(A) = λ.
In addition, under the mapping Φ, we can see that

• for 1 ≤ j ≤ t− 1,

λ(j−1)k+1 − λ(j−1)k+2 = φ(a1,j)− φ(a2,j)

=

k∑
s=1

as,j −

(
k∑

s=2

as,j + a1,j+1

)
= a1,j − a1,j+1.

• for i 6= 1 and j 6= t,

λ(j−1)k+i − λ(j−1)k+(i+1) = φ(ai,j)− φ(ai+1,j)

=

k∑
s=i

as,j +

i−1∑
s=1

as,j+1 −

(
k∑

s=i+1

as,j +

i∑
s=1

as,j+1

)
= ai,j − ai,j+1.

• for 1 ≤ i ≤ k − 1,

λ(t−1)k+i − λ(t−1)k+(i+1) = ai,t.

We now derive the following conclusion, which plays a central role in our later proofs.

Theorem 2.1. Suppose that A is a nonnegative integer matrix, then

(a) Φ(A) is a weakly decreasing nonnegative integer sequence if and only if each row of A is weakly decreasing;

(b) Φ(A) is a strictly decreasing nonnegative integer sequence (excluding the zero entries) if and only if each
row of A is strictly decreasing and the zero entries (if exist) only occur consecutively in the last column
and extend to the last position.

3. Schmidt type partition theorems

In this section, we aim to present the general form of Theorems 1.1, 1.2 and 1.3. All results are proved bijectively
in a unified manner.
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3.1 Schmidt k-partition theorem

Theorem 3.1. For given positive integers n, k, t, r with 1 ≤ r ≤ k, let p(n, k, t, r) be the number of k-
multipartitions (α1, α2, . . . , αk) of n where each αi is a strict partition, and α1, α2, . . . , αr have length t and
αr+1, αr+2, . . . , αk have length t−1. Let q(n, k, t, r) be the number of Schmidt k-partitions of n with (t−1)k+ r
parts. Then we have

p(n, k, t, r) = q(n, k, t, r).

Proof. Let (α1, α2, . . . , αk) be a k-multipartition counted by p(n, k, t, r) with

αi = (αi
1, α

i
2, . . . , α

i
t),

where αi
t = 0 for r + 1 ≤ i ≤ k.

We now construct a k× t matrix A = (ai,j) with ai,j = αi
j , i.e., the i-th row of A coincides with the partition

αi. Applying the algorithm Φ to A, we get a nonnegative integer sequence (λ1, λ2, . . . , λkt).
We claim that λ1 > λ2 > · · · > λ(t−1)k+r > 0 and λ(t−1)k+(r+1) = λ(t−1)k+(r+2) = · · · = λkt =

0. It follows from the definition of (α1, α2, . . . , αk) that the last k − r entries in the last column of A
are equal to zero, and all the other entries of A are positive. Therefore, all λi are greater than 0 except
λ(t−1)k+(r+1), λ(t−1)k+(r+2), . . . , λkt. Since each αi is a strict partition, then A is strictly decreasing in rows,
which ensures that

λ1 > λ2 > · · · > λ(t−1)k+r

by Theorem 2.1.
It is clear that λ1 + λk+1 + · · · + λ(t−1)k+1 = n. Thus, (λ1, λ2, . . . λ(t−1)k+r) is a Schmidt k-partition of n

with exactly (t− 1)k + r parts.
Conversely, given a Schmidt k-partition (λ1, λ2, . . . , λ(t−1)k+r) enumerated by q(n, k, t, r), we obtain a non-

negative integer sequence of length kt

(λ1, λ2, . . . , λ(t−1)k+r, 0, 0, . . . , 0)

by appending k−r zeroes. Then the inverse of this sequence under the mapping Φ is a k× t nonnegative matrix
A whose zero entries are all collected in the last k− r positions of the last column. Due to Theorem 2.1, we can
view each row of A as a strict partition. Furthermore, the first k partitions have length t and the others have
length t− 1.

Corollary 3.1. The number of partitions of n with Durfee square size t is equal to the number of Schmidt
2-partitions of n with 2t or 2t− 1 parts.

Proof. Given a partition λ of n with Durfee square size t, we decompose λ into two strict partitions as follows.
Let α be the partition represented below the main diagonal of the Ferrers diagram, where we read the parts
from left to right and the main diagonal is included. Let β be the partition located to the right of the main
diagonal of the Ferrers diagram, where we read from top to bottom. Then α is a strict partition of length t,
and β is a strict partition whose length is t or t − 1 depending on the t-th part of λ is greater than t or equal
to t.

If the length of β is t, then the bijection Φ maps the bipartition (α, β) of n to a Schmidt 2-partition of n
with length 2t; otherwise, it corresponds to a Schmidt 2-partition of length 2t− 1.

Remark 3.1. It is easy to see that Corollary 3.1 is a refinement of Theorem 1.1 with respect to the size of
Durfee square. Also, in [5], Wright’s bijection for Jacobi’s triple product identity and Sylvester’s bijection for
Euler’s partition identity were used. Similarly, using Sylvester’s bijection, we can also prove this corollary.
Indeed, Sylvester’s bijection coincides with our map described in the proof.

To prove Theorem 1.3, we need a simple auxiliary result.

Lemma 3.1. The number of triple partitions (α, β, γ) of n such that α is a 2-distinct partition of length t, β
is a strict partition of length t and γ is an ordinary partition of length at most t is equal to the number of triple
partitions (µ, ν, ω) of n such that µ is a strict partition of length t, ν is a strict partition of length t and ω is a
strict partition of length t or t− 1.

Proof. Given a triple partition (α, β, γ), let µ be the partition obtained from α by removing the triangle partition
(t−1, t−2, . . . , 1, 0), and define ω to be the partition obtained by adding the triangle partition (t−1, t−2, . . . , 1, 0)
to γ. Set ν = β. This operation is invertible.

It is easy to see that µ is a strict partition of length t since α is a 2-distinct partition of length t. If the
length of γ is t, then ω is a strict partition of length t; otherwise, ω is a strict partition of length t− 1.

As a consequence of Lemma 3.1 and Theorem 3.1, we can state Theorem 1.3 more precisely as follows.
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Corollary 3.2. The number of triple partitions (α, β, γ) of n where α is a 2-distinct partition of length t, β is
a strict partition of length t and γ is an ordinary partition of length t equals the number of Schmidt 3-partitions
of n with 3t parts; if the length of γ is less than t, then it is equal to the number of Schmidt 3-partitions of n
with 3t− 1 parts.

3.2 Unrestricted Schmidt k-partition theorem

Theorem 3.2. For given positive integers n, k, t, r with 1 ≤ r ≤ k, let f(n, k, t, r) be the number of k-
multipartitions (α1, α2, . . . , αk) of n where max{`(α1), `(α2), . . . , `(αk)} = t and r is the largest integer such
that `(αr) = t. Let g(n, k, t, r) be the number of unrestricted Schmidt k-partitions of n with length being equal
to (t− 1)k + r. Then

f(n, k, t, r) = g(n, k, t, r).

Proof. Let (α1, α2, . . . , αk) be a k-multipartition of n counted by f(n, k, t, r). For each i, we can view αi as a
partition of length t with zeroes permitted. Define A = (ai,j) to be the k× t matrix whose i-th row corresponds
to the partition αi. Applying the algorithm Φ to A, we get a nonzero sequence

Φ(A) = (λ1, λ2, . . . , λkt)

of length kt.
Since ar,t > 0 and ar+1,t = ar+2,t = · · · = ak,t = 0, we have λ(t−1)k+r > 0 and

λ(t−1)k+r+1 = λ(t−1)k+r+2 = · · · = λkt = 0.

It follows from Theorem 2.1 that λ is a weakly decreasing sequence since A is weakly decreasing in rows. In
addition, it is clear that λ1 + λk+1 + λ2k+1 + · · ·+ λ(t−1)k+1 = n.

We now can see that
(λ1, λ2, . . . , λ(t−1)k+r)

is a Schmidt k-partition of n with exactly (t− 1)k + r parts.
The above process is invertible, whose proof is very similar to that of Theorem 3.1 and is omitted here.

Remark 3.2. Since the largest part of each αi is recorded in the first column of A, and

max{`(α1), `(α2), . . . , `(αk)}

is equal to the number of columns of A, we can derive Theorem 2 in [5] easily and immediately from our proof.

If we sum over t ≥ 1 and 1 ≤ r ≤ k, then we can obtain the following result immediately.

Corollary 3.3. The number of unrestricted Schmidt k-partitions of n is equal to the number of k-multipartitions
of n.

Remark 3.3. Setting k = 2, Corollary 3.3 reduces to Theorem 1.2.

4. Partition diamonds

Theorem 4.1. For given integers n, k, t, r with 1 ≤ r ≤ 2k + 1, let h(n, k, t, r) be the number of (2k + 1)-
multipartitions (α1, α2, . . . , α2k+1) of n where α2, α4, . . . , α2k are overpartitions while the others are ordinary
partitions, max{`(α1), `(α2), . . . , `(α2k+1)} = t and r is the largest integer such that `(αr) = t. Let d(n, k, t, r)
be the number of k-elongated partition diamonds of n with length t and (t − 1)(2k + 1) + r nonzero elements.
Then h(n, k, t, r) = d(n, k, t, r).

Proof. Let (α1, α2, . . . , α2k+1) be a (2k + 1)-multipartition counted by h(n, k, t, r). We can regard each αi as a
partition of length t by adding some zero parts. Define A = (ai,j) to be the (2k + 1)× t matrix whose i-th row
consists of the partition αi.

The algorithm Φ maps A to a nonnegative integer sequence

λ = (λ1, λ2, . . . , λ(2k+1)t)

of length (2k+1)t. Since αr is the last partition with exactly t nonzero parts, we can derive that λ(t−1)(2k+1)+r >
0 and

λ(t−1)(2k+1)+(r+1) = λ(t−1)(2k+1)+(r+2) = · · · = λt(2k+1) = 0.

Meanwhile, since the matrix A is weakly decreasing in rows, we have

λ1 ≥ λ2 ≥ · · · ≥ λ(t−1)(2k+1)+r > 0.

We now define a k-elongated partition diamond π = (π1, π2, . . . , π(2k+1)t+1) of length t as follows:

ECA 3:1 (2023) Article #S2R3 6
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(1) π(j−1)(2k+1)+1 = λ(j−1)(2k+1)+1 for 1 ≤ j ≤ t, and πt(2k+1)+1 = 0;

(2) for 1 ≤ i ≤ k and 1 ≤ j ≤ t,

(π(j−1)(2k+1)+2i, π(j−1)(2k+1)+2i+1) = (λ(j−1)(2k+1)+2i+1, λ(j−1)(2k+1)+2i)

if the j-th part of α2i is overlined; otherwise,

(π(j−1)(2k+1)+2i, π(j−1)(2k+1)+2i+1) = (λ(j−1)(2k+1)+2i, λ(j−1)(2k+1)+2i+1).

Since λ is a weakly decreasing sequence, we can see that π satisfies

π1 � (π2, π3) � · · · � (π2k, π2k+1) � π2k+2 � (π2k+3, π2k+4) � · · · � πt(2k+1)+1.

Obviously,

π1 + π2k+2 + π4k+3 + · · ·+ π(t−1)(2k+1)+1 = λ1 + λ2k+2 + λ4k+3 + · · ·+ λ(t−1)(2k+1)+1 = n.

Therefore, π is a k-elongated partition diamond of n with length t and (t− 1)(2k + 1) + r nonzero elements.
In an overpartition, the final occurrence of a part may be overlined. Thus, if the j-th part of α2i is overlined,

then it is strictly greater than the (j+ 1)-st part of α2i. Consequently, λ(j−1)(2k+1)+2i > λ(j−1)(2k+1)+2i+1, and
hence π(j−1)(2k+1)+2i < π(j−1)(2k+1)+2i+1. This property is very important to the inverse.

Conversely, given a k-elongated partition diamond π = (π1, π2, . . . , πt(2k+1)+1) counted by d(n, k, t, r), we
first delete πt(2k+1)+1 and rearrange the parts of π into a weakly decreasing sequence λ = (λ1, λ2, . . . , λt(2k+1))
with

λ1 ≥ λ2 ≥ · · · ≥ λt(2k+1).

Then applying the inverse of Φ to λ produces a (2k + 1) × t matrix A = (ai,j). Finally, for each 1 ≤ i ≤ k
and 1 ≤ j ≤ t, we add an overline to a2i,j if π(j−1)(2k+1)+2i is strictly less than π(j−1)(2k+1)+2i+1. Thinking
of each row of A as a partition if we ignore the zero entries, we obtain a (2k + 1)-tuple partition counted by
h(n, k, t, r).

Example 4.1. Let α = (α1, α2, α3, α4, α5) be a 5-multipartitions counted by h(73, 2, 4, 3) where

α1 = (5, 2), α2 = (7, 4, 4, 2), α3 = (11, 3, 2, 1), α4 = (6, 5, 3), α5 = (8, 8, 2).

Regarding αi as the i-th row of the matrix A, we obtain

A =


5 2 0 0
7 4 4 2
11 3 2 1
6 5 3 0
8 8 2 0

 .

Applying the algorithm Φ produces a nonnegative integer sequence of length 20

λ = (37, 34, 31, 23, 22, 22, 20, 20, 19, 17, 11, 11, 9, 8, 5, 3, 3, 1, 0, 0).

Finally, we obtain a 2-elongated partition diamond π = (π1, π2, . . . , π21) where

π1 = λ1 = 37, (π2, π3) = (λ2, λ3) = (34, 31), (π4, π5) = (λ5, λ4) = (22, 23),
π6 = λ6 = 22, (π7, π8) = (λ7, λ8) = (20, 20), (π9, π10) = (λ9, λ10) = (19, 17),
π11 = λ11 = 11, (π12, π13) = (λ13, λ12) = (9, 11), (π14, π15) = (λ15, λ14) = (5, 8),
π16 = λ16 = 3, (π17, π18) = (λ17, λ18) = (3, 1), (π19, π20) = (λ19, λ20) = (0, 0),
π21 = 0.

There are 4 building blocks and 18 nonzero elements in π, which is depicted in Figure 3.

5. Schmidt type overpartition theorems

In the treatment of k-elongated partition diamonds, we use multipartitions in which ordinary partitions and
overpartitions appear alternatively. It is natural to ask what results will be obtained if only overpartitions are
allowed. In this section, we establish two results on overpartitions which can be viewed as the analog of the
main results in Section 3.
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37

31

34

23

22

22

20

20

17

19

11

11

9

8

5

3

1

3

0

0

0

Figure 3: A 2-elongated partition diamond of 73.

5.1 Schmidt k-overpartition theorem

An overpartition (λ1, λ2, . . . , λl) is called a strict overpartition if λ1 > λ2 > · · · > λl, and λi may be overlined
only if λi − λi+1 ≥ 2 or λi = λl. A Schmidt k-overpartition is a strict overpartition (λ1, λ2, λ3, . . .) with
λ1 + λk+1 + λ2k+1 + · · · = n.

Theorem 5.1. For given positive integers n, k, t, r, s with 1 ≤ r ≤ k, let p(n, k, t, r, s) be the number of k-multi
strict overpartitions (α1, α2, . . . , αk) of n with exactly s overlined parts such that α1, α2, . . . , αr have length t
and αr+1, αr+2, . . . , αk have length t − 1, and each overlined part of αi must be at least 2 for all i 6= r. Let
q(n, k, t, r, s) be the number of Schmidt k-overpartitions of n with (t − 1)k + r parts, and s parts of which are
overlined. Then

p(n, k, t, r, s) = q(n, k, t, r, s).

Proof. Let α = (α1, α2, . . . , αk) be a k-multi strict overpartition counted by p(n, k, t, r, s). Ignoring the overlines,
we can treat α as a k-multipartition counted by p(n, k, t, r). It follows from the proof of Theorem 3.1 that α
corresponds to a Schmidt k-partition

λ = (λ1, λ2, . . . , λ(t−1)k+r)

counted by q(n, k, t, r).
For 1 ≤ i ≤ k and 1 ≤ j ≤ t, we overline the part λ(j−1)k+i if and only if the j-th part of αi is overlined. We

now can view λ as an overpartition. For 1 ≤ j < t, λ(j−1)k+i − λ(j−1)k+i+1 equals the difference between the
j-th part and (j+ 1)-st part of αi, so we can conclude that λ(j−1)k+i−λ(j−1)k+i+1 ≥ 2 if λ(j−1)k+i is overlined.
Meanwhile, λ(t−1)k+i − λ(t−1)k+i+1 equals the last part of αi. Thus, if λ(t−1)k+i is overlined, then either the
last part of αi is greater than one or i = r, which implies that either λ(t−1)k+i − λ(t−1)k+i+1 ≥ 2 or λ(t−1)k+i is
the last nonzero part of λ. Therefore, λ is a Schmidt k-overpartition.

It is clear that there are exactly s overlined parts in λ since the total number of overlined parts of α is s.

Example 5.1. Let α = (α1, α2, α3) be a triple strict overpartition counted by p(79, 3, 5, 2, 6) where

α1 = (9, 6, 4, 2, 1), α2 = (13, 8, 7, 3, 1), α3 = (11, 7, 5, 2).

Regarding αi as the i-th row of the matrix A, we have

A =

 9 6 4 2 1
13 8 7 3 1
11 7 5 2 0

 .

The algorithm Φ produces a strictly decreasing nonnegative integer sequence of length 15

λ = (33, 30, 25, 21, 19, 18, 16, 14, 10, 7, 6, 4, 2, 1, 0).

Adding overlines and deleting the zeroes, we obtain a Schmidt 3-overpartition

(33, 30, 25, 21, 19, 18, 16, 14, 10, 7, 6, 4, 2, 1),

which is counted by q(79, 3, 5, 2, 6).

Since the final occurrence of a part may be overlined, an overpartition corresponds to an ordinary Ferrers
graph in which a corner with no cell below it may be marked. The Durfee square of an overpartition is referred
to as Durfee square of its marked Ferrers graph. For example, the overpartition (7, 7, 5, 4, 4, 2, 1) is represented
in Figure 4.

Corollary 5.1. The number of overpartitions of n with s overlined parts and Durfee square size t is equal to
the number of Schmidt 2-overpartitions of n with s parts being overlined and length 2t or 2t− 1.
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Figure 4: The Ferrers graph of an overpartition.

Proof. Assuming that λ is an overpartiton with Durfee square size t, we decompose λ into two strict overpar-
titions α and β just like what we do in the proof of Corollary 3.1. A part of α or β is overlined if the last cell
of the corresponding column or row is marked. Then α is a strict overpartition of length t, and β is a strict
overpartition whose length is t or t− 1 depending on the t-th part of λ is greater than t or equal to t.

If the last part of α is equal to 1, then it can be overlined only if the length of β is t− 1. Thus, (α, β) is a
couple strict overpartiton counted by p(n, 2, t, r, s).

We can now conclude the desired result from Theorem 5.1.

Summing up t over all positive integers in Corollary 5.1, we have the following result.

Corollary 5.2. The number of overpartitions of n with s overlined parts equals the number of Schmidt 2-
overpartitions of n with s parts being overlined.

5.2 Unrestricted Schmidt k-overpartition theorem

An overpartition (λ1, λ2, λ3, . . .) is called an unrestricted Schmidt k-overpartition if

λ1 + λk+1 + λ2k+1 + · · · = n.

Theorem 5.2. For given positive integers n, k, t, r, s where 1 ≤ r ≤ k, let f(n, k, t, r, s) be the number of
k-multioverpartitions (α1, α2, . . . , αk) of n with s parts being overlined in which

max{`(α1), `(α2), . . . , `(αk)} = t

and r is the largest integer such that `(αr) = t. Let g(n, k, t, r, s) be the number of unrestricted Schmidt k-
overpartitions of n with s parts being overlined and length being equal to (t− 1)k + r. Then

f(n, k, t, r, s) = g(n, k, t, r, s).

Proof. Let α = (α1, α2, . . . , αk) be a k-multioverpartition counted by f(n, k, t, r, s). We first regard α as an
ordinary k-multipartition and then apply the same operation used in the proof of Theorem 3.2. We obtain an
unrestricted Schmidt k-partition

λ = (λ1, λ2, . . . , λ(t−1)k+r)

counted by g(n, k, t, r).
We now convert λ into an overpartition by adding overlines as follows. The part λ(j−1)k+i is overlined if and

only if the j-th part of αi is overlined. Obviously, the number of overlined parts remains unchanged. Thus, we
get an unrestricted Schmidt k-overpartition counted by g(n, k, t, r, s).

Corollary 5.3. The number of k-multioverpartitions of n with s overlined parts is equal to the number of
unrestricted Schmidt k-overpartitions of n with s parts being overlined.
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