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Abstract: Permutations whose prefixes contain at least as many ascents as descents are called ballot per-
mutations. Lin, Wang, and Zhao have previously enumerated ballot permutations avoiding small patterns and
have proposed the problem of enumerating ballot permutations avoiding a pair of permutations of length 3.
We completely enumerate ballot permutations avoiding two patterns of length 3 and we relate these avoidance
classes with their respective recurrence relations and formulas, which leads to an interesting bijection between
ballot permutations avoiding 132 and 312 with left factors of Dyck paths. In addition, we also conclude the
Wilf-classification of ballot permutations avoiding sets of two patterns of length 3, and we then extend our
results to completely enumerate ballot permutations avoiding three patterns of length 3.
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1. Introduction

The distribution of descents over permutations has been thoroughly researched and has several important com-
binatorial properties. Specifically, the Eulerian polynomials An(t) encapsulate information about the number
of descents in every permutation in Sn, and q-analogues defined using additional permutation statistics have
been considered by Agrawal, Choi, and Sun [1], Carlitz [5], and Foata and Schützenberger [6]. In particular,
the Eulerian polynomials can also be equivalently defined using the excedance permutation statistic. Spiro [11]
introduced a variation of this in his work on ballot permutations, of which we will now give a brief history.

The following ballot problem was first introduced by Bertrand [4] in 1887 for the case λ = 1.

Problem 1.1. Suppose in an election, candidate A receives a votes and candidate B receives b votes, where
a ≥ λb for some positive integer λ. How many ways can the ballots in the election be ordered such that candidate
A maintains more than λ times as many votes as candidate B throughout the counting of the ballots?

Almost immediately after Bertrand introduced the ballot problem, André [2] introduced ballot sequences
in a combinatorial solution, and more recently, Goulden and Serrano [7] provided a solution to the case where
λ > 1 using a variation of ballot sequences. However, the most famous variation of ballot sequences is ballot
permutations, which represent each vote for candidate A and candidate B via an ascent and a descent in the
permutation, respectively. Ballot permutations have been studied by Bernardi, Duplantier, and Nadeau [3],
Spiro [11], and Lin, Wang, and Zhao [8]. In particular, Bernardi, Duplantier, and Nadeau [3] proved that the
set of ballot permutations with length n is equinumerous to the set of odd-order permutations with the same
length. Spiro [11] introduced a variation of excedence numbers, whose distribution over the set of odd-order
permutations is the same as the distribution of the descent numbers over the set of ballot permutations.

In an extension to Spiro’s [11] work, Lin, Wang, and Zhao [8] constructed an explicit bijection between these
two sets of permutations, which can be extended to positive well-labeled paths and proves a conjecture due to
Spiro [11] using the statistic of peak values. Lin, Wang, and Zhao [8] also established a connection between 213-
avoiding ballot permutations and Gessel walks and initiated the enumeration of ballot permutations avoiding a
single pattern of length 3. They have also suggested the problem of enumerating ballot permutations avoiding
pairs of permutations of length 3, on which we will now present two main results. We first completely enumer-
ate ballot permutations avoiding two patterns of length 3 and prove their respective recurrence relations and
formulas. In doing this, we characterize the set of ballot permutations avoiding sets of patterns. We then show
a bijection between 132- and 213-avoiding ballot permutations with left factors of Dyck paths and establish all
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Wilf-equivalences between patterns. We finally initiate and completely enumerate ballot permutations avoiding
three patterns of length 3.

This paper is organized as follows. In Section 2, we introduce preliminary definitions and notation. In
Section 3, we completely enumerate ballot permutations avoiding two patterns of length 3 and prove their
respective recurrence relations and formulas. In addition, we prove Wilf-equivalences of patterns and show a
bijection to left factors of Dyck paths. In Section 4, we extend our enumeration to ballot permutations avoiding
three patterns of length 3. In Section 5, we conclude with open problems and further directions.

2. Preliminaries

The following notation is borrowed from [12]. Let Sn denote the set of permutations of [n] = {1, 2, . . . , n}. Note
that we can represent each permutation σ ∈ Sn as a sequence σ(1) · · ·σ(n). Further, let Idn denote the identity
permutation 12 · · ·n of size n and given a permutation σ ∈ Sn, let rev(σ) denote the reverse permutation
σ(n)σ(n− 1) · · ·σ(1). We further say that a sequence w is consecutively increasing (respectively decreasing) if
for every index i, w(i+ 1) = w(i) + 1 (respectively w(i+ 1) = w(i)− 1).

For a sequence w = w(1) · · ·w(n) with distinct real values, the standardization of w is the unique permutation
with the same relative order. Note that once standardized, a consecutively-increasing sequence is the identity
permutation and a consecutively-decreasing sequence is the reverse identity permutation. Moreover, we say
that in a permutation σ, the elements σ(i) and σ(i + 1) are adjacent to each other. More specifically, σ(i) is
left-adjacent to σ(i + 1) and similarly, the element σ(i + 1) is right-adjacent to σ(i). The definitions in this
section are taken from [8].

Definition 2.1. A prefix of a permutation σ is a contiguous initial subsequence σ(1) · · ·σ(p) for some p.

Definition 2.2. Given a permutation σ ∈ Sn, we say that i ∈ [n − 1] is a descent of σ if σ(i) > σ(i + 1).
Similarly, we say that i ∈ [n− 1] is an ascent of σ if σ(i) < σ(i+ 1).

Definition 2.3. A ballot permutation is a permutation σ such that any prefix of σ has at least as many ascents
as descents.

We let Bn denote the set of all ballot permutations of length n. It is interesting to consider the notion of
pattern avoidance on ballot permutations, which we will now introduce.

Definition 2.4. We say that the permutation σ contains the permutation π if there exists indices c1 < · · · < ck
such that σ(c1) · · ·σ(ck) is order-isomorphic to π. We say that a permutation avoids a pattern π if it does not
contain it.

Given patterns π1, . . . , πm, we let Bn(π1, . . . , πm) to denote the set of all ballot permutations of length n
that avoid the patterns π1, . . . , πm.

Definition 2.5. Given two sets of patterns π1, . . . , πk and τ1, . . . , τ`, we say that they are Wilf-equivalent if
|Sn(π1, . . . , πk)| = |Sn(τ1, . . . , τ`)|. In the context of ballot permutations, we say that these two sets of patterns
are Wilf-equivalent if |Bn(π1, . . . , πk)| = |Bn(τ1, . . . , τ`)|.

To characterize permutations, we will now define the direct sum and the skew sum of permutations.

Definition 2.6. Let σ be a permutation of length n and π be a permutation of length m. Then the skew sum
of σ and π, denoted σ 	 π, is defined by

σ 	 π(i) =

{
σ(i) +m 1 ≤ i ≤ n
π(i− n) n+ 1 ≤ i ≤ m+ n.

Example 2.1. As illustrated in Figure 1,

132	 123 = 465123.

Definition 2.7. Let σ be a permutation of length n and π be a permutation of length m. Then the direct sum
of σ and π, denoted σ ⊕ π, is defined by

σ ⊕ π(i) =

{
σ(i) 1 ≤ i ≤ n
π(i− n) + n n+ 1 ≤ i ≤ m+ n.

Example 2.2. As illustrated in Figure 1,

132⊕ 123 = 132456.
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(a) The graph of the skew sum described in
Example 2.1.
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(b) The graph of the direct sum described in
Example 2.2.

Figure 1: The graph of skew and direct sum of permutations.

3. Enumeration of Pattern Avoidance Classes of Size 2

Lin, Wang, and Zhao [8] have enumerated sequences of ballot permutations avoiding small patterns. They
provide the following Table 1:

Patterns Sequence OEIS Sequence Comment

123 1, 1, 2, 2, 5, 5, 14, 14, . . . A208355 Catalan number C(dn2 e)
132 1, 1, 2, 4, 10, 25, 70, . . . A005817 C(dn2 e)C(dn+1

2 e)
213 1, 1, 3, 6, 21, 52, 193, . . . A151396 Gessel walks ending on the y-axis
231 1, 1, 2, 4, 10, 25, 70, . . . A005817 Wilf-equivalent to pattern 132
312 1, 1, 3, 6, 21, 52, 193, . . . A151396 Wilf-equivalent to pattern 213

321 1, 1, 3, 9, 28, 90, 297, . . . A071724 3
n+1

(
2n−2
n−2

)
for n > 1

Table 1: Sequences of ballot permutations avoiding one pattern of length 3.

We extend Lin, Wang, and Zhao’s [8] results to enumerate ballot permutations avoiding two patterns of
length 3. Table 2 presents the sequence of ballot permutations avoiding two patterns of length 3.

Patterns Sequence OEIS Sequence Comment

123, 132 1, 1, 1, 1, 1, 1, 1 . . . Sequence of all 1s; Theorem 3.1
123, 213 1, 1, 2, 1, 2, 1, 2, . . . Excluding n = 1; Theorem 3.2
123, 231 1, 1, 1, 0, 0, 0, 0, . . . Terminates after n = 3
123, 312 1, 1, 2, 0, 0, 0, 0, . . . Terminates after n = 3
123, 321 1, 1, 2, 2, 0, 0, 0, . . . Terminates after n = 4
132, 213 1, 1, 2, 3, 6, 10, 20, . . . A001405 Theorem 3.4
132, 231 1, 1, 1, 1, 1, 1, 1, . . . Sequence of all 1s; Theorem 3.5
132, 312 1, 1, 2, 3, 6, 10, 20, . . . A001405 Wilf-equivalent to patterns 132, 213
132, 321 1, 1, 2, 4, 7, 11, 16, . . . A152947 Theorem 3.6
213, 231 1, 1, 2, 3, 6, 10, 20, . . . A001405 Wilf-equivalent to patterns 132, 213
213, 312 1, 1, 3, 4, 11, 16, 42, . . . A027306 Theorem 3.7
213, 321 1, 1, 3, 6, 10, 15, 21, . . . A000217 Excluding n = 1; Theorem 3.8
231, 312 1, 1, 2, 3, 6, 10, 20, . . . A001405 Wilf-equivalent to patterns 132, 213
231, 321 1, 1, 2, 4, 8, 16, 32, . . . A011782 Theorem 3.9
312, 321 1, 1, 3, 6, 12, 24, 48, . . . A003945 Excluding n = 1; Theorem 3.10

Table 2: Sequences of ballot permutations avoiding two patterns of length 3.

We first present a lemma, which will be used in the proofs of Theorems 3.1 and 3.2.

ECA 3:1 (2023) Article #S2R6 3

http://oeis.org/A208355
https://oeis.org/A005817
https://oeis.org/A151396
https://oeis.org/A005817
https://oeis.org/A151396
https://oeis.org/A071724
https://oeis.org/A001405
https://oeis.org/A001405
https://oeis.org/A152947
https://oeis.org/A001405
https://oeis.org/A027306
https://oeis.org/A000217
https://oeis.org/A001405
https://oeis.org/A011782
https://oeis.org/A003945


Nathan Sun

Lemma 3.1. Let σ ∈ Bn(123), where n is odd. Then either σ(n) = 1 or σ(n− 2) = 1.

Proof. Write σ = σL1σR and let σ be a ballot permutation avoiding 123. Since σ avoids the pattern 123 and is a
ballot permutation, σ (and hence 1σR) must be an up-down permutation, where the elements in the permutation
alternately ascend and descend. Now if σR is empty, then σ(n) = 1. If σR is nonempty, σR must be decreasing
to avoid the pattern 123. Since n is odd, σ must end in a descent, and hence σR must be 2 elements if it is
nonempty. Thus σ(n− 2) = 1.

Now we proceed to enumerate ballot permutations avoiding pairs of patterns. We first consider when one
of the patterns is 123.

Theorem 3.1. For all n, there exists a unique ballot permutation avoiding the patterns 123 and 132.

Proof. Let σ ∈ Bn(123, 132) and write σ = σL1σR. Note that the case where n = 2 is immediate, so for the
following proof, assume n > 2. We have two cases:

1. n is even.

Using the same logic as in Lemma 3.1, we conclude that σ has one more ascent than descent. So σR
cannot be empty and must only be one element to simultaneously avoid 123 and 132.

We claim that σR must be 2 (the second minimal element in σ). For otherwise σR = r > 2. If there exists
an element m > 2 between 2 and 1 in σ, then 2mr is a subsequence of σ and is an occurrence of 132 or
123. If there does not exist such an element m between 2 and 1, then they are adjacent, and hence σ
contains two consecutive descents and hence is not a ballot permutation. Thus σR = 2.

Note that σ = σL12. Then σL is a prefix of σ and therefore is in Bn−2(123, 132), so we can inductively
use the above reasoning to conclude that σL = (12) 	 (12) 	 · · · 	 (12). Hence there is a unique σ in
Bn(123, 132).

2. n is odd.

Using Lemma 3.1, σR must either be empty or have two elements. But if σR contains two elements, it
either contains 123 or 132. So we conclude that σR must be empty and hence σ = σL1. And because σL is
a prefix of σ, it must be in Bn−1(123, 132), and note that σL = (12)	 (12)	· · ·	 (12) follows immediately
from Case 1. Hence there is a unique σ in Bn(123, 132).

Thus there is a unique ballot permutation avoiding the patterns 123 and 132.

Theorem 3.2. Let an = |Bn(123, 213)|. Then

an =

{
1, n = 1 or n is even

2, otherwise.

Proof. Let σ ∈ Bn(123, 213) and write σ = σL1σR. We have two cases:

1. n is even.

Then following the same reasoning in Theorem 3.1, σ contains one more ascent than descent and hence
σR cannot be empty; namely σR = 2. So σL is a prefix of σ and therefore is in Bn−2(123, 213). A similar
inductive argument presented in Theorem 3.1 above shows that σL = (12)	 (12)	 · · · 	 (12). Hence only
σ is in Bn(123, 213).

2. n is odd.

Then from Lemma 3.1, either σ = σL1 or σ = σL1ab.

If σ = σL1, then the same argument in Theorem 3.1 concludes that σL = (12)	 · · · 	 (12).

If σ = σL1ab, then ab must be 32 to avoid 123 and 213. Then σL = (12)	 · · · 	 (12) follows by the same
argument.

If n is odd, there are two different elements in Bn(123, 213).

Therefore, an = 2 if n is odd and an = 1 if n is even.

We will now show four sets of patterns are Wilf-equivalent to each other via bijection.

Theorem 3.3. The four sets Bn(132, 213), Bn(213, 231), Bn(231, 312), and Bn(132, 312) are Wilf-equivalent.
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Proof. In each of the following bijections between Bn(π1, π2) and Bn(π′1, π
′
2), we first construct a bijection from

Sn(π1, π2) to Sn(π′1, π
′
2) that preserves the positions of each descent and ascent in every permutation, and hence

this restricts the bijection from Bn(π1, π2) to Bn(π′1, π
′
2).

We first show a bijection between Bn(132, 213) and Bn(213, 231). Elements in Bn(132, 213) are of the form
Idk1 	 Idk2 	 · · ·	 Idkm , as illustrated in Figure 2. Note that k1 > 1 while any other ki (where i 6= 1) may equal
1, as long as the resulting permutation is a ballot permutation. We must have k1 > 1 since the permutation is
a ballot permutation and must start with an ascent. The permutation must be in this form since ascents must
be consecutive to avoid 132 and if there is a descent between element i and element j, then consecutive ascents
after j must cover all elements up to i to avoid 213.

Similarly, elements in Bn(213, 231) can be written as ((Idk′
1
n⊕ Idk′

2
)(n− 1)⊕ · · · ⊕ Idk′

m
)(n−m+ 1), where

the (n− i+ 1) terms do not change under direct sum and each (n− i+ 1) term is the largest element of every
element after it. In other words, these terms are essentially ignored in the direct sum operations. This is also
shown in Figure 2. Note that k′1 > 0 while any other k′i may equal 0, as long as the resulting permutation is
a ballot permutation. Now we can rewrite this as σk1

⊕ σk2
⊕ · · · ⊕ σkm

, where σki
= Idk′

i
(n − i + 1) and the

(n− i+ 1) terms does not change under direct sum.
And hence we can send σk1⊕σk2⊕· · ·⊕σkm to Idk1 	 Idk2 	 · · ·	 Idkm , due to each σki ending in (n− i−1).

Note that this is a bijection from Sn(132, 213) to Sn(213, 231) that preserves the positions of ascents and descents
in every permutation, so this property restricts the bijection between Bn(132, 213) to Bn(213, 231).

Now we show a bijection between Bn(213, 231) and Bn(231, 312). As discussed above, elements in the
set Bn(213, 231) can be written in the form σk1

⊕ σk2
⊕ · · · ⊕ σkm

, where σki
= Idk′

i
(n − i + 1). Now note

that elements in Bn(231, 312) are in the form of 1 ⊕ rev(Idk1) ⊕ · · · ⊕ rev(Idkm), where each Idki may be one
element. Elements in Bn(213, 231) are of the form ((Idk′

1
n⊕ Idk′

2
)(n− 1)⊕ · · · ⊕ Idk′

m
)(n−m+ 1). Note that

k′1 > 0 while any other k′i may equal 0. Now we transform 1 ⊕ rev(Idk1
) ⊕ · · · ⊕ rev(Idkm

) into an element in
Bn(213, 231) by preserving the place of each ascent and descent. This expression can be rewritten as the direct
sum of identity permutations, with maximal elements to represent the places where descents occur. In other
words, every element of the form 1 ⊕ rev(Idk1) ⊕ · · · ⊕ rev(Idkm) can be turned into an element of the form
((Idk′

1
n ⊕ Idk′

2
)(n − 1) ⊕ · · · ⊕ Idk′

m
)(n −m + 1) such that the place of every descent and ascent is preserved.

And the same argument works in reverse, so we conclude that there is a bijection between Bn(213, 231) and
Bn(231, 312).

We show a bijection between Bn(231, 312) and Bn(132, 312). Note that elements in Bn(231, 312) can be
written in the form 1⊕ rev(Idk1)⊕· · ·⊕ rev(Idkm), where each Idki may be one element. Observe that elements
in Bn(132, 312) can be written in the form ((((· · · (m⊕Idkm)	· · · )	2)⊕Idk2)	1)⊕Idk1 , where 1, . . . ,m are the
first m minimal elements in σ and Idki

may be empty. These are also shown in Figure 2. Now we will turn σ into
an element of Bn(231, 312). Note that by this construction, there will always be a descent after each identity
permutation in the sum, which we may write in terms of a reverse of an identity permutation. Also noting that
Idki

may be written as rev(1)⊕ · · · ⊕ rev(1), we can turn the expression above to 1⊕ rev(Idk1
)⊕ · · · ⊕ rev(Idkj

)
while preserving every descent and ascent. A similar argument works in reverse, and hence there is a bijection
between Bn(132, 312) and Bn(231, 312).

(a) The form of a permutation in
Bn(132, 213).

(b) The form of a permutation in
Bn(213, 231).

(c) The form of a permutation in
Bn(132, 312).

Figure 2: Example forms of permutations in Bn(132, 213), Bn(213, 231), and Bn(231, 312). All of these permu-
tations can be mapped to each other and to the left factor UUDUUD, as will be shown in Theorem 3.4.

Note that this result also shows that the distribution of descents is consistent for all elements in these four
sets.
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We will show in the following theorem that the elements in Bn(132, 213) are in bijection with left factors of
Dyck paths of n− 1 steps. But first, we provide the following definition:

Definition 3.1. A left factor of a Dyck path is the path made up of all steps that precede the last U step in
a Dyck path. Left factors of Dyck paths of n steps are left factors of all possible Dyck paths such that the path
preceding the last U step contains n steps.

Example 3.1. Consider the Dyck path UUDUUDDDUUDD shown in Figure 3. The left factor associated
with this Dyck path is UUDUUDDDU .

Figure 3: The Dyck path and its corresponding left factor in Example 3.1.

The following theorem presents a bijection between ballot permutations avoiding 132 and 213 with left
factors of Dyck paths. Since every prefix of a ballot permutation contains no more descents than ascents, this
makes left factors of Dyck paths a very natural combinatorial object to biject to.

Theorem 3.4. The elements in Bn(132, 213) are in bijection with left factors of Dyck paths of n − 1 steps,
which are counted by the OEIS sequence A001405 [10].

Proof. Note that the elements in Bn(132, 213) are the skew sum of consecutively increasing permutations.
Moreover, since they have to be ballot, the first two elements in any σ ∈ Bn(132, 213) must be increasing.

Let σ = Idk1 	 Idk2 	 · · · 	 Idkm . Note that k1 > 1 while any other ki may equal 1. Now we can group
together consecutive kis where each ki = 1. So we get σ = Idk1

	 rev(Id`1) 	 Id`2 	 · · · . Then note that
Idk1
	 rev(Id`1) uniquely determines a series of ups and downs in the left factor Dyck path. We can use the

same argument for the rest of the terms in the direct sum of σ to conclude that each σ ∈ Bn(132, 213) uniquely
determines a series of ups and downs in a left factor Dyck path. And we can see that this argument works in
reverse as well, since consecutive ascents can be grouped together into an identity term in σ, and consecutive
descents can be grouped together into a reverse identity term in σ. Hence we conclude that there exists a
bijection between the elements in Bn(132, 213) and left factors of Dyck paths of n− 1 steps.

And hence

|Bn+1(132, 213)| =
(
n

bn2 c

)
.

The following example illustrates the bijection presented in Theorem 3.4.

Example 3.2. The ballot permutation σ = 456312 is in B(132, 213) and is in bijection with the left factor
UUDDU , as shown in Figure 4.

Theorem 3.5. There exists a unique ballot permutation avoiding the patterns 132 and 231.

Proof. Let σ ∈ Bn(132, 231). Then the first two elements of σ must be increasing since σ is a ballot permutation.
Moreover, these two elements must also be consecutive to avoid an occurrence of 132. So call these two elements
k and k + 1. Elements smaller than k must be placed before k to avoid an occurrence of 231. Starting from
the minimal element 1, elements less than k must be placed consecutively to avoid 132, so we conclude that
σ = Idn.

Now we show a bijection between ballot permutations of length n + 1 avoiding the patterns 132 and 321
with permutations of length n avoiding the same patterns. This involves removing the second element of the
ballot permutation and noting that the remaining subpermutation will still avoid 132 and 321.

ECA 3:1 (2023) Article #S2R6 6
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Figure 4: A permutation in B6(132, 213) and its corresponding left factor of a Dyck path in Example 3.2.

Theorem 3.6. The elements in Bn+1(132, 321) are in bijection with the elements in Sn(132, 321).

Proof. Let σ ∈ Bn+1(132, 321). Then since σ is a ballot permutation, the first two elements of σ are increasing,
and they must be consecutive to avoid an occurrence of 132. So let us write σ = k(k + 1)σR. Then removing
an element will still avoid these patterns, so kσR ∈ Sn(132, 321).

Now let σ ∈ Sn(132, 321). Then write σ = σLnσR, where σLn and σR are both consecutively increasing.
Note that σ has at most one descent.

Then inserting a consecutive increasing element into the second index of σ and standardizing everything
else preserves the number of descents, and moreover, still avoids the patterns 132 and 321. More specifically,
σLn(n + 1)σR will still avoid 132 and 321 (this is the inverse of the map above since σLn is consecutively
increasing). This permutation will still be a ballot permutation since it starts with an ascent and the permutation
contains at most one descent because σL and σR are both consecutively increasing.

And hence σLn(n + 1)σR ∈ Bn+1(132, 321). This is sufficient to show a bijection between the elements in
Bn+1(132, 321) and the elements in Sn(132, 321). Simion and Schmidt [9] proved that |Sn(132, 321)| =

(
n
2

)
+ 1,

so

|Bn+1(132, 321)| = |Sn(132, 321)| =
(
n

2

)
+ 1.

Theorem 3.7. Let an = |Bn(213, 312)|. Then

an =

bn2 c∑
k=0

(
n

k

)
,

which is listed as the OEIS sequence A027306 [10].

Proof. Let σ ∈ Bn(213, 312). Then writing σ = σLnσR, note that σL must be increasing and σR must be
decreasing (but not necessarily consecutive).

Then we construct all possible ballot permutations in Bn(213, 312). Let |σR| = k. Then there are
(
n
k

)
ways

to pick the elements in σR, which are forced to decrease. The rest of the elements must be in σL, which are
forced to increase. Hence there are

(
n
k

)
ways to construct σ. But k ≤ bn2 c, since we cannot have more descents

than ascents. And hence

an =

bn2 c∑
k=0

(
n

k

)
.

Next, we can show a bijection between ballot permutations avoiding 213 and 321 with permutations avoiding
the same patterns that are not of the form n Idn−1, which is clearly not a ballot permutation.

Theorem 3.8. Elements in Bn(213, 321) are in bijection with elements in Sn(213, 321) \ (n Idn−1).

Proof. It’s clear that every σ ∈ Bn(213, 321) is in Sn(213, 321) \ (n Idn−1).
Now let σ ∈ Sn(213, 321). Then let us write σ = σLnσR, noting σL and σR are both increasing to avoid

213 and 321. This means that σ has at most one descent. Note that if σL is nonempty, then σ is a ballot
permutation that avoids 213 and 321. But there is only one permutation in Sn(213, 321) where σL is empty:
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namely, n Idn−1. And hence we conclude that every σ ∈ Sn(213, 321) that is not n Idn−1 is in Bn(213, 321), and
hence there is a bijection between the elements in Bn(213, 321) and the elements in Sn(213, 321) \ (n Idn−1).

So by Simion and Schmidt [9], we conclude that

|Bn(213, 321)| = |Sn(213, 321)| − 1 =

(
n

2

)
.

The following theorem shows a bijection between Bn+1(231, 321) and Sn(231, 321), which involves removing
the first element of every ballot permutation avoiding 231 and 321 and noting that the remaining permutation
will still avoid these patterns.

Theorem 3.9. The elements in Bn+1(231, 321) are in bijection with the elements in Sn(231, 321).

Proof. Let σ ∈ Bn+1(231, 321). Note that the minimum element 1 must be either the first element or the second
element of σ to avoid 231 and 321. However, since σ is a ballot permutation, it cannot start with a descent,
and hence 1 must be the first element. Note that removing 1 from σ will still avoid 231 and 321, and hence is
an element in Sn(231, 321).

Now let σ ∈ Sn(231, 321). Since σ avoids 321, there are no consecutive descents, which means that there is
at most one more descent than ascent. Then note that if we insert a minimal element 0 at the beginning of σ,
then 0σ will still avoid 231 and 321. Moreover, we’ve guaranteed one ascent at the beginning of the permutation,
and there are still no consecutive descents. Hence there are at least as many ascents as descents in σ, and hence
σ ∈ Bn+1(231, 321).

This is sufficient to show a bijection between the elements in Bn+1(231, 321) and the elements in Sn(231, 321).
By Simion and Schmidt [9], we conclude that

|Bn+1(231, 321)| = |Sn(231, 321)| = 2n−1.

And lastly, we provide a constructive approach to show the following result:

Theorem 3.10. Let an = |Bn(312, 321)|. Then an = 3 · 2n−3 for an ≥ 3.

Proof. Let σ ∈ Bn(312, 321) and write σ = σLr, where r ∈ [n]. We insert a maximal element (n + 1) into σ
to generate an element in Bn+1(312, 321). Note that we must insert (n + 1) adjacent to r in σ to avoid an
occurrence of 312 and 321. Further, σL(n + 1)r avoids 312 and 321 and is further ballot. A similar argument
shows that σLr(n + 1) is also in Bn+1(312, 321). So each σ ∈ Bn(312, 321) will generate two distinct elements
in Bn+1(312, 321).

Since we’ve shown that (n+1) must be inserted adjacent to the last element of a permutation in Bn(312, 321),
now we show that inserting (n+ 1) anywhere else into some σ′ /∈ Bn(312, 321) will not generate an element in
Bn+1(312, 321).

As stated above, we must insert (n+ 1) adjacent to the last element of σ′ to avoid 312 and 321. Now write
σ′ = σ′Lr

′. We have two permutations to consider:

1. σ′Lr
′(n+ 1)

Then note that σ′Lr
′ must be ballot and avoid 312 and 321 as well, which is impossible.

2. σ′L(n+ 1)r′

Now if σ′Lr
′ does not avoid 312 and 321, then σ′L(n + 1)r′ does not avoid these patterns either. If σ′Lr

′

does avoid 312 and 321, then it must not be a ballot permutation. But since this permutation avoids 321,
there cannot exist consecutive descents in this permutation. Note that σ′Lr

′ cannot start with an ascent,
or else it would be a ballot permutation. And hence σ′Lr

′ must start with a descent, and hence σ′L(n+1)r′

is not a ballot permutation.

So inserting a maximal element (n + 1) anywhere else into σ′ /∈ Bn(312, 321) will not generate an element
in Bn+1(312, 321). So we conclude that an+1 = 2an. Since we know that a3 = 3, then we conclude that
an = 3 · 2n−3.

4. Enumeration of Pattern Avoidance Classes of Size 3

Having enumerated all 3-permutations avoiding double restrictions, we now turn our attention to enumerating
3-permutations avoiding triple restrictions, as Simion and Schmidt [9] have done with classic permutations.
Table 3 presents the sequence of ballot permutations avoiding three patterns of length 3.
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Patterns Sequence OEIS Sequence Comment

123, 132, 213 1, 1, 1, 1, 1, 1, . . . Sequence of all 1s; Corollary 4.1
123, 132, 231 1, 1, 0, 0, 0, 0, . . . Terminates after n = 2
123, 132, 312 1, 1, 1, 0, 0, 0, . . . Terminates after n = 3
123, 132, 321 1, 1, 1, 0, 0, 0, . . . Terminates after n = 3
123, 213, 231 1, 1, 1, 0, 0, 0, . . . Terminates after n = 3
123, 213, 312 1, 1, 2, 0, 0, 0, . . . Terminates after n = 3
123, 213, 321 1, 1, 2, 1, 0, 0, . . . Terminates after n = 4
123, 231, 312 1, 1, 1, 0, 0, 0, . . . Terminates after n = 3
123, 231, 321 1, 1, 1, 0, 0, 0, . . . Terminates after n = 3
123, 312, 321 1, 1, 2, 0, 0, 0, . . . Terminates after n = 3
132, 213, 231 1, 1, 1, 1, 1, 1, . . . Sequence of all 1s; Corollary 4.2
132, 213, 312 1, 1, 2, 2, 3, 3, . . . A004526 Theorem 4.2
132, 213, 321 1, 1, 2, 3, 4, 5, . . . A000027 Excluding n = 1; Theorem 4.4
132, 231, 312 1, 1, 1, 1, 1, 1, . . . Sequence of all 1s; Corollary 4.2
132, 231, 321 1, 1, 1, 1, 1, 1, . . . Sequence of all 1s; Corollary 4.2
132, 312, 321 1, 1, 2, 3, 4, 5, . . . A000027 Excluding n = 1; Theorem 4.3
213, 231, 312 1, 1, 2, 2, 3, 3, . . . A004526 Theorem 4.1
213, 231, 321 1, 1, 2, 3, 4, 5, . . . A000027 Excluding n = 1; Theorem 4.3
213, 312, 321 1, 1, 3, 4, 5, 6, . . . A000027 Excluding n = 1 and n = 2; Theorem 4.5
231, 312, 321 1, 1, 2, 3, 5, 8, . . . A000045 Theorem 4.6

Table 3: Sequences of ballot permutations avoiding three permutations of length 3.

Corollary 4.1. We have |Bn(123, 132, 213)| = 1 for all n.

Proof. This follows immediately from Theorem 3.1, since the unique permutation avoiding 123 and 132 also
avoids 213. Let σ ∈ Bn(123, 132, 213). Specifically, we have that σ = (12) 	 (12) 	 · · · 	 (12) when n is even
and σ = (12)	 (12)	 · · · 	 (12)	 (1) when n is odd.

Corollary 4.2. We have |Bn(132, 213, 231)| = |Bn(132, 231, 312)| = |Bn(132, 231, 321)| = 1 for all n.

Proof. This follows immediately from Theorem 3.5. In particular,

Bn(132, 213, 231) = Bn(132, 231, 312) = Bn(132, 231, 321) = {Idn}.

Now we will show that the sets of patterns {132, 213, 312} and {213, 231, 312} are Wilf-equivalent.

Theorem 4.1. The sets Bn(132, 213, 312) and Bn(213, 231, 312) are Wilf-equivalent.

Proof. Note that an element in Bn(132, 213, 312) can be written as IdkL
	 rev(IdkR

). Similarly, an element in
Bn(213, 231, 312) can be written as IdkL

⊕ rev(IdkR
).

Now we can write IdkL
⊕ rev(IdkR

) as IdkL
⊕(1 	 rev(IdkR−1)). But note that we can rewrite this as

IdkL+1	 rev(IdkR−1) while preserving the positions of every descent and ascent in the permutation. A similar
reasoning applies to the reverse case, and hence there is a descent-preserving bijection between Bn(132, 213, 312)
and Bn(213, 231, 312).

Theorem 4.2. Let an = |Bn(132, 213, 312)|. Then an = bn+1
2 c.

Proof. Let σ ∈ Bn(132, 213, 312). Then, because σ avoids 132, 213, and 312, it can be written in the form
σLnσR, where σLn is consecutively increasing and σR is consecutively decreasing. Now we count how many
different σ there are. Note that n can be in the last bn+1

2 c places to ensure that there are at least as many
ascents as descents in σ. And hence |Bn(132, 213, 312)| = bn+1

2 c.

Now we show a Wilf-equivalence between three other sets of patterns.

Theorem 4.3. The three sets Bn(132, 213, 321), Bn(132, 312, 321), and Bn(213, 231, 321) are Wilf-equivalent.

Proof. Note that an element in Bn(132, 213, 321) can be written as IdkL
	(1 ⊕ IdkR

). Similarly, an element
in Bn(132, 312, 321) can be written as (IdkL

	1)⊕ IdkR
and an element in Bn(213, 231, 321) can be written as

IdkL
⊕(1	 IdkR

).
Observe that for each value of kL, kR ∈ N with kL+kR+1 = n, we send IdkL

	(1⊕IdkR
) to (IdkL

	1)⊕IdkR
.

This preserves the position of every descent in the permutation and gives our bijection.
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Similarly, IdkL
	(1 ⊕ IdkR

) can be bijected to IdkL−1⊕(1 	 IdkR+1), which also preserves the position of
every descent in the permutation.

Since the bijections from Sn(132, 213, 321) to Sn(132, 312, 321) to Sn(213, 231, 321) are descent-preserving,
we can now restrict them to bijections from Bn(132, 213, 321) to Bn(132, 312, 321) to Bn(213, 231, 321).

Hence there exists descent-preserving bijections between Bn(132, 213, 321) and Bn(132, 312, 321) and be-
tween Bn(132, 213, 321) and Bn(213, 231, 321), and all three sets are Wilf-equivalent.

Theorem 4.4. Let an = |Bn(132, 213, 321)|. Then an = n− 1.

Proof. Let σ ∈ Bn(132, 213, 321). Then, because σ avoids 132, 213, and 321, it can be written in the form
of σLnσR, where σLn is consecutively increasing and σR is consecutively increasing. Note that there is at
most one descent in this permutation, and hence n can be anywhere except the first element for σ to be a
ballot permutation (in other words, σL cannot be empty), and hence there are n− 1 different permutations in
Bn(132, 213, 321).

Theorem 4.5. Let an = |Bn(213, 312, 321)|. Then an = n.

Proof. Let σ be in Bn(213, 312, 321). Now σ can be written as σLnσR, where σL is increasing and σR is either
empty or one element to avoid 312 and 321.

When σR is empty, the identity permutation is the only one that satisfies the above criteria. When σR is
nonempty, we can choose n− 1 different elements to be the last element. Then all the other elements must go
in increasing order in σL, so there are a total of n different permutations in Bn(213, 312, 321).

Finally, we present a constructive approach to show that ballot permutations avoiding the patterns 231, 312,
and 321 follow the Fibonacci sequence with initial terms a1 = 1 and a2 = 1.

Theorem 4.6. Let an = |Bn(231, 312, 321)|. Then an follows the recurrence relation an = an−1 + an−2 with
the initial terms a1 = 1 and a2 = 1, which is the Fibonacci sequence.

Proof. Note that given some σ ∈ Bn−1(231, 312, 321), the permutation σn will be in Bn(231, 312, 321), since
inserting n at the end of a permutation that avoids 231, 312, and 321 will still avoid these three permutations.
Moreover, an ascent has been added by inserting n onto the end of σ, and hence σn will still be a ballot
permutation. This case contributes an−1 different elements in Bn(231, 312, 321).

Note that given some τ ∈ Bn−2(231, 312, 321), the permutation τn(n− 1) will also be in Bn(231, 312, 321).
This still avoids 231, 312, and 321, and we’ve added an ascent followed by a descent, so τn(n−1) is still a ballot
permutation. This case contributes an−2 different elements in Bn(231, 312, 321).

Given σ ∈ Bn−1(231, 312, 321), we show that inserting the maximal element n in any other place cannot
produce an element in Bn(231, 312, 321). Now if σ ends in n − 1 and we insert n left-adjacent to n − 1, this
case is already accounted for above because this is in the form of τn(n− 1), where τ ∈ Bn−2(231, 312, 321). If
σ ends in k < n− 1, then inserting n left-adjacent to k will contain an occurrence of 231. Inserting n anywhere
else will contain either an occurrence of 321 or 312, since these cases are disjoint.

For σ /∈ Bn−1(231, 312, 321), we show that we cannot produce an element in Bn(231, 312, 321) by inserting
the maximal element n anywhere. Note that if σ contains either 231, 312, or 321, inserting n anywhere will
still contain an occurrence of these patterns. Now let σ be a non-ballot permutation. Note that we must insert
n adjacent to the last element of σ or else there is an occurrence of 312 or 321. If n is inserted left-adjacent to
the last element, then σ must be σL(n− 1) to avoid 231. Then σLn(n− 1) is not a ballot permutation because
we’ve inserted a descent at the end of σL(n− 1). Now if we insert n at the end of σ, note that σ is a prefix of
σn. And since σ is not a ballot permutation, σn cannot be either. And hence if we insert n anywhere else, we
cannot produce an element in Bn(231, 312, 321).

Now let τ ∈ Bn−2(231, 312, 321). We show that we cannot produce an element in Bn(231, 312, 321) by
inserting the maximal elements n− 1 and n in any other places. Now note that τ(n− 1) ∈ Bn−1(231, 312, 321),
which is covered by the other case above. Now similar to the reasoning above, we have to insert n − 1 left-
adjacent to the last element of τ . And doing this forces the last element of τ to be n− 2 to avoid 231. So write
τ as τL(n− 2) and consider τL(n− 1)(n− 2). Then note that τL(n− 1)(n− 2)n is already counted in the case
above since τL(n − 1)(n − 2) ∈ Bn−1(231, 312, 321). Moreover, τL(n − 1)n(n − 2) contains 231, so inserting n
and n− 1 anywhere else in τ will not produce an element in Bn(231, 312, 321).

For τ /∈ Bn−2(231, 312, 321), we show that we cannot produce an element in Bn(231, 312, 321) by inserting
the maximal elements n and n− 1 anywhere. As discussed above, if τ contains 231, 312, or 321, then inserting
n and n − 1 anywhere in τ will still contain these patterns. So assume that τ is not a ballot permutation. So
we must insert n− 1 either left-adjacent or right-adjacent to the last element of τ .

Let us consider the case where we insert n − 1 left-adjacent to the last element of τ . Similarly, as above,
this forces the last element of τ to be n− 2 to avoid 231. So write τ as τL(n− 2) and consider τL(n− 1)(n− 2).
Now, this is simply adding a descent at the end of τL(n − 2). Similarly, we must insert n adjacent to n − 2,
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and hence τL(n− 1)(n− 2) is not a ballot permutation. This implies that τL(n− 1)(n− 2)n is also not a ballot
permutation. Moreover, τL(n− 1)n(n− 2) contains an occurrence of 231.

Note that if we insert n− 1 right-adjacent to the last element of τ , then τ(n− 1) is not a ballot permutation
because τ is a prefix of τ(n− 1) and τ is not a ballot permutation. Hence both τ(n− 1)n and τn(n− 1) cannot
be ballot permutations.

Hence if we insert n and n− 1 anywhere else, we cannot produce an element in Bn(231, 312, 321).
So we conclude that

an = an−1 + an−2.

5. Conclusion and Open Problems

In this paper, we have exhaustively enumerated ballot permutations avoiding two patterns of length 3 and
three patterns of length 3. The results presented in this paper extend Lin, Wang, and Zhao’s [8] enumeration of
permutations avoiding a single pattern of length 3 and proved Wilf-equivalences of pattern classes. In particular,
bijections between ballot permutations avoiding certain patterns and left factors of Dyck paths were also shown.
We conclude with the following open problems as proposed by Lin, Wang, and Zhao [8]:

Problem 5.1. Can ballot permutations avoiding sets of patterns of length 4 be enumerated?

Although this paper has shown connections between ballot permutations avoiding patterns of length 3 and
their recurrence relations and formulas, there are no existing OEIS sequences [10] that correspond with the
number of ballot permutations avoiding one pattern with length 4. Moreover, can ballot permutations avoiding
consecutive patterns or vincular patterns be enumerated?

And finally, Lin, Wang, and Zhao [8] have suggested the following notion of a ballot multipermutation.

Definition 5.1. For a tuple of natural numbers m = (m1, . . . ,mn), let Sm be the set of multipermutations of
{1m1 , 2m2 , . . . , nmn}. An element σ ∈ S is a ballot multipermutation if for each i such that 1 ≤ i ≤

∑n
k=1mk,

the following inequality holds:

|{j ∈ [i] : σ(j) < σ(j + 1)}| ≥ |{j ∈ [i] : σ(j) > σ(j + 1)}|.

Problem 5.2. For fixed m, is it possible to enumerate ballot multipermutations in Sm? Further, is it possible
to enumerate ballot multipermutations avoiding patterns in Sn?

In addition, inspired by Bertrand’s [4] ballot problem for λ > 1, we propose the following problem:

Problem 5.3. Can ballot permutations avoiding a single pattern of length 3 or pairs of patterns of length 3
with at least λ times as many ascents as descents be enumerated?

Furthermore, the enumeration of even and odd ballot permutations avoiding small patterns has not been
studied and would be a further avenue for future research.

Acknowledgements

The author is grateful to the referees for their helpful comments. This research was conducted at the 2022
University of Minnesota Duluth REU and is supported by Jane Street Capital, the NSA (grant number H98230-
22-1-0015), the NSF (grant number DMS2052036), and the Harvard College Research Program. The author is
indebted to Joe Gallian for his dedication and organizing the University of Minnesota Duluth REU. Lastly, a
special thanks to Joe Gallian, Amanda Burcroff, Michael Ren, and Katalin Berlow for their invaluable feedback
and advice on this paper.

References

[1] A. Agrawal, C. Choi, and N. Sun, On permutation weights and q-Eulerian polynomials, Ann. Comb. 24(2)
(2020), 363–378.
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