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Abstract: For the word ω = 11 . . . 1︸ ︷︷ ︸
x1

22 . . . 2︸ ︷︷ ︸
x2

. . . nn . . . n︸ ︷︷ ︸
xn

, denote by A(x1, x2, . . . , xn) the number of its anagrams

without fixed letters. While the function A() bears significant importance to economic theory [14], it is not known
whether it can be computed in polynomial time. The desire to answer efficiently certain queries related to this
function motivates our study of its combinatorial properties. Our first main result shows that A(x1, x2, . . . , xn)
(mod p) can be efficiently computed for any prime p = O((log n)1/3). Our second main result establishes that
the function A() is Schur-concave, which means that certain ordinal queries about A() can be answered in
linearithmic time.

Our second direction of study is structural. We introduce the anagraph, which generalizes derangement
graphs. For (x1, x2, . . . , xn) ∈ Zn≥0, AG(x1, x2, . . . , xn) is a graph on vertex set all words over the alphabet [n]
which have exactly xi letters i. Two vertices are adjacent if they are anagrams without fixed letters of each
other. Our main result fully determines the n-tuples (x1, . . . , xn) for which the anagraph is connected and leads
to a linear algorithm for this task. We end with a conjecture, which fits into the ongoing debate about the
connection between hamiltonicity, vertex-transitivity, and Cayley graphs [6, 12].

One contribution of the current paper is the systematic development of techniques for analyzing anagrams
without fixed letters. We illustrate the power of these techniques with further arithmetic, ordinal, and structural
results.
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1. Introduction

1.1 Background

In the classical question of counting derangements, one considers permutations without fixed elements. That
is, permutations σ of [n] = {1, 2, . . . , n} which satisfy that σ(i) 6= i for all i ∈ [n]. This enumerative question is
very well-understood. If d(n) is the number of such permutations, the following well-known identities, among
others, hold.

Theorem 1.1 (For example, [20, 2.2.1 Example]). For the number of derangements d(n), the following hold.

1. d(n) = (n− 1)(d(n− 1) + d(n− 2)) when n ≥ 2.

2. d(n) =

[
n!

e
+

1

2

]
.

3. d(n) = n!

n∑
i=0

(−1)i

i!
.

While enumerating derangements is a simple and well-understood question, the problem motivates many dif-
ferent directions of active research today. These directions are both enumerative and structural.
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Enumerative Directions

Most important to the current paper is the generalization of enumerating anagrams without fixed letters, ap-
pearing in literature also as enumerating derangements of multiset permutations (for example, [20, Chapter 2,
Exercise 12]). This question appears in a wide range of contexts such as combinatorics [8], theoretical computer
science [7], and economic theory [14]. The setup is the following. For a word ω over the alphabet [n], one is
interested in anagrams1 ω′ of ω such that ω′ and ω have different letters at each position. We denote the number
of such anagrams ω′ by A(ω). For example, if ω = 1123, then its anagrams without fixed letters are only 2311
and 3211, so the desired number is A(ω) = 2. Clearly, this number does not depend on the order of letters in
ω, but only depends on the number of their individual appearances. For that reason, if ω has exactly xi letters
i, now on we will simply write A(x1, x2, . . . , xn) instead of A(ω). One can find further values of this function
in [8, p.140-141]. Over the years, different properties of the function A : Zn≥0 −→ Z≥0 have been studied such
as its asymptotics when x1 = x2 = . . . = xn [15], its generating function [20, Chapter 2, Exrercise 12], and its
relationship to bounding the number of totally mixed Nash equilibria [7]. We discuss these in more depth in
the next section.

A very closely related generalization to anagrams without fixed letters is the following. We phrase it in the
language of Christmas presents used by Penrice [15]. Suppose that there are n disjoint groups of people
X1, X2, . . . , Xn, where |Xi| = xi. The members of these groups want to exchange Christmas presents such
that every person gives and receives exactly one present and no person receives a present from a member of
their own group (including themselves). We denote the number of ways to achieve this by D(x1, x2, . . . , xn).
When x1 = x2 = . . . = xn = 1, clearly D(x1, x2, . . . , xn) = d(n). One can also note that D(x1, x2, . . . , xn) =
x1!x2! · · ·xn!A(x1, x2, . . . , xn), which means that the two functions have almost the same properties. Neverthe-
less, as will become apparent, especially in Section 4, sometimes it is easier to analyze the function D() to argue
about A() and, for that reason, we also introduce the function D(). For a quick demonstration of the convenience
of D(), consider the following formula due to Penrice [15],

D(x1, x2, . . . , xn) = per


M11 . . .1
1 M2 . . .1

. . .

1 1 . . .Mn

 . (1)

On the diagonal there are n zero matrices Mi, where Mi ∈ Zxi×xi . The rest of the entries are equal to 1.

Many other generalizations of derangements also appear in the literature. Different examples of these can be
found, for instance, in [16], [22], and [2].

Structural Directions

In addition to enumerative, structural properties of derangements and their generalizations are also studied.
Specifically, of interest is the graph DG(n) which has as its vertices all permutations Sn, and two nodes are
connected if and only if one is a permutation without fixed elements of the other. That is, σ, τ ∈ V (DG(n))
are connected whenever σ(i) 6= τ(i) for all i ∈ [n]. Different properties of this graph have been studied such
as hamiltonicity, path-hamiltonicity, edge-pancyclicity, its spectrum, and its independence number. For an
overview of these, see [13] and the references cited in it. See Fig. 1 for an illustration of DG(3).

Figure 1: The graph DG(3) ∼= AG(1, 1, 1). It is composed of two disjoint triangles.

In the current paper, we introduce and analyze the following natural generalization of the graph DG(n) in the
context of anagrams without fixed letters.

Definition 1.1. For an n-tuple (x1, x2, . . . , xn) ∈ Zn≥0, we define the anagraph AG(x1, x2, . . . , xn) as the fol-
lowing graph. Its nodes are all the words over the alphabet [n] which have exactly xi letters i for all i ∈ [n]. Two
words ω and ω′ are connected if and only if they differ at every position.

1An anagram of a word ω is another word ω′ which has the exact same letters, counted with multiplicities, but in a potentially
different order. For example, the anagrams of ω = 121 are 112, 121, and 211.
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Again, Fig. 1 is an example of an anagraph. For an example in which some letters appear multiple times, see
Fig. 2 below.

1123 2311

1132 3211

1213 2131

1312 3121

1231

X
2113

1321 3112

Figure 2: The graph AG(2, 1, 1) corresponding to the word ω = 1123. It is composed of three disjoint 4-cycles.

1.2 Prior Work

Enumerative Questions

While classical derangements are easy to enumerate as shown in Theorem 1.1 (and, clearly, extremely efficient
algorithms for finding d(n) exist), it is an open question whether one can find the number A(x1, x2, . . . , xn)
with a polynomial-time algorithm even for the equinumerous case x1 = x2 = · · · = xn = k [7]. The permanent
formula Eq. (1) does not help as finding permanents of general 0/1 matrices is an #P-hard problem [21]. The
following theorem, however, demonstrates that understanding A(x1, x2, . . . , xn) is an important, even if difficult,
task.

Theorem 1.2 ( [7, 14]). Consider a game with n players, where player i has mi ≥ 1 options to choose
their action from. Then, a sharp upper bound on the number of totally mixed Nash equilibria in the game is
A(m1 − 1,m2 − 1, . . . ,mn − 1). 2

Even though it is an open question how to simply compute the number A(k, k, . . . , k︸ ︷︷ ︸
n

), the asymptotic growth

of A() in this equinumerous case has been established in [15]3.

Theorem 1.3 ( [15]). For any fixed k ∈ N, one has

lim
n−→+∞

A(k, k, . . . , k︸ ︷︷ ︸
n

)

(
nk

k, k, . . . , k︸ ︷︷ ︸
n

)−1
= e−k.

This theorem generalizes the second statement in Theorem 1.1. Informally, it says that asymptotically an e−k

fraction of all words containing exactly k times each letter in [n] are anagrams without a fixed letter of the word
ω = 11 . . . 1︸ ︷︷ ︸

k

22 . . . 2︸ ︷︷ ︸
k

. . . nn . . . n︸ ︷︷ ︸
k

.

Another line of research exploits the ingenious connection between the function D() and Laguerre polynomials
discovered by Gillis and Evans [8]. This connection can be used, for example, to elegantly derive expressions
for D() when the alphabet size (i.e., the number n) is small [8].

The importance of understanding A(), justified by Theorem 1.2, motivates the study of exact (non-asymptotic)
properties of this function. Our combinatorial analysis of such properties leads to efficient (sometimes even
nearly-linear!) algorithms that answer certain queries about the function A().

Structural Questions

The graph DG(n) turns out to have a surprisingly rich structure. Particularly important to the current paper
are the following two theorems. Before stating them, however, we recall a few common graph properties.

Definition 1.2. A simple graph G on m vertices is

• Hamiltionian if there exists a simple cycle of length m.

2A totally mixed Nash equilibrium is a Nash equilibrium in which every player chooses every action available to them with
positive probability.

3In the original paper, the statement is limn−→+∞
D(

n︷ ︸︸ ︷
k, k, . . . , k)

(nk)!
= e−k, but this is clearly equivalent to the statement in

Theorem 1.3. We prefer to phrase the result in terms of the function A() as anagrams without fixed letters are the main object of
study in the current paper.
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• Hamilton-connected if every pair of distinct vertices is joined by a simple path of length m.

• Pancyclic if there exists a simple cycle of length k for any 3 ≤ k ≤ m.

• Edge-Pancyclic if there exists a simple cycle of length k containing the edge e of G for any e and 3 ≤ k ≤ m.

It turns out that DG(n) satisfies all of these extremely strong properties.

Theorem 1.4 ( [13]). The graph DG(n) is edge-pancyclic for all n ≥ 4.

Theorem 1.5 ( [17]). The graph DG(n) is hamilton-connected for all n ≥ 4.

Naturally, we are curious to establish generalizations of these results for the graph AG(x1, x2, . . . , xn). The
end goal is finding necessary and sufficient conditions for an n-tuple (x1, x2, . . . , xn) which guarantee that the
corresponding anagraph is hamiltonian/path-hamiltonian/pancyclic/edge-pancyclic. It turns out, however, that
some non-trivial work is needed even to determine when an anagraph is connected as will become apparent in
Section 5.

The study of hamiltonicity of anagraphs is also of interest due to the ongoing efforts to understand which
connected vertex-transitive graphs are hamiltonian (see [6] and references in it for a discussion of this connec-
tion). It can be easily shown that any anagraph is vertex-transitive (see Observation 2.8) and we determine the
condition for connectivity of anagraphs in Theorem 5.1. In Observation 6.2, we further relate hamiltonicity of
anagraphs to hamiltonicity of certain Cayley graphs, which is a related active research area [12].

The question of determining hamiltonicity (and related properties) of an anagraph is also of interest from a
computer-science point of view. It is well known that it is NP-hard to verify all of the properties listed in
Definition 1.2 for a general graph G [10]. Even more, brute-force algorithms are particularly inefficient for
anagraphs as anagraphs can have exponentially many vertices and edges in terms of their description as follows
from Observation 2.7.

1.3 Main Questions and Results

Enumerative Aspects of Anagrams Without Fixed Letters

Since the number A(x1, x2, . . . , xn) has been elusive from a computational point of view so far, we focus on
designing efficient algorithms that determine different properties of it. Our results show that the function A()
has surprisingly simple and elegant arithmetic and ordinal behavior.

Our first direction of study deals with the number-theoretic properties of A().

Problem 1.1. Given an n-tuple (x1, x2, . . . , xn) and a positive integer m, determine the residue of
A(x1, x2, . . . , xn) when divided by m. Can this be done with an efficient algorithm?

We provide the following partial answer to this question.

Main Result 1.1. There exists a polynomial-time algorithm that computes A(x1, . . . , xn) (mod p) for any
n-tuple (x1, . . . , xn) ∈ {0, 1, . . . ,M}n and prime number p = O((log n + log logM)1/3). In the special case
x1 = · · · = xn = k, the result can be improved to primes of order O((log n+ log log k)1/2).

Our proof of this result reduces computing A(x1, x2, . . . , xn) (mod p) to a few computations of the same type,
but of much smaller size. The small size allows us to use exponential-time algorithms on them. Our result
becomes especially elegant in the case p = 2. In it, one simply needs to xor all the binary representations of xi
and then check whether the resulting vector is non-zero. Namely, we have the following theorem (it is stated
more precisely in Corollary 3.5).

Theorem 1.6. The number A(x1, x2, . . . , xn) is odd if and only if in the binary representations of x1, x2, . . . , xn
on every position there is an even number of ones.

We illustrate this theorem with the following examples.

Example 1.1. Consider first the word χ = 112234, corresponding to A(2, 2, 1, 1) and x1 = x2 = 2, x3 = x4 = 1.
The respective binary representations are x1 = x2 = 10(2), x3 = x4 = 1(2). Thus, there are 2 ones at position
0 (i.e. corresponding to 20) and 2 ones at position 1. As both numbers are even, according to our theorem,
A(2, 2, 1, 1) must be odd. This is true since A(2, 2, 1, 1) = 29 [8, p.141]. On the other hand, consider ω = 112233,
corresponding to A(2, 2, 2). This time, x1 = x2 = x3 = 10(2) and there are 3 ones at position 1 so A(2, 2, 2) must
be even. Again, this is the case since A(2, 2, 2) = 10 [8, p.141].

ECA 3:2 (2023) Article #S2R9 4
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We present our arithmetic results in Section 3. There, we first prove two other number-theoretic statements
about A(), Theorems 3.1 and 3.2. Not only are these results useful when proving Main Result 1.1, but they also
illustrate more simply the techniques used in Main Result 1.1.

In addressing the ordinal properties of A(), we pose the following question.

Problem 1.2. Given two n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) of non-negative integers, determine which
of the numbers A(x1, x2, . . . , xn) and A(y1, y2, . . . , yn) is larger.

We study this question in two different regimes depending on whether the sums
∑
i

xi and
∑
i

yi are equal. In

the equality case, our main result relies on a specific poset defined over the n-tuples of non-negative integers
with a fixed sum. The ordering relation is given as follows.

Definition 1.3. For two n-tuples of non-negative integers (x1, x2, . . . , xn) and (y1, y2, . . . , yn) such that

n∑
i=1

xi =

n∑
i=1

yi, we say that (y1, y2, . . . , yn) majorizes (x1, x2, . . . , xn) and write

(x1, x2, . . . , xn) � (y1, y2, . . . , yn) if the following condition holds. For two permutations π and σ such that

xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(n) and yσ(1) ≥ yσ(2) ≥ · · · ≥ yσ(n), it is the case that

i∑
j=1

yσ(j) ≥
i∑

j=1

xπ(j) holds for all

i ∈ [n].

This ordering relation appears in many analytic and combinatorial inequalities, most well-known of which are
the inequality of Karamata [9] and the Schur-convexity property [19]. In the current paper, it shows up in the
following theorem.

Main Result 1.2 (Schur-Concavity of A() and D()). Suppose that (x1, x2, . . . , xn) � (y1, y2, . . . , yn) in the
sense of Definition 1.3. Then,

A(x1, x2, . . . , xn) ≥ A(y1, y2, . . . , yn), and

D(x1, x2, . . . , xn) ≥ D(y1, y2, . . . , yn).

In other words, A() and D() are Schur-concave in the sense of [19]. Consider the following example as an
illustration.

Example 1.2. Suppose that ω1 = 111123 corresponding to (4, 1, 1, 0), ω2 = 111234 corresponding to (3, 1, 1, 1),
and ω3 = 112234 corresponding to (2, 2, 1, 1). According to Definition 1.3, (2, 2, 1, 1) � (3, 1, 1, 1) � (4, 1, 1, 0),
so we should expect that A(2, 2, 1, 1) ≥ A(3, 1, 1, 1) ≥ A(4, 1, 1, 0) and similarly for D(). Indeed, we have
A(2, 2, 1, 1) = 29,A(3, 1, 1, 1) = 6,A(4, 1, 1, 0) = 0 as in [8, p.140-p.141]. Respectively, A(2, 2, 1, 1) = 116,
A(3, 1, 1, 1) = 36,A(4, 1, 1, 0) = 0.

Corollary 1.1. There exists an O(n log n) algorithm, which determines which of the numbers
A(x1, x2, . . . , xn) and A(y1, y2, . . . , yn) is greater, provided that the n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn)
are comparable with respect to � .

The same technique used in the proof of Main Result 1.2 also allows us to derive Theorems 4.4 and 4.5, which

handle certain special cases in the regime

n∑
i=1

xi 6=
n∑
i=1

yi. More specifically, in this regime we analyze the

minimal possible difference, i.e.

n∑
i=1

xi = 1 +

n∑
i=1

yi.

Structural Aspects of Anagrams Without Fixed Letters

So far, we have discussed only enumerative questions about anagrams without fixed letters. These correspond
to an analysis of an extremely local property - the degree - of an anagraph as will become apparent in Obser-
vation 2.7. However, derangement graphs have a very rich global structure as demonstrated in Theorems 1.4
and 1.5. This motivates us to study the global properties of anagraphs. Our first question relates to the,
perhaps, most prominent global property - connectivity.

Problem 1.3. Determine the n-tuples (x1, x2, . . . , xn) ∈ Zn≥0 for which the graph AG(x1, x2, . . . , xn) is con-
nected.

ECA 3:2 (2023) Article #S2R9 5
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We fully resolve this question with the following theorem.

Main Result 1.3. The anagraph AG(x1, x2, . . . , xn) is connected if and only if one of the following conditions
is satisfied:

1. n = 1.

2. n = 2 and x1 = x2 = 1.

3. n ≥ 3, the inequality max(x1, x2, . . . , xn) < 1
2

∑n
j=1 xj holds, and (x1, x2, . . . , xn) 6= (1, 1, 1).

Leaving some edge-cases aside, connectivity of the anagraph is equivalent to max(x1, x2, . . . , xn) < 1
2

∑n
j=1 xj .

On the other hand, one can simply observe (see Observation 2.2 and Observation 2.7) that the anagraph has
an empty edgeset if and only if max(x1, x2, . . . , xn) > 1

2

∑n
j=1 xj . This shows a very sharp transition between

absence of edges and connectivity. Consider the following example.

Example 1.3. We illustrate the transition between absence of edges and connectivity via the following three
words: χ1 = 112, χ2 = 1123, and χ3 = 11234. By the theorem, the anagraph corresponding to χ1 has an empty
edge set (one can check that this is the empty graph on three vertices). The anagraph corresponding to χ2 has
edges, but is disconnected as illustrated in Fig. 2. Finally, one can see on Fig. 3 that the anagraph AG(2, 1, 1, 1)
corresponding to χ3 is connected.

Figure 3: Subgraph of the anagraph AG(2, 1, 1, 1) including all vertices and sufficiently many edges to demon-
strate connectivity.

Again, Main Result 1.3 leads to an efficient algorithm.

Corollary 1.2. There is an algorithm which determines whether AG(x1, x2, . . . , xn) is connected on input
(x1, x2, . . . , xn) in time O(n).

Of course, more interesting is the question of determining the properties in Definition 1.2.

Problem 1.4. Determine the n-tuples (x1, x2, . . . , xn) for which the graph AG(x1, x2, . . . , xn) is hamiltonian
(respectively, hamiltonian-connected, pancyclic, and edge-pancyclic).

We conjecture that every connected anagraph (with potentially finitely many exceptions) is at least hamiltonian
in light of the curious connection between vertex-transitivity and hamiltonicity [6]. In fact, only four connected
vertex-transitive graphs on at least 3 vertices that are not hamiltonian are known [6]!

While we do not fully resolve Problem 1.4, we show in Proposition 5.1 that a reduction of the alphabet size -
which is our main tool in proving Main Result 1.3 - also applies to it. This means that if our conjecture is true,
it is enough to prove that every connected anagraph on an alphabet of size 4 is at least hamiltonian.

2. Preliminaries

2.1 Further Notation and Terminology

Words and Anagrams

Throughout, we will denote by cw(x1, x2, . . . , xn) the “canonical word” on alphabet [n] with exactly xi letters
i, which is given by 11 . . . 1︸ ︷︷ ︸

x1

22 . . . 2︸ ︷︷ ︸
x2

. . . nn . . . n︸ ︷︷ ︸
xn

. Most of the arguments in Sections 3 and 4 will be formulated for

ECA 3:2 (2023) Article #S2R9 6
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this word. If χ = cw(x1, x2, . . . , xn), for any other word ω over [n] which has exactly xi letters i, we will often
decompose ω as

ω = χ1(ω)χ2(ω) · · ·χn(ω),

where each χi(ω) is a subword of ω that contains exactly xi consecutive letters.

For a word ω with m letters, we will enumerate the positions by the positive integers from left to right. For
example, when ω = 57911 (so, m = 5) the word has letter 5 at position 1, letter 7 at position 2, letter 9 at
position 3, and letter 1 at positions 4 and 5. For any S ⊆ [m], we will denote by ω|S , the word ω restricted to
positions S. For example, if ω = 57911, and S = {2, 3, 4}, then ω|S = 791.

For a word ω, we will denote by AFL(ω) its set of anagrams without fixed letters. Clearly,
|AFL(ω)| = A(ω).

The Majorization Relation

We end this section with a few notes on the majorization relation defined in Definition 1.3. First, we note that
the definition can easily be extended to n-tuples of different lengths by simply adding zeros. Adding zeros to
any n-tuple (x1, x2, . . . , xn) can be done freely anywhere in the paper.

Definition 2.1. For a positive integer m, we define the following poset Pm. Its elements are all positive integer
sequences with sum m and the poset relation given by � in Definition 1.3.

We present a simple illustration of how the poset structure defined above appears in combinatorial inequalities.
We will need the following inequality later on.

Observation 2.1. If (y1, y2, . . . , yn) majorizes (x1, x2, . . . , xn), then y1!y2! . . . yn! ≥ x1!x2! . . . xn!.

Proof. This fact follows simply from the log-convexity of the gamma function [1] and Karamata inequality [9].
Nevertheless, we present a different proof technique, which will be useful when discussing Theorem 4.3.

First, note that whenever t ≥ s > 0, it is the case that (t+1)!(s−1)! ≥ t!s!. Now, assume without loss of generality
that y1 ≥ y2 ≥ . . . ≥ yn and x1 ≥ x2 ≥ . . . ≥ xn. Define the n-tuple

(v
(0)
1 , v

(0)
2 , . . . , v

(0)
n ) = (y1, y2, . . . , yn). While (v

(k)
1 , v

(k)
2 , . . . , v

(k)
n ) 6= (x1, x2, . . . , xn), do the following procedure.

We will prove that it is well defined.

1. Find the smallest index i such that v
(k)
i 6= xi.

2. Find the smallest index j > i such that v
(k)
j−1 < v

(k)
i .

3. Update v
(k+1)
j−1 = v

(k)
j−1 − 1, v

(k+1)
j = v

(k)
j + 1, v

(k+1)
r = v

(k)
r for r 6∈ {j, j − 1}.

First, note that after every update,
∑
s v

(k)
s remains unchanged, so the n-tuples (v

(k)
1 , v

(k)
2 , . . . , v

(k)
n ) are ele-

ments of the poset Py1+y2+···+yn . We show by induction that (v
(k)
1 , v

(k)
2 , . . . , v

(k)
n ) � (x1, x2, . . . , xn) holds for

all k. Indeed, this is true for k = 0. Now, if it is true for some k and (v
(k)
1 , v

(k)
2 , . . . , v

(k)
n ) 6= (x1, x2, . . . , xn), we

first need to show that steps 1 and 2 can be executed. Let i be the minimal index such that v
(k)
i 6= xi. Clearly, as

(v
(k)
1 , v

(k)
2 , . . . , v

(k)
n ) � (x1, x2, . . . , xn), it must be the case that

v
(k)
i > xi. Now, we claim that there exists some j > i such that v

(k)
j < v

(k)
i . Indeed, if this were not true,

one would derive the following contradiction.

n∑
u=1

v(k)u =

i∑
u=1

v
(k)
i + (n− i)v(k)i >

i∑
u=1

xi + (n− i)xi ≥
n∑
u=1

xu.

Let j be the minimal index such that v
(k)
j < v

(k)
i . Clearly, v

(k)
j−1 = v

(k)
i > xi ≥ xj−1 must hold. Thus, we can per-

form the update in step 3. One can very easily check that the new n-tuple

(v
(k+1)
1 , v

(k+1)
2 , . . . , v

(k+1)
n ) also majorizes (x1, x2, . . . , xn) by the choice of i and j.

Therefore, the procedure indeed terminates with (x1, x2, . . . , xn). The statement follows from the update rule
3. and the observation that whenever t ≥ s > 0, it is the case that (t+ 1)!(s− 1)! ≥ t!s!.
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2.2 Simple Enumerative Observations

We first note that the functions A and D are symmetric. That is, for any permutation π,
A(x1, x2, . . . , xn) = A(xπ(1), xπ(2), . . . , xπ(n)) and similarly for D. We continue with determining for which words
ω, there exists anagrams without fixed letters.

Observation 2.2 ( [7]). A(x1, x2, . . . , xn) > 0 (and D(x1, x2, . . . , xn) > 0) is equivalent to

max(x1, x2, . . . , xn) ≤ 1

2

n∑
i=1

xi.

Proof. Without loss of generality, let x1 ≥ x2 ≥ · · · ≥ xn.
First, suppose that x1 >

1
2

∑n
i=1 xi. Then, clearly, any anagram of cw(x1, x2, . . . , xn) will have at least one

letter 1 among its leftmost xi positions, so there are no anagrams without fixed letters.
On the other hand, if x1 ≤ 1

2

∑n
i=1 xi, one can easily check that the cyclic permutation with x1 positions to the

left ω′ is an anagram without fixed letters of ω. More precisely, we take
ω′ = 22 . . . 2︸ ︷︷ ︸

x2

33 . . . 3︸ ︷︷ ︸
x3

. . . , nn . . . n︸ ︷︷ ︸
xn

11 . . . 1︸ ︷︷ ︸
x1

.

We continue with two very simple observations about the arithmetic and ordinal structures of A() as a prelude
to our main results. To illustrate a simple property of the arithmetic of A, which will also be useful later on,
we make the following simple observation about derangements.

Observation 2.3. A(1, 1, . . . , 1︸ ︷︷ ︸
n

) ≡ n− 1 (mod 2).

Proof. This follows easily as A(1, 1, . . . , 1︸ ︷︷ ︸
n

) = d(n), d(0) = 1, d(1) = 0, and the first relation in Theorem 1.1.

We will vastly improve the above observation in Corollary 3.5. We also make a simple observation about the
ordinal structure of A().

Observation 2.4. Two n-tuples (x1, x2, . . . , xn) and (b1, b2, . . . , bn) of non-negative integers are given such that
max(b1, b2, . . . , bn) ≤ 1

2

∑n
i=1 bi. Then,

A(x1, x2, . . . , xn) ≤ A(x1 + b1, x2 + b2, . . . , xn + bn).

Proof. Consider the words ω1 = cw(b1, b2, . . . , bn), ω2 = cw(x1, x2, . . . , xn) and ω = ω1ω2. We will simply
construct an injection f : AFL(ω2) −→ AFL(ω). Since max(b1, b2, . . . , bn) ≤ 1

2

∑n
i=1 bi, the word ω1 has an

anagram without fixed letters ω′1. Then, f takes the simple form f(χ) = ω′1χ for any χ ∈ AFL(ω2).

We continue with computing two very simple, specific, cases of A(x1, x2, . . . , xn).

Observation 2.5 ( [7]). If x1 = x2 + · · ·+ xn, then A(x1, x2, . . . , xn) =
(

x1

x2,...,xn

)
.

Proof. Note that the anagrams without fixed letters of cw(x1, x2, . . . , xn), are exactly the words of the form
χ 1, 1, . . . , 1︸ ︷︷ ︸

x1

where χ is a word over [n]\{1} having exactly xi letters i for all i > 1.

Observation 2.6. A(2, 1, 1, . . . , 1︸ ︷︷ ︸
n−2

) = 1
2 (d(n)− 2d(n− 1)− d(n)).

Proof. We will prove that D(2, 1, 1, . . . , 1︸ ︷︷ ︸
n−2

) = d(n)−2d(n−1)−d(n), which is enough. Let X1 = {1, 2} and Xi =

{i} for i ≥ 3. We want to find the number of permutations σ :
⋃
iXi −→

⋃
iXi such that σ(Xi)∩Xi = ∅ for all i.

First, note that any such permutation is necessarily a derangement of ω = 12 . . . n. Now, we will count how many
derangements of ω do not satisfy the condition
σ(Xi) ∩Xi = ∅ for all i. This condition can be violated by three types of derangements.

• When σ(1) = 2, σ(2) = 1. There are clearly d(n− 2) such derangements.

• When σ(1) = 2, σ(2) 6= 1. There are clearly d(n− 1) such derangements.

• When σ(1) 6= 2, σ(2) = 1. There are clearly d(n− 1) such derangements.

In total, we count d(n)− 2d(n− 1)− d(n− 2) such derangements.
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2.3 Simple Observations About the Anagraph

First, we state two simple observations about the size of the anagraph without proof.

Observation 2.7. For a n-tuple (x1, x2, . . . , xn), one has:

1. |V (AG(x1, x2, . . . , xn))| =
(
x1 + x2 + · · ·+ xn
x1, x2, . . . , xn

)
.

2. For every v ∈ V (AG(x1, x2, . . . , xn)), it is the case that deg(v) = A(x1, x2, . . . , xn).

Another, very important property of anagraphs, is their high symmetry.

Observation 2.8. For any n-tuple (x1, x2, . . . , xn), the anagraph AG(x1, x2, . . . , xn) is
vertex-transitive.

Proof. Let λ and ω be two words in V (AG(x1, x2, . . . , xn)). Since each letter i appears the same number of
times in λ and ω, there exists a permutation σ (of positions of letters) such that σ(λ) = ω. Clearly, σ, when
extended to V (AG(x1, x2, . . . , xn)), is a graph isomorphism.

2.4 Approaches to Anagrams Without Fixed Letters

One of our main contributions is developing techniques for a systematic study of the enumerative and structural
aspects of anagrams without fixed letters. The main approaches that we use in the paper are three:

• Equivalence Classes. This technique is used when discussing the arithmetic of A() in Theorems 3.1
to 3.3. We split AFL(χ) for a word χ into simple equivalence classes, the size of which we can easily
analyze. This technique can also be phrased in terms of group actions. For example, in Theorems 3.1
and 3.3, the proof is equivalent to studying the orbits of a group action of Sx1

× Sx2
× · · · × Sxn

on
AFL(cw(x1, x2, . . . , xn)). In Theorem 3.2, we utilize a group action of Cm on
AFL(cw(k, . . . , k︸ ︷︷ ︸

m

, xm+1, . . . , xn)).

• Recurrence Relations. Specifically, we analyze a recurrence relation for D and A, which reduces si-
multaneously the alphabet size and the word length (see Theorem 4.1). While such a recurrence relation
does not yield an efficient algorithm for computing A(x1, x2, . . . , xn), it turns out to be extremely useful
for proving inequalities like Theorems 4.2, 4.4 and 4.5. The main insight is that it is relatively easy to
control and compare coefficients with which the values of D() for “smaller” words appear in Theorem 4.1.

• Alphabet Reductions. An alphabet reduction is part of our technique with recurrence relations. How-
ever, it appears more explicitly in Proposition 5.1. We show that under a specific reduction of the alphabet
size, properties such as hamiltonicity and connectivity are preserved. In the case of connectivity, this al-
lows us to only consider the setting of n ≤ 4 in order to determine when an anagraph is connected (see
Theorem 5.1).

3. Arithmetic Properties

We begin the section on arithmetic with two properties, which are simpler to prove than Main Result 1.1.
Nevertheless, both the statements and techniques used in them are useful later on.

3.1 The Case of Equinumerous Letters of Prime Order

Theorem 3.1. For any prime number p and positive integer n, the following congruence holds.

A(p, p, . . . , p︸ ︷︷ ︸
n

) ≡ A(1, 1, . . . , 1︸ ︷︷ ︸
n

) (mod p3).

Before we prove this theorem, we note that it is stronger than Theorem 1.6 when p = 2. Indeed, Theorem 1.6 only
gives the congruence modulo 2, but Theorem 3.1 gives it modulo 8 = 23. The case of p = 2 also illustrates that
the third power in Theorem 3.1 is optimal. When p = 2, n = 3, we have that A(2, 2, 2) = 10 and A(1, 1, 1) = 2
(see [8, p.141] for these values), so A(2, 2, 2) 6≡ A(1, 1, 1) (mod 24).
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Proof. Let χ = cw(p, p, . . . , p︸ ︷︷ ︸
n

). For any ω ∈ AFL(χ), where ω = χ1(ω)χ2(ω) · · ·χn(ω), call the subword χi(ω)

of ω a good subword if it contains at least 2 distinct letters. Clearly, any word ω has either 0 or at least 2 good
subwords. For each index i and letter j, denote by αi,j(ω) the number of letters j in χi(ω). Using the numbers
αi,j , we introduce the following equivalence relation over AFL(χ). For ω, λ ∈ AFL(χ) we have ω ∼ λ if and
only if αi,j(ω) = αi,j(λ) for all i, j.
Note that the number of good subwords is a well-defined function over the defined equivalence classes. This
allows us to analyze equivalence classes based on the number of good subwords they contain. We consider three
cases.

Case 1. Classes that contain 0 good subwords. Note that each of these equivalence classes contains a single
word of the form

σ(1)σ(1) . . . σ(1)︸ ︷︷ ︸
p

σ(2)σ(2) . . . σ(2)︸ ︷︷ ︸
p

. . . σ(n)σ(n) . . . σ(n)︸ ︷︷ ︸
p

,

where σ is a permutation of [n] for which σ(i) 6= i for all values of i. Trivially, the number of such permutations
is d(n) = A(1, 1, . . . , 1︸ ︷︷ ︸

n

).

Case 2. Classes that contain exactly 2 good subwords. We will explicitly count the number of words that
appear in such classes and show that it is always divisible by p3.
First, note that any word ω that has exactly two good subwords is of the following form. There exist two special
letters i and j and indices π(i), π(j) 6∈ {i, j} such that χπ(i)(ω) and χπ(j)(ω) are both composed only of letters i
and j. Any other χr(ω) is composed of a single letter, different from r, i, and j. Suppose that for k ∈ [n]\{i, j},
the subword containing (only) the letter k is indexed by π(k), i.e. χπ(k) = kk . . . k︸ ︷︷ ︸

n

. Say that in χπ(i)(ω) there

are 1 ≤ x ≤ p− 1 letters i and p− x letters j. Therefore, in χπ(j)(ω) there are p− x letters i and x letters j.

We are ready to begin the count.

• First, there are
(
n
2

)
ways to choose the pair (i, j).

• Then, there are A(2, 1, 1, . . . , 1︸ ︷︷ ︸
n−2

) ways to choose π(k) for k ∈ [n]. This is the case since we need to choose

them in such a way that π(i) 6∈ {i, j}, π(j) 6∈ {i, j}, and π(k) 6= k for k 6∈ {i, j} and any such choice
satisfies the conditions.

• There are
(
p
x

)
ways to arrange the letters i and j in χπ(i)(ω) and similarly for χπ(j)(ω).

Now, we simply sum over x and conclude that the number of words which have exactly two good subwords is

p−1∑
x=1

(
p

x

)2(
n

2

)
A(2, 1, 1, . . . , 1︸ ︷︷ ︸

n−2

).

We consider three cases based on p.
Case 2.1. When p > 3. Then,

p−1∑
x=1

(
p

x

)2

=

(
2p

p

)
− 2 ≡ 0 (mod p3),

where the congruence modulo p3 follows immediately from Wolstenholme’s theorem [23].

Case 2.2. When p = 3. Then, the above expression evaluates to 9n(n − 1)A(2, 1, 1, . . . , 1︸ ︷︷ ︸
n−2

). When n ≡ 0, 1

(mod 3), clearly the expression is divisible by 27. When n ≡ 2 (mod 3), we use the fact that A(2, 1, 1, . . . , 1︸ ︷︷ ︸
n−2

) =

1
2 (d(n) − 2d(n − 1) − d(n − 2)) ≡ 0 (mod 3) (see Observation 2.6). The congruence follows simply from
d(n) = (n− 1)(d(n− 1) + d(n− 2)) and d(0) = 1, d(1) = 0.

Case 2.3. When p = 2. Then, the above expression evaluates to 2n(n−1)A(2, 1, 1, . . . , 1︸ ︷︷ ︸
n−2

). One can easily check

from Observation 2.6 that A(2, 1, 1, . . . , 1︸ ︷︷ ︸
n−2

) is even, from which the statement follows as n(n− 1) is also divisible
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by 2.

Case 3. Classes that contain at least 3 good subwords. Note that the number of words in the equivalence class
of ω is exactly

n∏
i=1

(
p

αi,1(ω), αi,2(ω), . . . , αi,n(ω)

)
.

Furthermore, whenever χi(ω) is a good subword, the term

(
p

αi,1(ω), αi,2(ω), . . . , αi,n(ω)

)
is divisible by p since

all the terms αi,1(ω), αi,2(ω), . . . , αi,n(ω) are between 0 and p − 1 and p is a prime. Therefore, for any word
which has at least three good subwords, its equivalence class contains a number of words divisible by p3.

Remark 3.1. While the statement of Theorem 3.1 might seem rather odd, it fits into a much broader family of
results in elementary number theory of the form f(p) ≡ f(1) (mod pk). When
f(x) = nx for some integer n and k = 1, this is Fermat’s celebrated theorem. When f(x) =

(
2x
x

)
and k = 3,

this is Wolstenholme’s theorem [23].

3.2 The Case of an Equinumerous Prefix

We continue our discussion of the arithmetic of the number of anagrams without fixed letters with the following
theorem. Even though its proof is rather simple, the theorem has several interesting and perhaps surprising
corollaries.

Theorem 3.2. Let n ≥ m > 0, k > 0 and xm+1, xm+2, . . . , xn be non-negative integers. Then

A(k, k, . . . , k︸ ︷︷ ︸
m

, xm+1, xm+2, . . . , xn) ≡ A(k, k, . . . , k︸ ︷︷ ︸
m

)A(xm+1, xm+2, . . . , xn) (mod m).

We call this case the case of an equinumerous prefix as the n-tuple k, k, . . . , k︸ ︷︷ ︸
n

, xm+1, xm+2, . . . , xn has the

equinumerous prefix k, k, . . . , k︸ ︷︷ ︸
m

.

Proof. Consider the word χ = cw(k, k, . . . , k︸ ︷︷ ︸
m

, xm+1, xm+2, . . . , xn). Now, for i ∈ [m], define the functions hi as

follows. For any i and word λ over [n], the word hi(λ) is the same as λ except that each letter j ∈ [m] is replaced
with j + i if j + i ≤ m and with j + i −m if j + i > m. Whenever j 6∈ [m], the letter j remains unchanged.
In other words, we cyclically permute the letters in the set [m] with offset i modulo m and leave the letters in
[n]\[m] unchanged.

Now, one can easily check that if ω = χ1(ω)χ2(ω) · · ·χn(ω) is an anagram without fixed letters of χ, so is

fi(ω) := hi(χ1−i(ω))hi(χ2−i(ω)) · · ·hi(χm−i(ω))hi(χm+1(ω))hi(χm+2(ω)) · · ·hi(χn(ω))

for any i ∈ [m], where χt(ω) := χt+m(ω) whenever t ≤ 0. Now, we define the following equivalence rela-
tion over AFL(χ). For λ, ω ∈ AFL(χ), it is the case that λ ∼ ω if and only if there exists some i ∈ [m] such
that λ = fi(ω) (this is well defined, because if λ = fi(ω), then ω = fm−i(λ) when i 6= m and λ = ω when i = m).

Observe that if ω is such that its subword χm+1(ω) · · ·χn(ω) contains at least one letter i ∈ [m], the equivalence
class of ω under ∼ contains exactly m different words. As we are interested in the residue modulo m, it is
enough to count the anagrams without fixed letters of χ for which χm+1(ω) · · ·χn(ω) only contains letters
in [n]\[m]. For any such word ω, it must also be the case that χ1(ω) · · ·χm(ω) only contains letters in [m].
Therefore, the number of anagrams without fixed letters of χ that satisfy the desired property is exactly
A(k, k, . . . , k︸ ︷︷ ︸

m

)A(xm+1, xm+2, . . . , xn), which completes the proof.

Now, we list without proof a few corollaries of Theorem 3.2.

Corollary 3.1. Let k,m, and n be positive integers. Then:

A(k, k, . . . , k︸ ︷︷ ︸
m

, k, k, . . . , k︸ ︷︷ ︸
n

) ≡ A(k, k, . . . , k︸ ︷︷ ︸
m

)A(k, k, . . . , k︸ ︷︷ ︸
n

) (mod lcm(m,n)).
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Corollary 3.2. Let n and k be positive integers. If m = nt+ r for some non-negative t and r, then

A(k, k, . . . , k︸ ︷︷ ︸
m

) ≡ A(k, k, . . . , k︸ ︷︷ ︸
r

)(A(k, k, . . . , k︸ ︷︷ ︸
n

))t (mod n).

In particular, this means that whenever m ≡ 1 (mod n), one has n|A(k, k, . . . , k︸ ︷︷ ︸
m

).

Corollary 3.3. For two fixed positive integers n and k, define the sequence am := A(k, k, . . . , k︸ ︷︷ ︸
m

). Then (ai)
+∞
i=1

is eventually periodic modulo n.

3.3 Main Result on Arithmetic

We split the main result into the following theorems and propositions. Main Result 1.1 is a direct consequence
of Corollary 3.4.

Theorem 3.3. Let p be a prime and (x1, x2, . . . , xn) be an n-tuple composed of non-negative integers less than

pN+1. Let the base-p representation of xi be x
(N)
i x

(N−1)
i . . . x

(0)
i (p) for each i ∈ [n]. Then,

A(x1, x2, . . . , xn) ≡
N∏
j=0

A(x
(j)
1 , x

(j)
2 , . . . , x(j)n ) (mod p).

Proof. For the word χ = cw(x1, x2, . . . , xn), define the functions αi,j() over AFL(χ) and the equivalence relation
∼ in the same way as in the proof of Theorem 3.1. Further, for any αi,j(ω), denote its base-p representation by

αi,j(ω) = αi,j(ω)(N)αi,j(ω)(N−1) . . . αi,j(ω)(0)(p). Now, observe that for any ω ∈ AFL(χ), its equivalence class

[ω] has size
n∏
i=1

(
xi

αi,1(ω), αi,2(ω), · · · , αi,n(ω)

)
.

Using Dickson’s theorem about the residues of multinomial coefficients modulo prime numbers [5], we conclude
that the following congruence holds.

n∏
i=1

(
xi

αi,1(ω), αi,2(ω), . . . , αi,n(ω)

)
≡

n∏
i=1

N∏
s=0

(
x
(s)
i

αi,1(ω)(s), αi,2(ω)(s), . . . , αi,n(ω)(s)

)
(mod p).

Now observe that for each i ∈ [n], s ∈ {0, 1, . . . , N}, the following two statements hold

αi,1(ω)(s) + αi,2(ω)(s) + · · ·+ αi,n(ω)(s) ≡ x(s)i (mod p),

αi,1(ω)(s) + αi,2(ω)(s) + · · ·+ αi,n(ω)(s) ≥x(s)i ,
(2)

and the multinomial coefficient
( x

(s)
i

αi,1(ω)(s),αi,2(ω)(s),...,αi,n(ω)(s)

)
is non-zero if and only if

αi,1(ω)(s) + · · ·+ αi,n(ω)(s) = x
(s)
i . Having this in mind, define the set E(χ) of no-carry-on equivalence classes

under ∼ as the set of equivalence classes for which αi,1(ω)(s) + · · · + αi,n(ω)(s) = x
(s)
i holds for all i and s. It

follows that

A(x1, x2, . . . , xn) ≡
∑

[ω]∈E(χ)

n∏
i=1

N∏
s=0

(
x
(s)
i

αi,1(ω)(s), αi,2(ω)(s), . . . , αi,n(ω)(s)

)
(mod p).

Our next task will be to better characterize E(χ). In particular, if χ(s) := cw(x
(s)
1 , x

(s)
2 , . . . , x

(s)
n ) for all

s ∈ {0, 1, . . . , N}, we will show that E(χ) ∼= E(χ(0))× E(χ(1))× · · · × E(χ(N)).

In order to proceed, we need some further notation. We partition the set of positions within each χi into sets

with sizes equal to powers of p. More precisely, for all triplets 1 ≤ i ≤ n, 0 ≤ s ≤ N, 1 ≤ k ≤ x(s)i , we have that

T (χ, i, s, k) := {
i−1∑
u=1

xu +

s−1∑
v=0

pvx
(v)
i + (k − 1)ps + r : 1 ≤ r ≤ ps}.
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Note that whenever x
(s)
i is zero, the sets are not defined. We illustrate this definition to make it less abstract.

For p = 3, n = 2, x1 = 2, x2 = 7, and ρ = cw(2, 7), we have the following sets of positions:

cw(2, 7) = ρ = 1︸︷︷︸
T (ρ,1,0,1)

1︸︷︷︸
T (ρ,1,0,2)

2︸︷︷︸
T (ρ,2,0,1)

222︸︷︷︸
T (ρ,2,1,1)

222︸︷︷︸
T (ρ,2,1,2)

.

Now, observe that a class e of AFL(χ)/ ∼ is no-carry-on if and only if there exists some λ ∈ e such that for

all 1 ≤ i ≤ n, 0 ≤ s ≤ N, 1 ≤ k ≤ x(s)i , the subword λ|T (χ,i,s,k) contains only a single letter (repeated ps times).
Indeed, this follows directly from the definition of no-carry-on classes. For a no-carry-on class e ∈ E(χ), define
λ(e) to be alphabetically first word λ ∈ e satisfying this property. Denote by `e,i,s,k the letter at positions
λ(e)|T (χ,i,s,k).

Now, we construct injections in both ways between E(χ) and E(χ(0))× E(χ(1))× · · · × E(χ(N)).

First, we construct an injective mapping g : E(χ) −→ E(χ(0))×E(χ(1))× · · · ×E(χ(N)). Take some e ∈ E(χ).
For each 0 ≤ s ≤ N, denote by ξ(s)(e) the following word:

ξ(s)(e) = `e,1,s,1`e,1,s,2 · · · `e,1,s,x(s)
1
`e,2,s,1`e,2,s,2 · · · `e,2,s,x(s)

2
· · · `e,n,s,1`e,n,s,2 · · · `e,n,s,x(s)

n
.

Then, g(e) := ([ξ(0)], [ξ(1)], . . . , [ξ(N)]) is a well-defined injection.

Second, we construct an injective mapping h : E(χ(0))×E(χ(1))×· · ·×E(χ(N)) −→ E(χ). Take an (N+1)-tuple
(e(0), e(1), . . . , e(N)) ∈ E(χ(0))× E(χ(1))× · · · × E(χ(N)). Then, h(e(0), e(1), . . . , e(N)) is the word λ ∈ AFL(χ),
such that λ|T (χ,i,s,k) is composed of just ps times the letter λ(e(s))|T (χ(s),i,0,k). Again, clearly h is well-defined
and injective. Furthermore, we can check that g ◦ h and h ◦ g both equal the identity.

We make one further observation about h(). Note that for each i, j, s and e(s) ∈ E(χ(s)), the function

(e(0), e(1), . . . , e(N)) −→ αi,j(h(e(0), e(1), . . . , e(N)))(s)

depends only on e(s) and is invariant under changing the other N coordinates (e(t))t : t 6=s. Therefore, by abuse
of notation, we will write αi,j(e

(s))(s) instead of αi,j(h(e(0), e(1), . . . , e(N)))(s).
With this in mind, we can go back to computing A(x1, x2, . . . , xn) (mod p). Namely, we have

A(x1, x2, . . . , xn) ≡p∑
[ω]∈E(χ)

n∏
i=1

N∏
s=0

(
x
(s)
i

αi,1(ω)(s), αi,2(ω)(s), . . . , αi,n(ω)(s)

)
=

∑
e(0)∈E(χ(0)),e(1)∈E(χ(1)),...,e(N)∈E(χ(N))

N∏
s=0

n∏
i=1(

x
(s)
i

αi,1(h(e(0), . . . , e(N)))(s), αi,2(h(e(0), . . . , e(N)))(s), . . . , αi,n(h(e(0), . . . , e(N)))(s)

)
=

∑
e(0)∈E(χ(0)),e(1)∈E(χ(1)),...,e(N)∈E(χ(N))

N∏
s=0

n∏
i=1

(
x
(s)
i

αi,1(e(s))(s), αi,2(e(s))(s), . . . , αi,n(e(s))(s)

)
=

N∏
s=0

∑
e(s)∈E(χ(s))

n∏
i=1

(
x
(s)
i

αi,1(e(s))(s), αi,2(e(s))(s), . . . , αi,n(e(s))(s)

)
.

Now, using Eq. (2) for χ(s), we conclude that∑
e(s)∈E(χ(s))

n∏
i=1

(
x
(s)
i

αi,1(e(s))(s), αi,2(e(s))(s), . . . , αi,n(e(s))(s)

)
≡ A(x

(s)
1 , x

(s)
2 , · · · , x(s)n ) (mod p),

from which the statement follows.

Proposition 3.1. Let (t1, t2, . . . , tn) ∈ {0, . . . , p−1}n. Suppose that for each c ∈ {1, . . . , p−1}, there are exactly
uc numbers in (t1, t2, . . . , tn) equal to c. Suppose that rc ∈ {0, . . . , p− 1} is the residue of uc modulo p. Then,

A(t1, t2, . . . , tn) ≡ A(1, . . . , 1︸ ︷︷ ︸
r1

, 2, . . . , 2︸ ︷︷ ︸
r2

, . . . , p− 1, . . . , p− 1︸ ︷︷ ︸
rp−1

)

p−1∏
c=1

A(c, c, . . . , c︸ ︷︷ ︸
p

)uc−rc (mod p).
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Proof. We just repeatedly apply Theorem 3.2 for m = p.

Now, we are ready to present our algorithmic result.

Corollary 3.4. For a prime p and an n-tuple (x1, x2, . . . , xn) ∈ {0, 1, 2, . . . ,M}n, there exists an algorithm run-
ning in time O(exp(p3)+n×poly(logM,p)+p2 logM) which determines A(x1, x2, . . . , xn) (mod p). Furthermore,
in the equinumerous case x1 = x2 = · · · = xn = k, the running time reduces to
O(exp(p2) + n× poly(log k, p) + p2 log k).

Proof. Note that the input consists of p, n, x1, x2, . . . , xn. Thus, its size is O(log p + n logM). Our algorithm
runs as follows:

1. Compute the base-p representations for each xi.

2. Compute the numbers u
(j)
c and r

(j)
c defined in Proposition 3.1 for each j ∈ {0, 1, . . . , N} and n-tuple

(x
(j)
1 , x

(j)
2 , . . . , x

(j)
n ). Then, compute kc defined as follows. If

∑N
j=0(u

(j)
c −r(j)c ) = 0, then kc = 0. Otherwise,

kc is defined as the number in {1, 2, . . . , p− 1} having the same residue modulo p− 1 as
∑N
j=0(u

(j)
c − r(j)c ).

3. For each j ∈ {0, 1, 2, . . . , N} compute (if not already computed for a smaller j) and store the value of
A(1, . . . , 1︸ ︷︷ ︸

r
(j)
1

, 2, . . . , 2︸ ︷︷ ︸
r
(j)
2

, . . . , p− 1, . . . , p− 1︸ ︷︷ ︸
r
(j)
p−1

) (mod p) in a hash table.

4. Compute A(c, c, . . . , c︸ ︷︷ ︸
p

) (mod p) for all c ∈ [p− 1].

5. Compute and return the following residue modulo p :

N∏
j=0

A(1, . . . , 1︸ ︷︷ ︸
r
(j)
1

, 2, . . . , 2︸ ︷︷ ︸
r
(j)
2

, . . . , p− 1, . . . , p− 1︸ ︷︷ ︸
r
(j)
p−1

)×
p−1∏
c=1

A(c, c, . . . , c︸ ︷︷ ︸
p

)kc

We refer the reader to Example 3.1 for a concrete illustration of the algorithm. Using Theorem 3.3 and Propo-
sition 3.1 together with the well-known theorem due to Fermat stating that xp ≡ x (mod p) holds for all primes
p and integers x, we conclude that the algorithm is correct. Now, we only need to argue about its running time.

Step 1 can be clearly done in time n × poly(logM, log p). Now, note that each xi has N = O(logp logM) =

O( logM
log p ) digits in base p. Therefore, step 2 can be performed in time

Npn = O(n × poly(p, logM)). Step 3 can be performed in time O(exp(p3)) as follows. Using Eq. (1), the
complexity of finding A(1, . . . , 1︸ ︷︷ ︸

r
(j)
1

, 2, . . . , 2︸ ︷︷ ︸
r
(j)
2

, . . . , p− 1, . . . , p− 1︸ ︷︷ ︸
r
(j)
p−1

) (mod p) is asymptotically the same as finding the

residue modulo p of a 0/1 permanent of size
∑p−1
i=1 rii ≤

p3

2 . As proven in [3], this can be done in time O(exp p3

2 ).

Now, note that there are at most pp−1 = o(exp(p
3

2 )) choices for (r1, r2, . . . , rp−1) ∈ {0, 1, . . . , p − 1}p−1. Thus,

the number of new computations in Step 3 is o(exp(p
3

2 )), from which its total running time is O(exp(p3)). In

the equinumerous case, note that for each j ∈ {0, 1, . . . , N} at most one of the numbers r
(j)
c is non-zero and,

thus, the size of the permanent is bounded by p2

2 rather than p3

2 . Step 4 has the same analysis as step 3. In
step 5, we simply need to perform O(n + p log p) multiplications of residues modulo p, which can be done in
time n× poly(p).

Example 3.1. Consider the input n = 7, p = 5, x1 = x2 = x3 = x4 = 6, x5 = 8, x6 = 3, x7 = 1. Then, the
algorithm computes A(6, 6, 6, 6, 8, 3, 1) (mod 5) as follows:

1. Compute in base 5, x1 = x2 = x3 = x4 = 11(5), x5 = 13(5), x6 = 3(5), x7 = 1(5).

2. Compute u
(1)
1 = 5, r

(1)
1 = 0, u

(0)
1 = 5, r

(0)
1 = 0, u

(0)
3 = 2, r

(0)
3 = 2, and all other values of u

(j)
c , r

(j)
c equal 0.

Compute also k1 = 2 and all other values kc equal 0.

3. Compute A(0) = 1 ≡ 1 (mod 5) for j = 1 and A(3, 3) = 1 ≡ 1 (mod 5) for j = 0.

4. Compute A(1, 1, 1, 1, 1) = 44 ≡ 4 (mod 5) as well as A(2, 2, 2, 2, 2) (mod 5),A(3, 3, 3, 3, 3) (mod 5), and
A(4, 4, 4, 4, 4) (mod 5).

5. Return A(0)× A(3, 3)× A(1, 1, 1, 1, 1)2 ≡ 1 (mod 5).
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Remark 3.2. In particular, for p constant, A(x1, x2, . . . , xn) (mod p) can be computed in linearithmic time.
This shows that despite Eq. (1), the problem of computing the function A() is - perhaps - significantly easier
than computing the permanent of a general 0/1 matrix. It is well known that deciding whether the permanent
of a general 0/1 matrix is divisible by 3 takes exponential time under the exponential time hypothesis [4].
More generally, Corollary 3.4 shows that there exists a poly-time algorithm for computing A(x1, x2, . . . , xn)
(mod p) when p = O((log n+ log logM)1/3) in the general case and when p = O((log n+ log log k)1/2) in the
equinumerous case.

Remark 3.3. One of our main motivations for studying A(x1, x2, . . . , xn) (mod p) was that doing this com-
putation for sufficiently many primes and, then using Chinese Remainder Theorem, will allows us to find
A(x1, x2, . . . , xn) (mod K) for some large K. In the best case scenario, this K would be so large that know-
ing A(x1, x2, . . . , xn) (mod K) (and potentially an asymptotic result like Theorem 1.3) will allow us to efficiently
compute A(x1, x2, . . . , xn) (mod K). Nevertheless, a lot more work beyond primes of order
O((log n+ log logM)1/3) is needed in that direction. It is a well-known fact that

∏
q<x q = ex(1+ox(1)) where

the product is taken over primes less than x [18].

We end with restating the elegant characterization of the parity of A() in Theorem 1.6 which follows directly
from Theorem 3.3 and Proposition 3.1.

Corollary 3.5. Let x1, x2, . . . , xn be non-negative integers less than 2N+1 with binary representations xi =

x
(N)
i , x

(N−1)
i , . . . , x

(0)
i (2). Then, the number A(x1, x2, . . . , xn) is odd if and only if the sum

∑n
i=1 x

(j)
i is even for

all integers j ∈ {0, 1, 2 . . . , N}.

4. Ordinal Properties

4.1 Detour in a Recurrence Relation

Perhaps surprisingly, the main tool in the proofs in this section is a recurrence relation. We choose to work
with the function D() instead of A(), because, as we will see, the results we obtain for D() are actually stronger.
To state the recurrence relation, we first need the following definition.

Definition 4.1. Define f(x1, x2, `) for x1 ≥ x2 ≥ 0, ` ≥ 0 as follows.

f(x1, x2, `) :=
∑̀
`1=0

(
x1
`1

)(
x2
`1

)
(`1)!

(
x1

`− `1

)(
x2

`− `1

)
(`− `1)!.

Note that whenever ` > 2 min(x1, x2), it is the case that f(x1, x2, `) = 0.

Definition 4.1 is motivated by the following proposition.

Proposition 4.1. Let X1 with |X1| = x1 and X2 with |X2| = x2 be two disjoint sets. Then f(x1, x2, `) is the
number of ways to choose a subset L ⊆ X1 ∪X2 of size ` and construct an injective function σ : L→ X1 ∪X2

which satisfies the following condition. No element of X1 ∩L is mapped to an element in X1 and, similarly, no
element of X2 ∩ L is mapped to an element in X2.

Proof. For fixed sizes |X1∩L| = `1 and |X2∩L| = `−`1, we can choose X1∩L in
(
x1

`1

)
ways and σ(X1∩L) ⊆ X2

in
(
x2

`1

)
ways. For each choice, there are exactly `1! mappings from X1 ∩L to σ(X1 ∩L). We argue analogously

for X2 ∩ L and σ(X2 ∩ L) and sum over `1.

With the help of Proposition 4.1, we can prove the following recurrence relation, which will be the main
workhorse in the current section.

Theorem 4.1. For any n-tuple of non-negative integers (x1, x2, . . . xn), the following equality holds.

x1+x2∑
`=0

f(x1, x2, `)D(x1 + x2 − `, x3, . . . , xn) = D(x1, x2, . . . , xn).

Proof. Let X1, X2, . . . , Xn be n disjoint sets, where |Xi| = xi. We will count in two ways the number of bijec-
tions σ of X :=

⋃n
i=1Xi such that Xi ∩ σ(Xi) = ∅ for all i. By the definition of D(), this number is exactly

D(x1, x2, . . . , xn).

For any σ satisfying this property, denote S(σ) := (X1 ∪ X2) ∩ σ(X1 ∪ X2). Let |S(σ)| = `(σ). Now, we will
consider the following equivalence relation ∼σ over X1∪X2 defined by σ. For u, v ∈ X1∪X2, we say that u ∼σ v
if and only if one of the following two conditions is satisfied:
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1. There exists some k ∈ Z≥0 such that u = σk(v) and σj(v) ∈ X1 ∪X2 for all 0 ≤ j ≤ k.

2. There exists some k ∈ Z≥0 such that v = σk(u) and σj(u) ∈ X1 ∪X2 for all 0 ≤ j ≤ k.

We further distinguish good equivalence classes. An equivalence class E is called good if there exists some
element x ∈ E and number k ∈ N such that σk(x) 6∈ X1 ∪X2. It trivially holds that the number of good classes
is |X1 ∪X2| − |Sσ| = x1 +x2− `(σ). For each good class E, define by m(E) the unique element u ∈ E for which
σ−1(u) 6∈ X1 ∪X2 and by M(E) the unique element v ∈ E for which σ(v) 6∈ X1 ∪X2. Both m(E) and M(E)
are well-defined since E is a good equivalence class and σ is a bijection.

Now, consider the set X0(σ) of good equivalence classes defined by σ. We will construct from σ a bijection τ
of Y (σ) = X0(σ) ∪

⋃n
i=3Xi such that X0(σ) ∩ τ(X0(σ)) = ∅ and Xi ∩ τ(Xi) = ∅ for i ≥ 3. For u ∈ Y (σ), the

image τ(u) is constructed as follows:

• If u 6∈ X1 ∪X2 and σ(u) 6∈ X1 ∪X2, then τ(u) := σ(u).

• If u 6∈ X1 ∪ X2 and σ(u) ∈ X1 ∪ X2, then τ(u) := E(u), where E(u) is the unique good equivalence E
class for which σ(u) = m(E).

• If u ∈ X0(σ), then τ(u) := σ(M(u)).

Thus far, for every bijection σ we have constructed a corresponding bijection over Y (σ). We can similarly show
how to do the reverse. Namely, given a set X0 of size x1 +x2− ` and bijection τ of Y = X0∪

⋃n
i=3Xi, for which

τ(Xi)∩Xi = ∅ for all i, we can construct exactly f(x1, x2, `) bijections σ over X for which Xi∩σ(Xi) = ∅ holds
for all i. To do this, we simply need to construct σ over X1 ∪X2 such that |(X1 ∪X2) ∩ σ(X1 ∪X2)| = ` and
then revert the construction with good equivalence classes. By Proposition 4.1, this can be done in f(x1, x2, `)
ways. Summing over ` gives the result.

4.2 Schur-Concavity

The analysis for a fixed number of elements is nearly trivial once we have Theorem 4.1. To present it, we need
the following simple statement.

Proposition 4.2. If x1 ≥ x2 ≥ 1 and ` ∈ N, then f(x1, x2, `) ≥ f(x1 + 1, x2 − 1, `).

Proof. To prove the statement, we use the following inequality. Whenever x1 ≥ x2 ≥ 1, it holds that(
x1
`

)(
x2
`

)
≥
(
x1 + 1

`

)(
x2 − 1

`

)
.

This result follows from a simple calculation. In particular, the above inequality is equivalent to

x1 · · · (x1 − `+ 1)x2 · · · (x2 − `+ 1) ≥ (x1 + 1) · · · (x1 − l + 2)(x2 − 1) · · · (x2 − `)
⇐⇒ (x1 − `+ 1)x2 ≥ (x1 + 1)(x2 − `)
⇐⇒ `(x1 + 1) ≥ `x2,

which is trivial. Applying this inequality twice, we obtain(
x1
`1

)(
x2
`1

)
(`1)!

(
x1

`− `1

)(
x2

`− `1

)
(`− `1)!

≥
(
x1 + 1

`1

)(
x2 − 1

`1

)
(`1)!

(
x1 + 1

`− `1

)(
x2 − 1

`− `1

)
(`− `1)!

Summing over l finishes the proof.

An immediate corollary of Proposition 4.2 is the following statement.

Corollary 4.1. If x1 ≥ x2 ≥ 1, then

D(x1, x2, . . . , xn) ≥ D(x1 + 1, x2 − 1, x3, . . . xn).

Proof. Suppose that x1 ≥ x2 ≥ 1. Using Proposition 4.2 and Theorem 4.1, we deduce

D(x1, x2, . . . , xn) =

x1+x2∑
`=0

f(x1, x2, `)D(x1 + x2 − `, x3, . . . , xn)

≥
x1+x2∑
`=0

f(x1 + 1, x2 − 1, `)D((x1 + 1) + (x2 − 1)− `, x3, . . . , xn) = D(x1 + 1, x2 − 1, . . . , xn).
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By repeatedly applying Corollary 4.1 as in Observation 2.1, we deduce the main result of the current section
for D().

Theorem 4.2. Suppose that (x1, x2, . . . , xn) � (y1, y2, . . . , yn) in the sense of Definition 1.3. Then,

D(x1, x2, . . . , xn) ≥ D(y1, y2, . . . , yn).

Combining Theorem 4.2 and Observation 2.1, we also deduce the (weaker) corresponding statement for A().

Theorem 4.3. Suppose that (x1, x2, . . . , xn) � (y1, y2, . . . , yn) in the sense of Definition 1.3. Then,

A(x1, x2, . . . , xn) ≥ A(y1, y2, . . . , yn).

Dividing both sides of the inequality in Theorem 4.2 by (x1 + x2 + · · · + xn)!, we also obtain the following
statement.

Proposition 4.3. Suppose that (x1, x2, . . . , xn) � (y1, y2, . . . , yn) in the sense of Definition 1.3. Then,

A(x1, x2, . . . , xn)(
x1+x2+···+xn

x1,x2,...,xn

) ≥ A(y1, y2, . . . , yn)(
y1+y2+···+yn
y1,y2,...,yn

) .

The last two statements can be rephrased as follows. Words “lower” in the poset Px1+x2+···+xm
simultaneously

have more anagrams without fixed letters and have a larger fraction of anagrams that have no fixed letters.

4.3 Beyond Words of the Same Size

We again need statements of the form of Proposition 4.2. We defer their proofs to Appendix A due to their
simplicity.

Proposition 4.4. Suppose that x1 < x2. Then,

f(x1, x2, `) < f(x1 + 1, x2, `+ 1).

Proposition 4.5. Suppose that 2x1 < x2. Then,

(x1 + 1)f(x1, x2, `) < f(x1 + 1, x2, `+ 1).

These results are enough to establish the following two theorems.

Theorem 4.4. Suppose that xi < max(x1, x2, . . . , xn). Then,

D(x1, x2, . . . , xi−1, xi, xi+1, . . . , xn) ≤ D(x1, x2, . . . , xi−1, xi + 1, xi+1, . . . , xn).

Proof. Without loss of generality, let i = 1 and 2 ∈ arg max(x1, x2, . . . , xn) for notational simplicity. Then,
using Proposition 4.4 and Theorem 4.1 , we have

D(x1 + 1, x2, . . . , xn) =

x1+x2+1∑
`=0

f(x1 + 1, x2, `)D(x1 + 1 + x2 − `, . . . , xn)

≥
x1+x2∑
`=0

f(x1 + 1, x2, `+ 1)D(x1 + 1 + x2 − (`+ 1), . . . , xn)

≥
x1+x2∑
`=0

f(x1, x2, `)D(x1 + x2 − `, . . . , xn) = D(x1, x2, . . . , xn).

As already discussed, the condition xi < max(x1, x2, . . . , xn) is tight. Namely, in the case xi = max(x1, x2, . . . , xn)
such an inequality does not always hold. For example D(t, t) > 0 = D(t + 1, t) for t ≥ 1. Unfortunately, we
obtain a weaker result - which is likely, not tight - for the function A().

Theorem 4.5. Suppose that xi <
1
2 max(x1, x2, . . . , xn). Then,

A(x1, x2, . . . , xi−1, xi, xi+1, . . . , xn) ≤ A(x1, x2, . . . , xi−1, xi + 1, xi+1, . . . , xn).
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Proof. Again, without loss of generality, let i = 1 and 2 ∈ arg max(x1, x2, . . . , xn). Then, using Proposition 4.5
and Theorem 4.1 , we have

D(x1 + 1, x2, . . . , xn) =

x1+x2+1∑
`=0

f(x1 + 1, x2, `)D(x1 + 1 + x2 − `, . . . , xn)

≥
x1+x2∑
`=0

f(x1 + 1, x2, `+ 1)D(x1 + 1 + x2 − (`+ 1), . . . , xn)

≥
x1+x2∑
`=0

(x1 + 1)f(x1, x2, `)D(x1 + x2 − `, . . . , xn) = (x1 + 1)D(x1, x2, . . . , xn).

Dividing by (x1 + 1)!x2! · · ·xn! on both sides, we obtain the result.

We leave as an open question the task of improving the constant 1
2 . Our conjecture is that it can be improved

all the way up to 1.

5. The Anagraph

5.1 A Universal Reduction of the Alphabet Size

Our main tool in studying global properties of anagraphs will be a technique of simplifying the graph. We achieve
this via a reduction of the alphabet size. The reduction works by merging two letters. Specifically, for two distinct
letters i, j, and an n-tuple (x1, x2, . . . , xn), we create the (n − 1)-tuple
redi,j(x1, x2, . . . , xn) = (y1, y2, . . . , yn−1). The numbers in (y1, y2, . . . , yn−1) are (in some arbitrary order) xi+xj
and xs for s 6∈ {i, j}. Intuitively, this reduction makes the letters i and j indistinguishable and everything else
remains the same. The following property demonstrates the power of this reduction.

Proposition 5.1. For any n-tuple (x1, x2, . . . , xn) ∈ Zn≥0 and distinct letters i, j ∈ [n], if
AG(redi,j(x1, x2, . . . , xn)) satisfies one of the following five properties - 1) Connectivity, 2) Hamiltonicity, 3)
Hamilton-Connectivity, 4) Pancyclicity, and 5) Edge-Pancyclicity - then AG(x1, x2, . . . , xn) satisfies the same
property.

Proof. We will only prove here statement 1) for connectivity - which we will use in Theorem 5.1 - and statement
2) for hamiltonicity. The rest of the proofs are very similar and, for that reason, we defer them to Appendix B.

Without loss of generality, let i = n− 1, j = n. Thus, we will simply take

redn−1,n(x1, x2, . . . , xn) = (x1, x2, . . . , xn−2, xn−1 + xn).

We construct the following function g, which takes as input two words ω and λ, where ω is over [n− 1] and has
exactly xi letters i for all i ≤ n− 2 and xn−1 +xn letters n− 1, and λ is a word over {n− 1, n} and has exactly
xn−1 letters n − 1 and xn letters n. Then, g(ω, λ) is the word ω in which the letters n − 1 in ω are replaced
with the word λ such that their order is preserved. For example, for n = 4, ω = 1313323, λ = 3443, we have
g(1313323, 3443) = 1314423. Similarly, we define a “first-argument pseudo-inverse” of g, denoted by f. It takes
as input a word over [n] and replaces each letter n with n−1. For example, when n = 4, f(1314423) = 1313323.
More generally, f(g(ω, λ)) = ω for all choices of ω and λ. Define also a “second-argument pseudo inverse” s
such that s(g(ω, λ)) = λ.

Now, we are ready to present the proof.

1) Connectivity. Suppose that AG(x1, x2, . . . , xn−2, xn−1 + xn) is connected. We want to show that for any
two words χ1, χ2 ∈ V (AG(x1, x2, . . . , xn)), there is a path in AG(x1, x2, . . . , xn) connecting χ1 and χ2. Let
ω1 = f(χ1), ω2 = f(χ2), λ1 = s(χ1), and λ2 = s(χ2). Since AG(x1, x2, . . . , xn−2, xn−1 + xn) is connected, there
exists a path ω1 = ξ1, ξ2, . . . , ξk = ω2 between ω1 and ω2 in AG(x1, x2, . . . , xn−2, xn−1 + xn). One can easily
check that

χ1 = g(ξ1, λ1), g(ξ2, λ1), . . . , g(ξk−1, λ1), g(ξk, λ2) = χ2

is a path between χ1 and χ2 in AG(x1, x2, . . . , xn).
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2) Hamiltonicity. Suppose thatAG(x1, x2, . . . , xn−2, xn−1+xn) is hamiltonian and ω1, ω2, . . . , ωk is a Hamilton
cycle in the graph. Let λ1, λ2, . . . , λ` be all words (in some arbitrary, say alphabetical, order) over the alphabet
{n− 1, n} containing exactly xn−1 letters n− 1 and xn letters n. Then, clearly

g(ω1, λ1), g(ω2, λ1), . . . , g(ωk, λ1),

g(ω1, λ2), g(ω2, λ2), . . . , g(ωk, λ2),

...

g(ω1, λ`), g(ω2, λ`), . . . , g(ωk, λ`)

is a hamiltonian cycle in AG(x1, x2, . . . , xn−2, xn−1, xn).

Remark 5.1. The proof for connectivity also demonstrates the following fact. For any i, j, it is the case that

diam(AG(x1, x2, . . . , xn)) ≤ diam(AG(redi,j(x1, x2, . . . , xn))).

This property, in conjunction with the proof of Lemma 5.2 can be used to study the diameter of anagraphs.

Remark 5.2. When we revert the reduction, the five properties are not necessarily preserved. Consider the case
x1 = x2 = x3 = x4 = 1. Then, AG(x1, x2, x3, x4) is edge-pancyclic [13]. However,
AG(red3,4(x1, x2, x3, x4)) = AG(1, 1, 2) is not even connected (see Theorem 5.1).

5.2 Connectivity of the Anagraph

Proposition 5.1 allows us to fully determine when an anagraph is connected. Specifically, we have the following
claim.

Theorem 5.1. Let (x1, x2, . . . , xn) ∈ Nn. The anagraph AG(x1, x2, . . . , xn) is connected if and only if one of
the following conditions is satisfied:

1. n = 1.

2. n = 2 and x1 = x2 = 1.

3. n ≥ 3, the inequality xi <
1
2

∑n
j=1 xj holds for all indices i ∈ [n], and (x1, x2, . . . , xn) 6= (1, 1, 1).

Before proving this statement in full generality, we will prove two special cases that will be useful in the general
proof.

Lemma 5.1. For n ≥ 4 and any k ∈ N, the anagraph AG(k, k, . . . , k︸ ︷︷ ︸
n

) is connected.

Proof. Let χ = cw(k, k, . . . , k︸ ︷︷ ︸
n

). We will show that for any word ω in V (AG(k, k, . . . , k︸ ︷︷ ︸
n

)), there exists a path

from χ to ω in the anagraph. This will clearly be enough as anagraphs are vertex-transitive.

Write ω as χ1(ω)χ2(ω) · · ·χn(ω). We will first show the following fact. We can partition the set of positions
[kn] into k disjoint sets S1, S2, . . . , Sk which satisfy the following three properties

1. |Si| = n for all i.

2. ω|Si
contains n different letters for all i.

3. Each Si contains exactly one position from each interval [`k + 1, (`+ 1)k].

The proof of this fact follows from Hall’s marriage theorem. Consider a bipartite multigraph G with parts
L (stands for letters) and S (stands for subwords). The vertices of L are [n] and the vertices of S are
{χ1(ω), χ2(ω), · · · , χn(ω)}. We connect a subword χi(ω) to the letter j with multiplicity t if χi(ω) contains
exactly t letters j. Clearly, the resulting graph is k-regular. It is by now a folklore fact that the edges of G can
be decomposed into k perfect matchings - M1,M2, . . . ,Mk [11].
Now, arbitrarily match each edge e = (j, χi(ω)) of G to exactly one position p(e) in χi(ω) such that ω|{p(e)} = j
and each position is matched to exactly one edge. We are ready to form the sets S1, S2, . . . , Sk. We have

Si = {p(e) : e ∈Mi} for all i.

We go back to the original problem. Note that for all i, both χ|Si
and ω|Si

are permutations of λ = 123 . . . n.
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However, the derangement graph on n ≥ 4 vertices is vertex-pancyclic [13]. In particular, the derangement
graph is connected and every vertex appears in a cycle of length 3 and a cycle of length 4. As 3 and 4 are
coprime, this implies that there exists some sufficiently large natural number N(n) such that every two vertices
of the derangement graph are connected by a path of length exactly N(n).

Going back to the original problem, we can choose k paths in the derangement graph given by
σi,1, σi,2, . . . , σi,N(n) for 1 ≤ i ≤ k, each of length N(n), with the following property. For each i, it is the
case that σi,1 = χ|Si

and σi,N(n) = ω|Si
. Now, for all j ∈ {1, 2, . . . , N(n)}, define by ξj the word with kn letters

over alphabet [n], which satisfies that ξj |Si
= σj,i for all i ∈ [k]. Then, clearly,

χ = ξ1, ξ2, . . . , ξN(n) = ω

is a path in AG(k, k, . . . , k︸ ︷︷ ︸
n

) between χ and ω, which completes the proof.

Lemma 5.2. For n = 3 and any triplet (x1, x2, x3) of positive integers other than (1, 1, 1) that satisfies xi <
1
2 (x1 + x2 + x3) for all i ∈ {1, 2, 3}, the anagraph AG(x1, x2, x3) is connected.

Proof. Consider any word ω over {1, 2, 3} that has exactly xi letters i. We will show that for any two positions
u and v in ω, there is a path from ω to ω′, where ω′ is the same as ω, except that the letters ω|{u} and ω|{v}
are swapped.

Since the graph is vertex-transitive, we only need to show this for the canonical word χ = cw(x1, x2, x3).
Without loss of generality, we will show that there exists a path from χ to the word λ given by

λ = 2 11 . . . 1︸ ︷︷ ︸
x1−1

1 22 . . . 2︸ ︷︷ ︸
x2−1

33 . . . 3︸ ︷︷ ︸
x3

.

We distinguish two cases.

Case 1. If x3 = 1. Then, necessarily x1 = x2 = x > 1. It simply follows that the following path satisfies the
desired property.

χ = 11 . . . 1︸ ︷︷ ︸
x

22 . . . 2︸ ︷︷ ︸
x

3

3 2 . . . 2︸ ︷︷ ︸
x−1

11 . . . 1︸ ︷︷ ︸
x

2

2 1 . . . 1︸ ︷︷ ︸
x−1

2 . . . 2︸ ︷︷ ︸
x−1

31

1 2 . . . 2︸ ︷︷ ︸
x−1

3 1 . . . 1︸ ︷︷ ︸
x−1

2

λ = 2 1 . . . 1︸ ︷︷ ︸
x−1

1 2 . . . 2︸ ︷︷ ︸
x−1

3.

Case 2. If x3 > 1. Let u = min(x1, x3 − 1) > 0, and v = x3 − u > 0. Clearly, u + v = x3 < x1 + x2 and
v ≤ max(1, x3 − x1) ≤ x2. The following path satisfies the desired property.

χ = 11 . . . 1︸ ︷︷ ︸
x1

22 . . . 2︸ ︷︷ ︸
x2

33 . . . 3︸ ︷︷ ︸
x3

3 . . . 3︸ ︷︷ ︸
u

2 . . . 2︸ ︷︷ ︸
x1−u

3 . . . 3︸ ︷︷ ︸
v

1 . . . 1︸ ︷︷ ︸
x2−v

2 . . . 2︸ ︷︷ ︸
x2−x1+u

1 . . . 1︸ ︷︷ ︸
x1−x2+v

λ = 2 1 . . . 1︸ ︷︷ ︸
x1−1

1 2 . . . 2︸ ︷︷ ︸
x2−1

33 . . . 3︸ ︷︷ ︸
x3

.

Now, we are ready to handle the general case.

Proof of Theorem 5.1. We consider four cases based on n.

Case 1. n = 1. Then, the anagraph has a single vertex, no matter what x1 is.
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Case 2. n = 2. If x1 = x2 = 1, then the anagraph has only two vertices (1, 2) and (2, 1) and is, therefore,
connected. If x1 6= x2, then the anagraph is clearly disconnected as it has more than one vertex, but all of its
vertices are isolated (see Observation 2.2). If x1 = x2 = x > 1, consider the canonical word χ = 1 . . . 1︸ ︷︷ ︸

x

2 . . . 2︸ ︷︷ ︸
x

.

It is clearly only connected to ω = 2 . . . 2︸ ︷︷ ︸
x

1 . . . 1︸ ︷︷ ︸
x

, but ω also has no other neighbours than χ. In particular, χ is

in a different connected component from λ = 2 1 . . . 1︸ ︷︷ ︸
x−1

1 2 . . . 2︸ ︷︷ ︸
x−1

.

Case 3. First, we know that if xi <
1
2 (x1 + x2 + x3) holds for all i ∈ {1, 2, 3} and (x1, x2, x3) 6= (1, 1, 1), the

anagraph is connected by Lemma 5.2. Now, we need to show that no other anagraph, in this case, is connected.
First, AG(1, 1, 1) is not connected as it has two connected components - {123, 231, 312} and {132, 321, 213}.
Now, we need to show that if xi ≥ 1

2 (x1 +x2 +x3) holds for some i, the anagraph is also disconnected. Without
loss of generality, let this be the case for i = 1. If x1 >

1
2 (x1+x2+x3), then the anagraph has at least one vertex,

but all of its vertices are isolated by Observation 2.2, so the graph is disconnected. If x1 = 1
2 (x1 + x2 + x3),

consider the canonical word χ. It is clearly only connected to words whose last x1 letters equal 1. However, any
word whose last x1 letters equal 1 is only connected to words whose first x1 letters equal 1. In particular, this
means that for any word ω in the connected component of χ, either its first x1 letters or its last x1 letters are
all 1’s. Thus, the anagraph is disconnected in this case as well.

Case 4. n ≥ 4. First, if there exists some i such that xi ≥ 1
2

∑n
j=1 xj , the anagraph is disconnected. This

follows in the same way as in the case n = 3.
If, on the other hand, xi <

1
2

∑n
j=1 xj holds for all i, we need to show that the anagraph is connected. We do

so by repeatedly reducing the alphabet size as follows.

Let (y
(n)
1 , y

(n)
2 , . . . , y

(n)
n ) = (x1, x2, . . . , xn). While k > 4, find u, v such that y

(k)
u and y

(k)
v are the smallest two

(tiebreaks handled arbitrarily) numbers in (y
(k)
1 , y

(k)
2 , . . . , y

(k)
k ). Then, define

(y
(k−1)
1 , . . . , y

(k−1)
k−1 ) = redu,v(y

(k)
1 , y

(k)
2 , . . . , y

(k)
k ).

Note that in doing this operation, the sum
∑k
j=1 y

(k)
j remains unchanged. This shows that the condition

y
(k)
i < 1

2

∑k
j=1 y

(k)
j holds for all i and k ≥ 4. Indeed, the only number that appears in (y

(k)
1 , . . . , y

(k)
k ), but not

in (y
(k+1)
1 , y

(k+1)
2 , . . . , y

(k+1)
k+1 ), is y

(k+1)
u + y

(k+1)
u . As k ≥ 4, the choice of u, v, guarantees that y

(k+1)
u + y

(k+1)
v ≤

2
5

∑k
j=1 y

(k)
j < 1

2

∑k
j=1 y

(k)
j .

After performing this operation, we are left with four numbers y
(4)
1 , y

(4)
2 , y

(4)
3 , y

(4)
4 . Write them in decreasing

order as y1 ≥ y2 ≥ y3 ≥ y4. We know that y1 ≤ 1
2 (y1 + y2 + y3 + y4). We now consider two cases for these

numbers.

Case 4.1. If y1 = y2 = y3 = y4, then AG(y1, y2, y3, y4) is connected by Lemma 5.1. From Proposition 5.1, so
is AG(x1, x2, . . . , xn).

Case 4.2. If the four numbers are not equal, this means that y3 + y4 < y1 + y2. Therefore,
AG(y1, y2, y3 + y4) is connected by Lemma 5.2. From Proposition 5.1, so is AG(x1, x2, . . . , xn).

Remark 5.3. We end with a remark about a further global property of the anagraphs, beyond the ones listed
in Definition 1.2. Combining together our result for the parity of the degrees in an anagraph - Corollary 3.5 -
and our result for the connectivity of anagraphs - Theorem 5.1 - we derive a necessary and sufficient condition
for an anagraph to be Eulerian.

6. Further Directions

As the non-asymptotic study of anagrams without fixed letters is a rather new field, we end with a multitude
of directions for further work. Of course, we are most interested in fully resolving Problem 1.1, Problem 1.2,
and Problem 1.4. Here, we make a few remarks about these problems.

Arithmetic Questions: We are especially interested in improving the running-time of Corollary 3.4, so that
larger primes can also be handled efficiently. As discussed in Remark 3.3, this direction of study can be very
useful in computing A(). Similarly, one could think of extending the result to prime powers.

Ordinal Questions: Since our result about Schur-Concavity makes very substantial progress in the case of∑
i xi =

∑
j yj , we believe that the setting of equal sums is more tractable. Beyond that, we are interested in
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improving the constant 1
2 in Theorem 4.5. Namely, we make the following conjecture.

Conjecture 6.1. Suppose that xi < max(x1, x2, . . . , xn). Then,

A(x1, x2, . . . , xi−1, xi, xi+1, . . . , xn) ≤ A(x1, x2, . . . , xi−1, xi + 1, xi+1, . . . , xn).

Questions on Anagraphs: In light of the strong connection between hamiltonicity and vertex-transitivity [6],
we make the following conjecture.

Conjecture 6.2. All, but finitely many, connected anagraphs are hamiltonian.

We exclude finitely many anagraphs to avoid AG(1, 1) (which is a single edge) and the four known connected
vertex-transitive graphs which are not hamiltonian [13]. Note that if this conjecture is true, one potentially
only needs to prove it for anagraphs over alphabet of size four. This follows from Proposition 5.1 and the
method used in the proof of Theorem 5.1. We end with a brief remark which gives further evidence support-
ing Conjecture 6.2. Namely, we show that anagraphs have more structure than being simply vertex-transitive
by relating them to Cayley graphs, in parallel to the representation of derangement graphs as Cayley graphs [13].

Recall that a Cayley graph is defined by a group G and a set S ⊆ G such that 1 6∈ S and whenever g ∈ S holds
for some g ∈ G, it is also the case that g−1 ∈ S. Then, the Cayley graph Γ(G, S) has vertex set G and (g, h) is
an edge if and only if gh−1 ∈ S. One can easily show that DG(n) ∼= Γ(Sn, A), where Sn is the symmetric group
over n elements and A = {π ∈ Sn : π(i) 6= i ∀i ∈ [n]} [13].

To extend this construction to AG(x1, x2, . . . , xn) beyond x1 = x2 = · · · = xn = 1, take n disjoint sets
X1, X2, . . . , Xn, where |Xi| = xi. Intuitively, set Xi contains copies of the letter i. One should notice that the
elements of Xi are distinguishable, while the instances of letter i are not. We will deal with this later. Let
X =

⋃n
i=1Xi and S(X) be the group of bijections from X to itself. For now, let A = {π ∈ S(X) : π(Xi)∩Xi =

∅ ∀i ∈ [n]}. The Cayley graph Γ(S(X), A) almost corresponds to the desired anagraph except that different
instances of the same letter are distinguishable. Namely, suppose that we want to represent AG(2, 1, 1) via the
sets X1 = {1, 1′}, X2 = {2}, X3 = {3}. The graph Γ(S(X), A) is depicted in Fig. 4. For brevity, we denote the
Cayley graph Γ(S(X), A) now on by CA(x1, x2, . . . , xn).

Figure 4: The graph CA(2, 1, 1).

In order to obtain the desired AG(2, 1, 1) (see Fig. 2), we simply need to remove the redundancy resulting from
the fact that letters 1 and 1′ are distinguishable. This can be easily done via the quotient map ∼ over S(X)
defined by π ∼ ρ whenever πρ−1(Xi) = Xi holds for all i ∈ [n]. This quotient map can be naturally extended
to act on CA(x1, x2, . . . , xn). Namely, CA(x1, x2, . . . , xn)/ ∼ has vertex set S(X)/ ∼ and [π]∼ and [ρ]∼ are
adjacent in CA(x1, x2, . . . , xn)/ ∼ if and only if π and ρ are adjacent in CA(x1, x2, . . . , xn). This condition is
well-defined. Furthermore, one can trivially check the following fact.

Observation 6.1. For any n-tuple (x1, x2, . . . , xn), AG(x1, x2, . . . , xn) ∼= CA(x1, x2, . . . , xn)/ ∼ .

We end with the following simple observation. We omit its proof as it is nearly analogous to the proof of
Proposition 5.1.

Observation 6.2. If the anagraph AG(x1, x2, . . . , xn) is hamiltonian, so is the Cayley graph CA(x1, x2, . . . , xn).

The fact that Hamiltonicity of the anagraph is related to (even though stronger than) the Hamiltonicity of a
certain Cayley graph is further evidence supporting our Conjecture 6.2. While Hamiltoncity of connected Cayley
graphs in full generality has not been rigorously established yet, researchers have struggled to find connected
Cayley graphs that are not Hamiltonian over the past more than 50 years (see [12] for a survey on the topic).
We believe that resolving our conjecture might help to better understand this elusive connection in light of
Observation 6.2.
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[22] C. Wang, P. Miska, and I Mező, The r-derangement numbers, Discrete Math. 340 (2017), 1681–1692.

[23] J. Wolstenholme, On certain properties of prime numbers, Quart. J. Pure Appl. Math. 5 (1862), 35–39.

ECA 3:2 (2023) Article #S2R9 23



Kiril Bangachev

A. Omitted Proofs in Section 4.3

Proof of Proposition 4.4. We simply need to show that for any ` ≤ 2x1 and 0 ≤ `1 ≤ `, it is the case that(
x1 + 1

`1 + 1

)(
x2

`1 + 1

)
(`1 + 1)!

(
x1 + 1

`− `1

)(
x2

`− `1

)
(`− `1)!

≥
(
x1
`1

)(
x2
`1

)
(`1)!

(
x1

`− `1

)(
x2

`− `1

)
(`− `1)!

Clearly, we only need to consider the case when `1 ≤ x1 as otherwise both sides equal 0. In this case, we open
the parenthesis as follows

(x1 + 1) · · · (x1 − `1 + 1)x2 · · · (x2 − `1)(x1 + 1) · · · (x1 − (`− `1) + 2)x2 · · · (x2 − (`− `1) + 1)

≥ (`1 + 1)x1 · · · (x1 − `1 + 1)x2 · · · (x2 − `1 + 1)x1 · · · (x1 − (`− `1) + 1)x2 · · · (x2 − (`− `1) + 1)

⇐⇒ (x1 + 1)(x1 + 1)(x2 − `1) ≥ (`1 + 1)(x1 − (`− `1) + 1).

The last inequality holds since `1 ≤ `, `1 ≤ x1, `1 + 1 ≤ x2. Indeed, this implies that

(`1 + 1)(x1 − (`− `1) + 1) ≤ (x1 + 1)(x1 + 1) ≤ (x1 + 1)(x1 + 1)(x2 − `1).

Proof of Proposition 4.5. The proof is almost the same. We want to show that under the given conditions,(
x1 + 1

`1 + 1

)(
x2

`1 + 1

)
(`1 + 1)!

(
x1 + 1

`− `1

)(
x2

`− `1

)
(`− `1)!

≥ (x1 + 1)

(
x1
`1

)(
x2
`1

)
(`1)!

(
x1

`− `1

)(
x2

`− `1

)
(`− `1)!

When we open the brackets, this reduces to

(x1 + 1)(x2 − `1) ≥ (`1 + 1)(x1 − (`− `1) + 1).

The last inequality holds as x1 <
1
2x2, `1 ≤ `, and `1 ≤ x1. Indeed, this implies that

(x1 + 1)(x2 − `1) ≥ (x1 + 1)(2x1 + 1− x1) = (x1 + 1)(x1 + 1) ≥ (`1 + 1)(x1 − (`− `1) + 1).

B. Omitted Proofs in Section 5.1

Omitted Proofs in Proposition 5.1. 1) Hamilton-Connectivity. Suppose thatAG(x1, x2, . . . , xn−2, xn−1+xn)
is hamilton-connected. In particular, this means that it is hamiltonian since we can choose an edge (ω, ξ) ∈
E(AG(x1, x2, . . . , xn−2, xn−1 + xn)) and, together with the hamiltonian path connecting ω and ξ, this edge will
form a hamilton cycle.
We want to show that for any two words χ1, χ2 ∈ V (AG(x1, x2, . . . , xn)), there is a hamilton path in
AG(x1, x2, . . . , xn) connecting χ1 and χ2. Let ω1 = f(χ1), ω2 = f(χ2). SinceAG(x1, x2, . . . , xn−2, xn−1 +
xn) is hamilton connected, there exists a hamilton path ω1 = ξ1, ξ2, . . . , ξk = ω2 between ω1 and ω2 in
AG(x1, x2, . . . , xn−2, xn−1 + xn). Similarly, there exists a hamilton cycle ω1 = ζ1, ζ2, . . . , ζk in
AG(x1, x2, . . . , xn−2, xn−1 + xn). Let λ1, λ2, . . . , λ` be all words (the order will be determined later) over the
alphabet {n− 1, n} containing exactly xn−1 letters n− 1 and xn letters n. We now distinguish two cases.
Case 1) If s(χ1) 6= s(χ2). Without loss of generality, we can index λ1, λ2, . . . , λ` such that s(χ1) = λ1, s(χ2) =
λn. Then, the following is a hamilton path connecting the two vertices:

g(ζ1, λ1), g(ζ2, λ1), . . . , g(ζk, λ1),

g(ζ1, λ2), g(ζ2, λ2), . . . , g(ζk, λ2),

...

g(ζ1, λ`−1), g(ζ2, λ`−1), . . . , g(ζk, λ`−1),

g(ξ1, λ`), g(ξ2, λ`), . . . , g(ξk, λ`)
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Case 2) If s(χ1) = s(χ2). Without loss of generality, we can index λ1, λ2, . . . , λ` such that s(χ1) = λ1. Then,
the following is a hamilton path connecting the two vertices:

g(ζ1, λ1), g(ζ2, λ2), g(ζ3, λ2), . . . , g(ζk, λ2),

g(ζ1, λ2), g(ζ2, λ3), g(ζ3, λ3), . . . , g(ζk, λ3),

...

g(ζ1, λ`−1), g(ζ2, λ`), g(ζ3, λ`), . . . , g(ζk, λ`),

g(ξ1, λ`), g(ξ2, λ1), g(ξ3, λ1), . . . , g(ξk, λ1).

4) Pancyclicity. Suppose that AG(x1, x2, . . . , xn−2, xn−1 + xn) is pancyclic. In particular, this means that it
is hamiltonian. Furthermore, as the graph is vertex-transitive, it is also vertex-pancyclic, which means that for
any ω in its vertex set and number 3 ≤ k ≤ |V (AG(x1, x2, . . . , xn−2, xn−1 + xn))|, there exists a simple cycle of
length k containing the vertex ω.

We want to show that AG(x1, x2, . . . , xn−2, xn−1, xn) is also pancyclic. Take any k such that

3 ≤ k ≤
≤ |V (AG(x1, x2, . . . , xn))|

=

(
x1 + x2 + · · ·+ xn

x1, x2, . . . , xn−2, xn−1, xn

)
=

(
x1 + x2 + · · ·+ xn

x1, x2, . . . , xn−2, xn−1 + xn

)(
xn−1 + xn

xn

)
= |V (AG(x1, x2, . . . , xn−2, xn−1 + xn))|

(
xn−1 + xn

xn

)
.

We need to show that there exists a cycle in AG(x1, x2, . . . , xn) of size k. We assume that
k < |V (AG(x1, x2, . . . , xn))| as we have already shown that the reduction preserves hamiltonicity.
Denote s = |V (AG(x1, x2, . . . , xn−2, xn−1 +xn))|. Suppose that k = ms+r, where r is the residue upon division
by s and m <

(
xn−1+xn

xn

)
is the quotient. Since s ≥ 5 (one can trivially check that there does not exist a

pancyclic anagraph on less than 5 vertices with Theorem 5.1), we can clearly write k as a sum of t ∈ {m,m+ 1}
numbers s1, s2, . . . , st, such that 3 ≤ si ≤ s for all i ∈ [t]. Since t ≤

(
xn−1+xn

xn

)
, we can also choose t different

words λ1, λ2, . . . , λt, each composed of exactly xn−1 letters n− 1 and xn letters n. Furthermore, for each i ∈ [t],
there exists a cycle ξi,1, ξi,2, . . . , ξi,si such that ξi,si = ξi+1,1 when i < t also holds. This follows from the fact
that the reduced anagraph is vertex-pancyclic. Thus,

g(ξ1,1, λ1), g(ξ1,2, λ1), . . . , g(ξ1,s1 , λ1),

g(ξ2,1, λ2), g(ξ2,2, λ2), . . . , g(ξ2,s2 , λ2),

...

g(ξt,1, λt), g(ξt,2, λt), . . . , g(ξt,st , λt)

is a simple cycle of length k in AG(x1, x2, . . . , xn).

5) Edge-Pancyclicity. Edge pancyclicity follows in absolutely the same way as pancyclicity, except that
we choose the first cycle ξ1,1, ξ1,2, . . . , ξ1,s1 so that (ξ1,1, ξ1,2) corresponds to the desired edge (χ1, χ2) of
AG(x1, x2, . . . , xn) to be included. We distinguish two cases s(χ1) = s(χ2) and s(χ1) 6= s(χ2) and handle
them in absolutely the same way as for hamilton-connectivity.
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