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Abstract: A hyperplane arrangement in Rn is a finite collection of affine hyperplanes. The regions are the
connected components of the complement of these hyperplanes. By the theorem of Zaslavsky, the number of
regions of a hyperplane arrangement is the sum of the absolute values of the coefficients of its characteristic
polynomial. Arrangements that contain hyperplanes parallel to subspaces whose defining equations are xi−xj =
0 form an important class called the deformations of the braid arrangement. In recent work, Bernardi showed
that regions of certain deformations are in one-to-one correspondence with certain labeled trees. In this article,
we define a statistic on these trees such that the distribution is given by the coefficients of the characteristic
polynomial. In particular, our statistic applies to well-studied families like extended Catalan, Shi, Linial, and
semiorder.
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1. Introduction

A hyperplane arrangement A is a finite collection of affine hyperplanes (i.e., codimension 1 subspaces and their
translates) in Rn. A region of A is a connected component of Rn \

⋃
A. The number of regions of A is denoted

by r(A). The poset of non-empty intersections of hyperplanes in an arrangement A ordered by reverse inclusion
is called its intersection poset denoted by L(A). The ambient space of the arrangement (i.e., Rn) is an element of
the intersection poset; considered as the intersection of none of the hyperplanes. The characteristic polynomial
of A is defined as

χA(t) :=
∑

x∈L(A)

µ(0̂, x) tdim(x)

where µ is the Möbius function of the intersection poset and 0̂ corresponds to Rn. Using the fact that every
interval of the intersection poset of an arrangement is a geometric lattice, we have

χA(t) =

n∑
i=0

(−1)n−icit
i (1)

where ci is a non-negative integer for all 0 ≤ i ≤ n [10, Corollary 3.4]. The characteristic polynomial is a
fundamental combinatorial and topological invariant of the arrangement and plays a significant role throughout
the theory of hyperplane arrangements.

In this article, our focus is on the enumerative aspects of (rational) arrangements in Rn. In that direction,
we have the following seminal result by Zaslavsky.

Theorem 1.1 ([12]). Let A be an arrangement in Rn. Then the number of regions of A is given by

r(A) = (−1)nχA(−1) =

n∑
i=0

ci.
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When the regions of an arrangement are in bijection with a certain combinatorially defined set, one could
ask if there is a corresponding ‘statistic’ on the set whose distribution is given by the ci’s. For example,
the regions of the braid arrangement in Rn (whose hyperplanes are given by the equations xi − xj = 0 for
1 ≤ i < j ≤ n) correspond to the n! permutations of [n]. The characteristic polynomial of this arrangement
is t(t − 1) · · · (t − n + 1) [10, Corollary 2.2]. Hence, ci’s are the unsigned Stirling numbers of the first kind.
Consequently, the distribution of the statistic ‘number of cycles’ on the set of permutations is given by the
coefficients of the characteristic polynomial.

In this paper, we consider arrangements where each hyperplane is of the form xi − xj = s for some s ∈ Z.
Such arrangements are called deformations of the braid arrangement. Recently, Bernardi [3] obtained a method
to count the regions of any deformation of the braid arrangement using certain objects called boxed trees. For
certain special deformations, which he calls transitive, he also obtained an explicit bijection between the regions
of the arrangement and a certain set of trees. Our main aim is to obtain a statistic on such trees whose
distribution is given by the coefficients of the characteristic polynomial of the corresponding arrangement.

For any finite set of integers S, we associate a deformation of the braid arrangement AS(n) in Rn with
hyperplanes

{xi − xj = k | k ∈ S, 1 ≤ i < j ≤ n}.
Important examples of such arrangements are the Catalan, Shi, Linial, and semiorder arrangements. These
correspond to S = {−1, 0, 1}, {0, 1}, {1}, and {−1, 1} respectively. For any m ≥ 1, the extended Catalan
arrangement, or m-Catalan arrangement, in Rn is AS(n) where S = {−m, . . . ,m}. Similarly, the extended
Shi, Linial, and semiorder arrangements correspond to S = {−m + 1, . . . ,m}, {−m + 1, . . . ,m} \ {0}, and
{−m, . . . ,m} \ {0} respectively.

If the set S satisfies certain conditions (see Definition 2.4), then the arrangements AS(n) are called transitive.
The extended Catalan, Shi, Linial, and semiorder arrangements are all transitive. We note here that Bernardi [3]
considers a larger class of arrangements to be transitive, but we only focus on arrangements of the form described
above.

From [3, Theorem 3.8], we know that if S is transitive, then the regions of AS(n) are in bijection with a
certain set of trees TS(n) (see Definition 2.3). For example, when S = {0, 1} which corresponds to the Shi
arrangement, T{0,1}(n) is the set of labeled binary trees with n nodes where any right node has a label smaller
than its parent.

Example 1.1. A tree in T{0,1}(4) is shown in Figure 1.

4

2

3 1

Figure 1: A tree in T{0,1}(4)

For such a tree, we define the trunk to be the path from the root to the leftmost leaf. Using the nodes on
the trunk, we obtain a sequence of numbers. A node in this sequence that is greater than all the nodes after it
is called a branch node. For the tree in Figure 1, the sequence on the trunk is 4, 2, 3 and the branch nodes are
4 and 3. These definitions can be generalized to trees in TS(n) for other sets S.

The main theorem of this article is:

Theorem 1.2. For a transitive set S, the absolute value of the coefficient of tj in χAS(n)(t) is the number of
trees in TS(n) with j branch nodes.

The article begins with a short account of Bernardi’s work [3] in Section 2. In Section 3 the branch statistic
is introduced and the main theorem is proved. In Section 4 we derive some properties of the coefficients of the
characteristic polynomial and in particular study the extended Catalan arrangements.

An extended abstract of this article [5] will appear in a proceedings volume of Séminaire Lotharingien
Combinatoire for FPSAC 2022.

2. Preliminaries

A tree is a graph with no cycles. A rooted tree is a tree with a distinguished vertex called the root. We will draw
rooted trees with their root at the bottom. Children of a vertex v in a rooted tree are those vertices w that are
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adjacent to v and such that the unique path from the root to w passes through v. Similarly, we can define the
parent of a vertex v to be the vertex w for which v is the child of w. Any non-root vertex has a unique parent.
All the vertices that have at least one child are called nodes and those that do not are called leaves.

A rooted plane tree is a rooted tree with a specified ordering for the children of each node. When drawing
a rooted plane tree, the children of any node will be ordered from left to right. The left siblings of a vertex v
are the vertices that are also children of the parent of v but are to the left of v. We denote the number of left
siblings of v as lsib(v).

Definition 2.1. An (m+ 1)-ary tree is a rooted plane tree where each node has exactly (m+ 1) children. We
will denote by T (m)(n) the set of all (m+ 1)-ary trees with n nodes labeled with distinct elements from [n].

For trees in T (m)(n), we will denote the node having label i ∈ [n] by just i.

Definition 2.2. If a node i in a tree T ∈ T (m)(n) has at least one child that is a node, the cadet of i is the
rightmost such child, which we denote by cadet(i).

Example 2.1. Figure 1 shows an element of T (1)(4) where

• 4 is the root,

• lsib(2) = 0, lsib(3) = 0, lsib(1) = 1,

• cadet(4) = 2, and cadet(2) = 1.

Definition 2.3. For any finite set of integers S with m = max{|s| | s ∈ S}, define TS(n) to be the set of trees
in T (m)(n), such that if cadet(i) = j:

• lsib(j) /∈ S ∪ {0} ⇒ i < j.

• − lsib(j) /∈ S ⇒ i > j.

Recall that for any finite set of integers S, we defined the arrangement AS(n) as the deformation of the
braid arrangement in Rn with hyperplanes

{xi − xj = k | k ∈ S, 1 ≤ i < j ≤ n}.

Though Bernardi [3] derived results for more general deformations, we will only be focused on these.

Definition 2.4. A finite set of integers S is said to be transitive if for any s, t /∈ S,

• st > 0 ⇒ s+ t /∈ S.

• s > 0 and t ≤ 0 ⇒ s− t /∈ S and t− s /∈ S.

Example 2.2. As mentioned in Section 1, for any m ≥ 1, the sets {−m, . . . ,m}, {−m+1, . . . ,m}, {−m, . . . ,m}\
{0}, and {−m+ 1, . . . ,m} \ {0} are all transitive.

We can now state the result for arrangements AS(n) where S is transitive.

Theorem 2.1. [3, Theorem 3.8] For any transitive set of integers S, the regions of the arrangement AS(n)
are in bijection with the trees in TS(n).

Before looking at the characteristic polynomials of such arrangements, we recall a few results from [9].
Suppose that c : N→ N is a function and for each n, j ∈ N, we define

cj(n) =
∑

{B1,...,Bj}∈Πn

c(|B1|) · · · c(|Bj |)

where Πn is the set of partitions of [n]. Define for each n ∈ N,

h(n) =

n∑
j=0

cj(n).

From [9, Example 5.2.2], we know that in such a situation,

∑
n,j≥0

cj(n)tj
xn

n!
=

∑
n≥0

h(n)
xn

n!

t

.
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Informally, we consider h(n) to be the number of “structures” that can be placed on an n-set where each
structure can be uniquely broken up into a disjoint union of “connected sub-structures”. Here c(n) denotes
the number of connected structures on an n-set and cj(n) denotes the number of structures on an n-set with
exactly j connected sub-structures.

We now consider the characteristic polynomials of arrangements of the form AS(n). For a fixed set S,
the sequence of arrangements (AS(1),AS(2), . . .) forms what is called an exponential sequence of arrangements
(ESA).

Definition 2.5. [10, Definition 5.14] A sequence of arrangements (A1,A2, . . .) is called an ESA if

• An is a braid deformation in Rn.

• For any k-subset I of [n], the arrangement

AI
n = {H ∈ An | H is of the form xi − xj = s for some i, j ∈ I}

satisfies L(AI
n) ∼= L(Ak) (isomorphic as posets).

The result on ESAs that we will need is the following.

Theorem 2.2. [10, Theorem 5.17] If (A1,A2, . . .) is an ESA, then

∑
n≥0

χAn
(t)
xn

n!
=

∑
n≥0

(−1)nr(An)
xn

n!

−t .
Remark 2.1. We note that this is also a special case of [3, Theorem 5.2].

Using this result, the form of a characteristic polynomial given in (1), and the above discussion on connected
structures, we note that interpreting the coefficients of the polynomial χAS(n)(t) is equivalent to defining a
notion of “connected structures” for trees in TS(n). We do this in the next section.

3. A branch statistic

A label set is a finite set of positive integers. For any label set V , we define T (m)(V ) to be the set of (m+1)-ary
trees with |V | nodes labeled distinctly using V . Note that T (m)([n]) = T (m)(n).

We now describe the method we use to break up a tree in T (m)(V ) into “connected sub-structures”, which
we call branches.

Definition 3.1. The trunk of a tree in T (m)(V ) is the path from the root to the leftmost leaf. The nodes on
the trunk of the tree break up the tree into sub-trees, which we call twigs (see Figure 2).

Let the nodes on the trunk of a tree be v1, v2, . . . , vk, where v1 is the root and vi+1 is the leftmost child of vi
for any i ∈ [k− 1]. If vi = max{v1, . . . , vk}, then the first branch of the tree consists of the twigs corresponding
to the nodes v1, . . . , vi. If vj = max{vi+1, . . . , vk}, then the second branch of the tree consists of the twigs
corresponding to the nodes vi+1, . . . , vj . Continuing this way, we break up the tree into branches.

Note that the number of branches of the tree is just the number of right-to-left maxima of the sequence
v1, v2, . . . , vk of nodes on the trunk, i.e., the number of vi such that vi > vj for all j > i. We will call such vi
the branch nodes of the trunk.

Example 3.1. The tree in Figure 2 has 3 twigs and 2 branches. The first branch consists of just the first twig
since 6 is the largest node in the trunk. The second branch consists of the second and third twigs since 5 is
larger than 4. Here 6 and 5 are the branch nodes.

We use the notation T (m)
j (V ) to denote the trees in T (m)(V ) having j branches. To prove that this is indeed

a break-up of trees into connected sub-structures, we have to prove that

|T (m)
j (V )| =

∑
{B1,...,Bj}∈ΠV

|T (m)
1 (B1)| · · · |T (m)

1 (Bj)|. (2)

Hence, “connected” trees are those with exactly one branch, i.e., trees where the last node of the trunk is the
one with the largest label.

The connected components associated to a given tree are the branches of the tree.

Example 3.2. The connected components associated with the tree in Figure 2 are given in Figure 3.
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Figure 2: A labeled 3-ary tree with twigs and branches specified.
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Figure 3: Connected components of the tree in Figure 2.

A collection of connected trees (with disjoint label sets) can be put together in exactly one way to form
a tree for which they form the branches. This is done as follows: Find the largest label among those on the
trunks of the connected trees. The connected tree T1 with this label is made the first branch of the tree we
are building. Again, find the largest label among those on the trunks of the remaining connected trees. The
connected tree T2 with this label is made the second branch of the tree we are building by gluing it to T1. This
is done by deleting the leftmost leaf of T1 and fixing the root of T2 in its position. This process is repeated until
all the connected trees are glued together.

Example 3.3. The tree associated with the collection of connected trees in Figure 4 is given in Figure 5.
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23
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5

7

1

8

Figure 4: A collection of connected trees.
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8

Figure 5: The tree associated with the collection of connected trees in Figure 4.

Recall that for a finite set of integers S with m = max{|s| : s ∈ S}, the set TS(V ), for some label set V , is
the set of trees in T (m)(V ) such that if cadet(u) = v, then
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• if lsib(v) /∈ S ∪ {0}, we must have u < v, and

• if − lsib(v) /∈ S, we must have u > v.

We call this set of conditions “Condition S”.
We set TS :=

⋃
V

TS(V ) where the union is overall label sets V . We now show that

1. the connected components of any tree in TS are also in TS , and

2. trees that are built using connected trees in TS are also in TS .

We first note that statement 1 follows since the condition for a tree to be in TS is a local condition. This is
also because, if T ′ is a connected component of the tree T , the cadet of any node in T ′ (if it exists) is the same
as its cadet when considered as a node of T .

To prove statement 2, we only have to check that Condition S is satisfied for the branch nodes of a tree
built using connected trees in TS . If a branch node does not have a cadet, Condition S is trivially satisfied. If
a branch node u has a cadet v, we consider two cases:

• If the cadet is not the first child, then Condition S is satisfied since it is satisfied by the connected
components of the tree.

• If the cadet is the first child, then we must have u > v since u is a branch node. This makes sure that
Condition S is satisfied since we have lsib(v) = 0 and hence lsib(v) ∈ S ∪ {0}.

From the preceding, we get an equation analogous to (2) for the trees TS . Hence, from the discussion in
Section 2, we get the following result.

Theorem 3.1. For a transitive set of integers S, the absolute value of the coefficient of tj in χAS(n)(t) is the
number of trees in TS(n) with j branches.

Example 3.4. When S = {0}, we obtain the braid arrangement. Here, T{0}(n) corresponds to permutations
of [n] and Theorem 3.1 states that the absolute value of the coefficient of tj in χA{0}(n)(t) is the number of
permutations of [n] with j right-to-left maxima. By [8, Corollary 1.3.11], this agrees with the observation in
Section 1 that the coefficients are the Stirling numbers of the first kind.

Example 3.5. The Shi arrangement Sn in Rn is the deformation A{0,1}(n). The trees in T{0,1}(n), called Shi
trees, are those labeled binary trees where any right node has a label less than that of its parent. The Shi trees
for n = 3 are given in Figures 6 and 7. Counting the branches in these trees, we get χS3(t) = t3 + 6t2 + 9t,
which agrees with the known formula for the characteristic polynomial (for example, see [2, Theorem 3.3]).

2

3

1

Branches: 2

2

1

3

Branches: 1

1

3

2

Branches: 2

1

2

3

Branches: 1

3

1

2

Branches: 2

1

3

2

Branches: 1

2

3

1

Branches: 1

2

1

3

Branches: 1

3

1

2

Branches: 1

Figure 6: Shi trees for n = 3 that are not Linial.

Remark 3.1. The Shi trees T{0,1}(n) are in bijection with Cayley trees on n+1 vertices. Using a decomposition
of Cayley trees, one can show that the coefficient of tj in χSn(t) is the number of such Cayley trees where the
vertex n+ 1 has degree j.

ECA 3:1 (2023) Article #S2R5 6



Priyavrat Deshpande and Krishna Menon

Example 3.6. The Linial arrangement Ln in Rn is the deformation A{1}(n). The trees in T{1}(n), called
Linial trees, are those Shi trees that also satisfy the property that any left node whose sibling is a leaf has a
smaller label than that of its parent. The Linial trees for n = 3 are given in Figure 7. Counting the branches in
these trees, we get χL3

(t) = t3 + 3t2 + 3t, which agrees with the known formula for the characteristic polynomial
(for example, see [2, Theorem 4.2]).

3

2

1

Branches: 3

3

2

1

Branches: 2

3

2

1

Branches: 1

3

2

1

Branches: 1

3

12

Branches: 2

3

21

Branches: 2

2

13

Branches: 1

Figure 7: Linial trees for n = 3.

4. Properties of coefficients

In this section, we use the combinatorial interpretation of the coefficients to obtain some of their properties,
some of which are not obvious. For any transitive set S, we use C(S, n, j) to denote the absolute value of the
coefficient of tj in χAS(n)(t).

Proposition 4.1. For any transitive sets S′ ⊆ S, we have

C(S′, n, j) ≤ C(S, n, j).

Proof. As stated in [3, Remark 3.10], we have T ′S ⊆ TS . When max{|s′| | s′ ∈ S′} < max{|s| | s ∈ S}, this
inclusion can be obtained via adding the required number of leaves to each node of the trees in T ′S . This
inclusion preserves the number of branches and hence gives us the required result.

Proposition 4.2. For any transitive set S, we have

C(S, n, j) ≤ C(S, n+ 1, j + 1).

Proof. Given a tree T ∈ TS(n), we construct one in TS(n+1) that has root n+1 with T attached as the leftmost
child and all other children being leaves. This proves the required result.

Proposition 4.3. For any transitive set S, we have

C(S, n, j) ≤ C(S, n+ 1, j).

Proof. The result follows by increasing the label of each node and replacing the leftmost leaf with a node labeled
1 with all leaf children.

We can derive some more properties for a particular class of transitive sets. This follows by using a different
break-up of trees into connected components from the one presented in Section 3.

Proposition 4.4. If S is a transitive set such that 0 ∈ S and there exists some k ≥ 1 such that k,−k ∈ S, we
have

C(S, n, 1) ≥
n∑

j=2

C(S, n, j).
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Proof. We have to show that there are more connected trees in TS(n) than disconnected trees. To prove this,
we use all the nodes, not just the ones on the trunk, to break up the tree into compartments.

Let the nodes on the trunk of a tree be v1, v2, . . . , vk, where v1 is the root and vi+1 is the leftmost child
of vi for any i ∈ [k − 1]. If the twig corresponding to vi is the one that contains the label n, then the first
compartment of the tree consists of the twigs corresponding to the nodes v1, . . . , vi. If the twig corresponding
to vj is the one that has the node with maximum label among the twigs corresponding to vi+1, . . . , vk, then the
second compartment of the tree consists of the twigs corresponding to the nodes vi+1, . . . , vj . Continuing this
way, we break up the tree into compartments. For example, the tree in Figure 1 has 2 compartments and that
in Figure 5 has 1 compartment.

It can be checked that this is a valid break-up of trees into connected components since there is no condition
relating a node to its leftmost child since 0 ∈ S. Hence, C(S, n, j) is the number of trees in TS(n) with j
compartments. In this situation, disconnected trees are those trees where n is not in the last twig of the tree
and connected trees are those where it is. To prove the result, we have to show that the number of disconnected
trees is less than the number of connected trees.

Let T be a disconnected tree. First, let us suppose that the label n is not in the first twig of T . Let i be
the node on the trunk whose corresponding twig has the node n and j be the parent of i. Fix some k ≥ 1 such
that k,−k ∈ S which exists by our hypothesis. Let Tj be the subtree of T whose root is the (k + 1)th child of
j. We construct a connected tree T ′ by breaking off the subtree of T whose root is i and attaching it to Tj by
replacing the leftmost leaf of Tj with the node i. It can be checked that k,−k ∈ S implies that T ′ will indeed
be in TS(n).

Example 4.1. If T is the disconnected tree in Figure 8 and k = 1, then T ′ is the connected tree in Figure 9.

6

7

13
4

5 8

2

Figure 8: Disconnected tree with the largest label not in the first twig.

6

7

13

4

5 8

2

Figure 9: Connected tree associated to the tree in Figure 8.

To obtain T back from T ′, we first need the following definition from [3]. We define drift(u) = 0 when u is
the root of a tree and for any other vertex v with parent w, define drift(v) = lsib(v) + drift(w).

To obtain T back from T ′, we note that i is the vertex with drift k that is furthest from the root in the
unique path from the root to the node n. Now T is obtained by breaking off the subtree of T ′ with root i and
replacing the leftmost leaf of T ′ with this subtree.

Next, suppose that the root of T is i and the label n is in the first twig. Let j be the last node on the trunk,
which is necessarily different from i since T is disconnected. Just as before, let Tj be the subtree of T whose
root is the (k + 1)th of j and construct T ′ by removing the first twig of T and using it to replace the leftmost
leaf of Tj .
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Example 4.2. If T is the disconnected tree on the left in Figure 10 and k = 1, then T ′ is the connected tree
on the right.

4

2

3 1

−→

2

3

4

1

Figure 10: Disconnected tree with the largest label in the first twig and associated connected tree.

We can determine the root i of T from T ′ just as in the previous case, i.e., i is the vertex with drift k that is
furthest from the root in the unique path from the root to the node n. Now T is obtained from T ′ by breaking
off the subtree with root i and making it the first twig.

Note that this is an injection from the set of disconnected trees to the set of connected trees. This is because
we can obtain T from T ′ in each case above and there is no overlap of the connected trees in the two cases.
This is because, in the first case, the leftmost child of the node i is always a node, whereas it is always a leaf in
the second case. This proves the required result.

Proposition 4.5. If S is a transitive set such that 0 ∈ S and there exists some k ≥ 1 such that k,−k ∈ S, we
have

C(S, n, j) ≥ C(S, n, j + 1).

Proof. Using the “connected structure” property of branches and considering the size of the branch containing
the label n, we get for j ≥ 2,

C(S, n, j) =

n−1∑
k=1

(
n− 1

k − 1

)
C(S, k, 1)C(S, n− k, j − 1).

By induction on j, this shows that it is enough to prove that C(S, n, 1) ≥ C(S, n, 2) for all n ≥ 1. This follows
from Proposition 4.4.

4.1 Extended Catalan arrangement

We now focus on the case when S = {−m,−m + 1, . . . ,m − 1,m} for some m ≥ 1. The corresponding
arrangement AS(n) is called the m-Catalan arrangement in Rn. We let C(m,n, j) denote the absolute value
of the coefficient of tj in χAS(n)(t). Here TS(n) = T (m)(n) and hence, from Theorem 3.1, C(m,n, j) is the
number of (m + 1)-ary trees with n nodes and j branches. We now compute expressions for C(m,n, j) using
this combinatorial interpretation.

Proposition 4.6. We have

C(m,n, j) =

n∑
k=j

Tm(n, k)

(
n

k

)
c(k, j)(n− k)!

where

• c(k, j) is the number of permutations of [k] with j right-to-left maxima (unsigned Stirling number of first
kind), and

• Tm(n, k) is the number of unlabeled (m+ 1)-ary trees with n nodes, k of which are on its trunk, given by

mk

(m+ 1)n− k

(
(m+ 1)n− k

n− k

)
.

Proof. Specifying a tree in T (m)(n) with j branches is done by

1. choosing an unlabeled (m+ 1)-ary tree with n nodes and k ≥ j nodes on its trunk,

2. choosing the k labels from [n] for the trunk,

3. labeling the trunk so that it has j right-to-left maxima, and
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4. using the rest of the labels for the non-trunk nodes.

The formula for Tm(n, k) follows from the bijection between trees and Dyck paths given in [3, Section 8] and the
discussion about returns in Dyck paths in [4, Page 4]. One can check that trunk nodes correspond to returns
in the Dyck path under this bijection.

Proposition 4.7. We also have for any m,n, j ≥ 1,

C(m,n, j) =

n∑
k=j

(−1)k−jBm(n, k)c(k, j)

where

Bm(n, k) =
(n− 1)!

(k − 1)!

(
(m+ 1)n

n− k

)
.

Proof. It can be checked, for example using [9, Theorem 5.3.10], that Bm(n, k) is the number of ways to partition
[n] into k blocks and associate to each block B a tree in T (m)(B). Using the fact that branches give the trees
an exponential structure, another way to partition [n] into k blocks and associate to each block B a tree in
T (m)(B) is to

1. select a collection of i ≥ k connected trees whose label sets partition [n] (which is the same as choosing a

tree in T (m)
i (n)),

2. partition these trees into k sets, and

3. combine the connected trees in each of these k sets to form k trees.

This shows

Bm(n, k) =

n∑
i=k

C(m,n, i)S(i, k)

where S(i, k) is the number of ways to partition the set [i] into k blocks, i.e., they are Stirling numbers of the
second kind. The result now follows by Möbius inversion, since by [8, Proposition 1.9.1], we have

∑
k≥j

(−1)k−jS(i, k)c(k, j) =

{
0, if i 6= j

1, if i = j.

Remark 4.1. The triangle of numbers C(1, n, j) is listed in the OEIS [6] as A038455. For m ≥ 2, the triangle
C(m,n, j) does not seem to be listed.

We now derive some properties of C(m,n, j). First, we list properties that are consequences of the general
properties we have already seen.

Proposition 4.8. For any m,n, j ≥ 1, we have:

1. C(m,n, j) ≤ C(m+ 1, n, j)

2. C(m,n, j) ≤ C(m,n+ 1, j)

3. C(m,n, 1) ≥
n∑

k=2

C(m,n, k)

4. C(m,n, j) ≥ C(m,n, j + 1)

We now list some properties that are specific to the case of the extended Catalan arrangement.

Proposition 4.9. For any m,n ≥ 1, we have

C(m)(n) :=

n∑
j=1

C(m,n, j) =
n!

mn+ 1

(
(m+ 1)n

n

)
.

Proof. This follows from the known formula for |T (m)(n)| (see [9, Section 5.3]).
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Proposition 4.10. For any m,n ≥ 1, we have

C(m)(n) ≤ C(m+ 1, n, 1).

Proof. Adding a leaf as the first child of each node in a labeled (m+ 1)-ary tree gives the required result.

Proposition 4.11. For any m,n ≥ 1, we have

C(m)(n) ≤ C(m,n+ 1, 1).

Proof. The result follows by replacing the leftmost leaf of a tree in T (m)(n) with a node labeled n+ 1 with all
children being leaves.

There are several combinatorial objects that correspond to the regions of the extended Catalan arrangement
(especially in the casem = 1, see [11]). One such is the generalized Dyck paths. We now describe a corresponding
statistic for these Dyck paths.

A labeled m-Dyck path on [n] is a sequence of (m+ 1)n terms where

1. n terms are ‘+m’,

2. mn terms are ‘−1’,

3. the sum of any prefix of the sequence is non-negative, and

4. each +m term is given a distinct label from [n].

A labeled m-Dyck path on [n] can be drawn in R2 in a natural way. Start the path at (0, 0), read the labeled
m-Dyck path and for each term move by (1,m) if it is +m and by (1,−1) if it is −1. Also, label each +m step
with its corresponding label in [n].

A Dyck path breaks up into primitive parts based on when it touches the x-axis. If a labeled Dyck path has
k primitive parts, then we break the path into compartments as follows. If the number n is in the ith1 primitive
part, then the primitive parts up to the ith1 form the first compartment. Let j be the largest number in [n] \A
where A is the set of numbers in the first compartment. If j is in the ith2 primitive part then the primitive parts
after the ith1 up to the ith2 form the second compartment. Continuing this way, we break up a labeled Dyck path
into compartments.

Example 4.3. The labeled 1-Dyck path on [7] given in Figure 11 has 3 primitive parts and 2 compartments.

4

7

2

6

3

1

5

Figure 11: A labeled 1-Dyck path with compartments specified.

It can be checked that this is a valid break-up of Dyck paths into connected structures. Thus have the
following.

Theorem 4.1. The number of labeled m-Dyck paths on [n] with j compartments is C(m,n, j).

We say that a labeled Dyck path has j right-to-left maxima if the string of labels before its first down step
has j right-to-left maxima. For example, the string of labels before the first down step in the Dyck path in
Figure 11 is 4, 7, 2. Hence, it has 2 right-to-left maxima.

Using the bijection between labeled trees and labeled Dyck paths given in [3] and the result in Section 3,
we get another statistic on labeled Dyck paths with the same distribution.

Theorem 4.2. The number of labeled m-Dyck paths on [n] with j right-to-left maxima is C(m,n, j).
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5. Concluding remarks

We note that a combinatorial interpretation for the coefficients of the characteristic polynomial of the Linial
arrangement is already given in [7, Corollary 4.2]. This is in terms of alternating trees.

For various deformations of the braid arrangement, expressions for the characteristic polynomials are known
(for example, see [1, 2]). Hence, for transitive sets S, these can be used to extract coefficients and hence give
formulas for the number of trees in TS according to the number of nodes and branches.
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