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Abstract: Kamiya, Takemura, and Terao initiated the theory of the characteristic quasi-polynomial of an
integral arrangement, which is a function counting the elements in the complement of the arrangement modulo
positive integers.

They gave a period of the characteristic quasi-polynomial, called the LCM-period, and showed that the
first constituent of the characteristic quasi-polynomial coincides with the characteristic polynomial of the cor-
responding hyperplane arrangement.

Recently, Liu, Tran, and Yoshinaga showed that the last constituent of the characteristic quasi-polynomial
coincides with the characteristic polynomial of the corresponding toric arrangement.

In addition, by using the theory of toric arrangements, Higashitani, Tran, and Yoshinaga proved that the
LCM-period is the minimum period of the characteristic quasi-polynomial.

In this paper, we study an arrangements over a Dedekind domain such that every residue ring with a nonzero
ideal is finite and give algebraic generalizations of the above results.
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1. Introduction

For a positive integer `, let A = {c1, . . . , cn} ⊆ Z` be a finite subset consisting of nonzero integral column
vectors. Roughly speaking, an arrangement means a finite collection of subspaces of codimension 1 of a space.
We can define three kinds of arrangements from A as follows:

The first is the hyperplane arrangement A(R) = {H1, . . . ,Hn} in the vector space R` consisting of hyper-
planes

Hj :=
{
x = (x1, . . . , x`) ∈ R`

∣∣ xcj = 0
}

(j ∈ [n] := {1, . . . , n}).

The second is the q-reduced arrangement A(Z/qZ) = {H1,q, . . . ,Hn,q} in (Z/qZ)` for any positive integer q,
where

Hj,q :=
{

[x]q ∈ (Z/qZ)`
∣∣ xcj ≡ 0 (mod q)

}
(j ∈ [n])

and [x]q denotes the equivalence class of x.
The third is the toric arrangement A(C×) = {T1, . . . , Tn} in the algebraic torus (C×)`, where

Tj :=

{
(t1, . . . , tn) ∈ (C×)`

∣∣∣∣∣ ∏̀
i=1

t
cij
i = 1

}
(j ∈ [n])

and cij denotes the i-th coefficient of the column vector cj .
Combinatorics of A(R) and A(C×) is described as the posets of the intersections defined as follows:

L(A(R)) := {HJ | J ⊆ [n] } , L(A(C×)) := { Z | J ⊆ [n], Z is a connected component of TJ } ,
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where HJ :=
⋂
j∈J Hj and TJ :=

⋂
j∈J Tj , and the partial order defined by reverse inclusion for each poset.

Note that H∅ = R` and T∅ = (C×)` are the minimal elements.
Main concerns for study of arrangements are relations among combinatrics, algebra, and geometry of ar-

rangements. The characteristic polynomials of the posets play important rolls, which are defined by using the
Möbius functions on posets. Let P be a finite poset with unique minimal element 0̂. The Möbius function µ on
P is defined recursively by

µ(0̂) := 1 and µ(Z) := −
∑
Y <Z

µ(Y ) for Z 6= 0̂.

The characteristic polynomials χA(R)(t) and χA(C×) are defined by

χA(R)(t) :=
∑

Z∈L(A(R))

µ(Z)tdimZ , χA(C×)(t) :=
∑

Z∈L(A(C×))

µ(Z)tdimZ .

The complement of an arrangement is the complement of the union of the members of the arrangement
in the ambient space. Each connected component of the complement of A(R) is called a chamber. Zaslavsky
[18] proved that the numbers of chambers and bounded chambers coincide with |χA(R)(−1)| and |χA(R)(1)|.
Orlik and Solomon [11] proved that χA(R)(t) is equivalent to the Poincaré polynomial of the complement of
the complexification of A(R). Moci [10, Corollary 5.12] showed that χA(C×)(t) is equivalent to the Poincaré
polynomial of the complement of A(C×). These facts present a strong association between combinatorics and
the geometry of arrangements.

Athanasiadis [1, Theorem 2.2] provided a method to compute the characteristic polynomial of an inte-
gral arrangement by counting the points of the complement of A(Z/pZ) for large enough prime numbers p.
Athanasiadis [2, Theorem 2.1] also proved that the characteristic polynomial can be computed by counting the
points of the complement of A(Z/qZ) for large enough integers q relatively prime a constant which depends
only on A.

Kamiya, Takemura, and Terao developed Athanasiadis’ method by considering the complement of A(Z/qZ)
for all positive integers q as follows. For a nonempty subset J = {j1, . . . , jk} ⊆ [n], suppose that the matrix
CJ := (cj1 · · · cjk) has the Smith normal form

dJ,1 0 · · · 0 · · · · · · 0

0 dJ,2
...

...
...

. . . 0
0 · · · 0 dJ,r(J)

... 0

...
. . .

...
0 · · · · · · 0


,

where dJ,i is a positive integer such that dJ,i divides dJ,i+1. Define ρA ∈ Z>0 by

ρA := lcm
{
dJ,r(J)

∣∣ ∅ 6= J ⊆ [n]
}
.

Theorem 1.1 (Kamiya-Takemura-Terao [6, Theorem 2.4]). Let M(A(Z/qZ)) := (Z/qZ)` \
⋃
J⊆[n]HJ,q denote

the complement of A(Z/qZ). Then the function |M(A(Z/qZ))| is a monic integral quasi-polynomial in q ∈ Z>0

with a period ρA. Namely, there exist monic polynomials fkA(t) ∈ Z[t] (1 ≤ k ≤ ρA) such that fkA(q) =
|M(A(Z/qZ))| if q ≡ k (mod ρA). Furthermore, the quasi-polynomial has the GCD-property, that is, fkA(t) =

fk
′

A (t) when gcd(k, ρA) = gcd(k′, ρA).

Definition 1.1. We call the quasi-polynomial

χquasi
A (q) := |M(A(Z/qZ))|

the characteristic quasi-polynomial of A. The period ρA is called the LCM-period. The polynomial fkA(t) is said

to be the k-constituent of χquasi
A (q).

Interestingly enough, each constituent of the characteristic quasi-polynomial has a combinatorial interpre-
tation.

Theorem 1.2 (Kamiya-Takemura-Terao [6, Theorem 2.5]). The 1-constituent of the characteristic quasi-
polynomial of A is the characteristic polynomial of the hyperplane arrangement A(R). Namely, f1

A(t) = χA(R)(t).
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Theorem 1.3 (Liu–Tran–Yoshinaga [9, Corollary 5.6] ). The ρA-constituent of the characteristic quasi-poly-
nomial of A is the characteristic polynomial of the toric arrangement A(C×). Namely, fρAA (t) = χA(C×)(t).

Tran and Yoshinaga [15] gave combinatorial interpretation for the other constituents and unified Theorem
1.2 and Theorem 1.3. For a positive integer k, define

L(A(C×))[k] :=
{
Z ∈ L(A(C×))

∣∣ Z contains a k-torsion element
}
,

χkA(C×)(t) :=
∑

Z∈L(A(C×))[k]

µ(Z)tdimZ .

Note that χ1
A(C×)(t) = χA(R)(t) and χρAA(C×)(t) = χA(C×)(t).

Theorem 1.4 (Tran-Yoshinaga [15, Corollary 4.8]). Let 1 ≤ k ≤ ρA. Then fkA(t) = χkA(C×)(t).

For a decade, it was an open problem whether the LCM-period is minimum or not. Recently, using Theorem
1.4, Higashitani, Tran, and Yoshinaga gave an affirmative answer for central arrangements.

Theorem 1.5 (Higashitani-Tran-Yoshinaga [4, Theorem 1.2]). The LCM-period ρA is the minimum period of

the characteristic quasi-polynomial χquasi
A (q).

Remark 1.1. The characteristic quasi-polynomial and its LCM-period can be considered for non-central ar-
rangements [8]. Higashitani, Tran, and Yoshinaga [4] also studied non-central arrangements such that the
LCM-periods are not minimum.

The properties of the characteristic quasi-polynomial highly depend on ring-theoretic properties of Z. In
particular, the theory of Smith normal forms and their invariant factors are essential. It is a natural question
to ask what occurs if we replace the ring Z with another ring O. Let A be a finite subset of O` and we will
investigate the function |M(A(O/a))| in nonzero ideals of a. In order to do this, |M(A(O/a))| must be finite for
every a. Moreover, the theory of finitely generated modules of Dedekind domains is considered to be a direct
generalization of the theory of Smith normal forms.

For the reasons above, in this article, we will consider the function |M(A(O/a))| under the following con-
vention.

• O is a Dedekind domain, that is, an integral domain in which every nonzero proper ideal has a unique
factorization into prime ideals.

• O/a is a finite ring for every nonzero ideal a.

Such a ring O is called a residually finite Dedekind domain or a Dedekind domain with the finite norm property.
The ring Z is a typical example of a residually finite Dedekind domain. More generally, it is well known that
the ring of integers of an algebraic field is a residually finite Dedekind domain. The polynomial ring Fq[t] over
a finite field Fq and the ring of p-adic integers Zp are also examples of residually finite Dedekind domains.

The purpose of this paper is to give algebraic generalizations of Theorem 1.1, 1.2, 1.3, 1.4, and 1.5 for a
finite subset A = {c1, . . . , cn} of O`. Let K := FracO denote the fraction filed of O. We will consider the
following three kinds of arrangements:

The first is the hyperplane arrangement A(K) = {H1, . . . ,Hn}, where

Hj :=
{
x ∈ K`

∣∣ xcj = 0
}
.

The second is the a-reduced arrangement A(O/a) = {H1,a, . . . ,Hn,a} for every nonzero ideal a ⊆ O, where

Hj,a :=
{

[x]a ∈ (O/a)`
∣∣ xcj ≡ 0 (mod a)

}
and [x]a denotes the equivalent class of x.

The third is the torsion arrangement A(K/O) = {T1, . . . , Tn}, where

Tj :=
{
π(x) ∈ (K/O)`

∣∣ xcj ≡ 0 (mod O)
}

and π : K → K/O denotes the canonical projection. Note that Q = FracZ and if A ⊆ Z`, then A(R) and
A(C×) are combinatorially equivalent to A(Q) and A(Q/Z), respectively. The torsion arrangement A(K/O)
will work as a substitute of the toric arrangement.

Let I(O) be the set consisting of nonzero ideals of O. For every a ∈ I(O), define the complement M(A(O/a))
by

M(A(O/a)) := (O/a)
` \

n⋃
j=1

Hj,a.
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Definition 1.2. The function χquasi
A : I(O)→ Z determined by χquasi

A (a) := |M(A(O/a))| is called the charac-
teristic quasi-polynomial of A.

The organization of this article is as follows: In Section 2, we introduce and study an algebraic generaliza-
tion of a quasi-polynomial with GCD-property (Definition 2.1), which is a function on nonzero proper ideals
of O represented by using “periodically” finitely many polynomials, called constituents. A “period” of this
generalization is a nonzero ideal and every constituent corresponds with a factor of a period.

In Section 3, we will show that the characteristic quasi-polynomial χquasi
A is a quasi-polynomial in the sense

of the previous section with the LCM-period ρA (Theorem 3.1), which generalize Theorem 1.1. Moreover,

we will give a generalization of Theorem 1.2 which states that 〈1〉-constituent of χquasi
A (a) coincides with the

characteristic polynomial χA(K)(t) of the hyperplane arrangement A(K) (Theorem 3.2), where 〈1〉 = O stands
for the unit ideal.

In Section 4, we will study the torsion arrangement A(K/O) and the poset L(A(K/O)) defined by the
information of the intersections of A(K/O), called the poset of layers. We will introduce the κ-torsion subposet
L(A(K/O))[κ] and its characteristic polynomial χκA(K/O)(t) for each factor κ of the LCM-period ρA and prove

that χκA(K/O)(t) coincides with the κ-constituent of χquasi
A (Theorem 4.3). This result is a generalization of

Theorem 1.4 including Theorem 1.3.
In Section 5, with the similar technique as the proof of Theorem 1.5, we will prove that the LCM-period ρA

is the minimum period of χquasi
A (Theorem 5.1).

In Section 6, we will study the behavior of the characteristic quasi-polynomials and the posets of layers
under taking localization of the base rings.

In Section 7, we will discuss general properties of the characteristic quasi-polynomials, which are generaliza-
tions of results in [8] and are very useful for computing.

Kamiya, Takemura, and Terao [8] studied the characteristic quasi-polynomial of the irreducible crystallo-
graphic root systems. Thanks to the results in this article, we can consider the characteristic quasi-polynomials
of non-crystallographic root systems. In Section 8, we will give the characteristic quasi-polynomials explicitly
for non-crystallographic root systems of types H2, H3, and H4.

2. Quasi-polynomials on the set of nonzero ideals

Let O be a residually finite Dedekind domain. Let I(O) denote the set consisting of nonzero ideals of O and
N(a) the absolute norm of a ∈ I(O), that is, the cardinality of the quotient ring O/a.

Note that every ideal in I(O) factors into a product of prime ideals uniquely. We write a | b if a is a factor of
b, or equivalently a ⊇ b. The sum a+b coincides with the greatest common divisor gcd(a, b) and the intersection
a ∩ b coincides the least common multiple lcm(a, b).

Definition 2.1. A function φ : I(O)→ Z is called a quasi-polynomial on I(O) if there exists an ideal ρ ∈ I(O)
and polynomials fκ(t) ∈ Z[t] for each κ | ρ such that for any a ∈ I(O) with a + ρ = κ,

φ (a) = fκ (N(a)) .

The ideal ρ is called a period and the polynomial fκ(t) is called the κ-constituent of the quasi-polynomial φ
associated with ρ. A period that divides every period is called the minimum period of the quasi-polynomial φ.

Remark 2.1. A quasi-polynomial on I(Z) is a quasi-polynomial with the GCD-property. Our generalization
of quasi-polynomial does not contain quasi-polynomials without the GCD-property.

For any nonzero prime ideal p ∈ I(O), we define ordp : I(O)→ Z≥0 by ordp(a) := max { a ∈ Z≥0 | pa | a }.

Proposition 2.1. Let φ be a quasi-polynomial on I(O). The following statements hold:

(i) For any periods ρ1 and ρ2 of φ, the sum ρ1 + ρ2 is a period of φ.

(ii) The minimum period of φ always exists.

Proof. (i) For i ∈ {1, 2}, let fκi (t) ∈ Z[t] denote the κ-constituent of φ associated with the period ρi for κ | ρi.
Let ρ := ρ1 + ρ2 and fix a divisor κ of ρ. It is sufficient to show that there exists a polynomial fκ(t) ∈ Z[t] such
that a + ρ = κ implies φ(a) = fκ(N(a)).

First suppose that ordp(κ) < ordp(ρ) for any nonzero prime ideal p of O. Note that this happens only when
the number of prime ideals of O is finite. If a + ρ = κ, then ordp(a) = ordp(κ) for all nonzero prime ideals p
in O and hence a = κ. Since a + ρ1 = κ + ρ1 = κ + ρ = κ, we have φ(a) = fκ1 (N(a)). Thus the polynomial
fκ(t) := fκ1 (t) has the desired property.

ECA 4:1 (2024) Article #S2R1 4
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Now, we consider the case there exists a nonzero prime ideal p of O such that ordp(κ) = ordp(ρ). Without
loss of generality, we can assume that ordp(ρ1) ≤ ordp(ρ2). Suppose that κ′ is an ideal such that κ | κ′ and
κ′ | ρ1. Note that ordp(κ) = ordp(κ′) = ordp(ρ1).

Put ν := ordp(ρ2)−ordp(ρ1) ≥ 0. Then for any integer m ≥ ν, we have pmκ′+ρ1 = κ′ and pmκ+ρ2 = pνκ.

Therefore fκ
′

1 (N(pmκ)) = φ(pmκ) = fp
νκ

2 (N(pmκ)) for any m ≥ ν. Thus fκ
′

1 (t) = fp
νκ

2 (t). In particular,

fκ
′

1 (t) = fκ1 (t) for any ideal κ′ such that κ | κ′ and κ′ | ρ1.
Suppose that a+ρ = κ. Then κ′ := a+ρ1 satisfies κ | κ′ and κ′ | ρ1. Therefore φ(a) = fκ

′

1 (N(a)) = fκ1 (N(a)).
Hence fκ(t) := fκ1 (t) satisfies the desired condition.

(ii) Let ρ0 be the greatest common divisor of all periods of φ. It suffices to show that ρ0 is a period of φ.
Let p1, . . . , ps be the prime factors of ρ0. Then there exists a period ρi of φ such that ordpi(ρi) = ordpi(ρ0) for
each i ∈ {1, . . . , s}. Since

ρ0 =

s∏
i=1

p
ordpi

(ρ0)

i = ρ1 + · · ·+ ρs.

we can conclude that ρ0 is a period of φ by (i).

Proposition 2.2. Suppose that φ1 and φ2 are quasi-polynomials on I(O) with period ρ1 and ρ2, respectively.
Then the function (φ1 + φ2)(a) := φ1(a) + φ2(a) is a quasi-polynomial of I(O) with period lcm(ρ1, ρ2).

Proof. For i ∈ {1, 2}, let fκi (t) ∈ Z[t] denote the κ-constituent of φi associated with the period ρi. For any
divisor κ of lcm(ρ1, ρ2), define fκ(t) ∈ Z[t] by fκ(t) := fκ+ρ1

1 (t) + fκ+ρ2
2 (t). Assume that a + lcm(ρ1, ρ2) = κ.

Then a + ρi = κ+ ρi for each i ∈ {1, 2}. Therefore fκ(N(a)) = fκ+ρ1
1 (N(a)) + fκ+ρ2

2 (N(a)) = φ1(a) + φ2(a) =
(φ1 + φ2)(a).

3. The characteristic quasi-polynomial of A
Let A = {c1, . . . , cn} ⊆ O` and a ∈ I(O). Recall that the a-reduced arrangement A(O/a) := {Hj,a | j ∈ [n] }
consists of hyperplanes

Hj,a :=
{

[x]a ∈ (O/a)
`
∣∣∣ xcj ≡ 0 (mod a)

}
.

Let M(A(O/a)) denote the complement of A(O/a). Namely

M(A(O/a)) := (O/a)
` \

n⋃
j=1

Hj,a.

The main purpose of this section is to prove that the characteristic quasi-polynomial χquasi
A (a) = |M(A(O/a))|

is a quasi-polynomial discussed in Section 2. The proof will proceed in a similar way with the proof of Theorem
1.1. However, since in general O is not a principal ideal domain, we cannot use the Smith normal forms and we
will use the structure theorem of finitely generated modules over a Dedekind domain instead of them.

For a nonempty subset J = {j1, . . . , jk} ⊆ [n], we define

HJ,a :=
⋂
j∈J

Hj,a = Hj1,a ∩ · · · ∩Hjk,a.

By the inclusion-exclusion principle,

χquasi
A (a) = |M(A(O/a))| =

∣∣∣(O/a)
`
∣∣∣−
∣∣∣∣∣∣
n⋃
j=1

Hj,a

∣∣∣∣∣∣ = N(a)` −
n∑
k=1

(−1)k−1
∑
J⊆[n]
|J|=k

∣∣∣∣∣∣
⋂
j∈J

Hj,a

∣∣∣∣∣∣
= N(a)` +

∑
∅6=J⊆[n]

(−1)|J| |HJ,a| .

In order to prove that χquasi
A (a) is a quasi-polynomial, it is sufficient to show that the cardinality |HJ,a| is a

quasi-polynomial for each J by Proposition 2.2.
Let CJ := (cj1 , . . . cjk) ∈ Mat`×k(O). We define an O-homomorphism φJ : O` → O|J| by φJ(x) := xCJ . It

induces an O-homomorphism φJ,a : (O/a)
` → (O/a)

|J|
defined by φJ,a([x]a) := [φJ(x)]a. Note that |HJ,a| =

|kerφJ,a|.
Since cokerφJ = Ok/ ImφJ is a finitely generated O-module, by the structure theorem for finitely generated

modules over a Dedekind domain (See for example [3, Theorem 5.1]), we obtain the following key lemma.

ECA 4:1 (2024) Article #S2R1 5
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Lemma 3.1. There exist nonzero ideals dJ , dJ,1, dJ,2, . . . , dJ,r(J) such that

cokerφJ '
r(J)⊕
i=1

O/dJ,i ⊕ dJ ⊕O|J|−r(J)−1 (dJ,i | dJ,i+1, for 1 ≤ i ≤ r(J)− 1),

where r(J) := rank(ImφJ) and if r(J) = |J |, then we regard dJ ⊕O|J|−r(J)−1 as {0}.

Lemma 3.2 (See also [6, Lemma 2.1]).

|HJ,a| = |kerφJ,a| =

r(J)∏
i=1

N(a + dJ,i)

N(a)`−r(J).

Moreover, |HJ,a| is a quasi-monomial with GCD-property of degree `− r(J) and its minimum period is dJ,r(J).

Proof. Since (O/a)
`
/ kerφJ,a ' ImφJ,a and cokerφJ,a = (O/a)

k
/ ImφJ,a, we have |ImφJ,a| = N(a)`/ |kerφJ,a|

and |cokerφJ,a| = N(a)k/ |ImφJ,a|. Hence we obtain

|kerφJ,a| =
N(a)`

|ImφJ,a|
=
N(a)` |cokerφJ,a|

N(a)k
= N(a)`−k |cokerφJ,a| .

Consider the exact sequence

O` φJ−→ Ok −→ cokerφJ −→ 0.

Since tensoring with O/a is a right exact functor, we obtain the exact sequence

O` ⊗O O/a
φJ⊗id−→ Ok ⊗O O/a −→ (cokerφJ)⊗O O/a −→ 0.

Also, we have the following commutative diagram of O-modules, where the vertical arrows show isomor-
phisms:

O` ⊗O O/a Ok ⊗O O/a

(O/a)
`

(O/a)
k

φJ⊗id

φJ,a

Then we obtain

cokerφJ,a ' (cokerφJ)⊗O O/a

'
r(J)⊕
i=1

(O/dJ,i ⊗O O/a)⊕ (dJ ⊗O O/a)⊕
(
Ok−r(J)−1 ⊗O O/a

)

'
r(J)⊕
i=1

O/ (a + dJ,i)⊕ dJ/adJ ⊕ (O/a)
k−r(J)−1

.

Since O is a Dedekind domain, dJ/adJ ' O/a. Hence

cokerφJ,a '
r(J)⊕
i=1

O/ (a + dJ,i)⊕ (O/a)
k−r(J)

.

Therefore we obtain

|HJ,a| = |kerφJ,a| = N(a)`−k |cokerφJ,a| = N(a)`−k ·

r(J)∏
i=1

N (a + dJ,i)

 ·N(a)k−r(J)

=

r(J)∏
i=1

N (a + dJ,i)

N(a)`−r(J).

ECA 4:1 (2024) Article #S2R1 6
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Next, we will show that |HJ,a| is a quasi-monomial with period dJ,r(J). For each κ | dJ,r(J), define the
monomial fκ(t) ∈ Z[t] by

fκ(t) :=

r(J)∏
i=1

N (κ+ dJ,i)

 t`−r(J).

Suppose that a + dJ,r(J) = κ. Then a + dJ,i = κ + dJ,i for each i ∈ {1, . . . , r(J)} since dJ,i | dJ,r(J). Hence
fκ(N(a)) = |HJ,a|.

Finally, we will show that dJ,r(J) is the minimum period of |HJ,a|. Let ρ0 be the minimum period. For any
κ | ρ0 there exists gκ(t) ∈ Z[t] such that a + ρ0 = κ implies gκ(N(a)) = |HJ,a|. Suppose that a is a multiple of
dJ,r(J). Then a + dJ,r(J) = dJ,r(J) and a + ρ0 = ρ0. Therefore fdJ,r(J)(N(a)) = |HJ,a| = gρ0(N(a)). Since there
are infinitely many such ideals a, we have fdJ,r(J)(t) = gρ0(t). Hence

fdJ,r(J)(N(ρ0)) = gρ0(N(ρ0)) = |HJ,ρ0 | = fρ0(N(ρ0)).

Therefore

r(J)∏
i=1

N(dJ,i) =

r(J)∏
i=1

N(dJ,r(J) + dJ,i) =

r(J)∏
i=1

N(ρ0 + dJ,i).

Since N(dJ,i) ≥ N(dJ,i+ρ0) for each i ∈ {1, . . . , r(J)}, we have N(dJ,i) = N(dJ,i+ρ0) for every i ∈ {1, . . . , r(J)}.
In particular N(dJ,r(J)) = N(dJ,r(J) + ρ0) = N(ρ0). Since ρ0 | dJ,r(J), we have ρ0 = dJ,r(J).

From the discussion so far, we have

χquasi
A (a) = N(a)` +

∑
∅ 6=J⊆[n]

(−1)|J| |HJ,a|

= N(a)` +
∑

∅ 6=J⊆[n]

(−1)|J|

r(J)∏
i=1

N (a + dJ,i)

N(a)`−r(J).

Since dJ,r(J) is a period of |HJ,a|,

ρA := lcm
{
dJ,r(J)

∣∣ ∅ 6= J ⊆ [n]
}

is a period of χquasi
A (a) by Proposition 2.2. We call ρA the LCM-period. In summary, we obtain the following

results:

Theorem 3.1 (Generalization of Theorem 1.1). The characteristic quasi-polynomial χquasi
A (a) is a monic quasi-

polynomial on I(O) of degree ` with period ρA and for each κ | ρA the κ-constituent is given by

fκA(t) =
∑
J⊆[n]

(−1)|J|m(J, κ)t`−r(J),

where we put m(J, a) := |tors(coker(φJ,a))| =
∏r(J)
i=1 N (a + dJ,i) for nonempty J ⊆ [n] and a ∈ I(O). When

J = ∅, we define r(∅) := 0 and m(∅, κ) := 1.

Remark 3.1. The LCM-period ρA is actually the minimum period of χquasi
A (See Theorem 5.1).

Theorem 3.2 (Generalization of Theorem 1.2). The 〈1〉-constituent of the characteristic quasi-polynomial of A
coincides with the characteristic polynomial of the hyperplane arrangement A(K), that is, f

〈1〉
A (t) = χA(K)(t).

Proof. By Theorem 3.1,

f
〈1〉
A (t) =

∑
J⊆[n]

(−1)|J|t`−r(J).

Using Whitney’s theorem (See for example [12, Theorem 2.4]), we obtain χA(K)(t) = f
〈1〉
A (t).

Example 3.1. Let O = Z[
√
−1] and A =

{(
1
1

)
,

(
1
−1

)
,

(
1√
−1

)
,

(
1

−
√
−1

)}
. Since O is a principal ideal

domain, we can determine the LCM-period by computing Smith normal forms. The LCM-period is 〈2〉 = p2,

where p = 〈1 +
√
−1〉. The constituents of χquasi

A are given by

f
〈1〉
A = t2 − 4t+ 3, fpA = t2 − 4t+ 6, f

〈2〉
A = t2 − 4t+ 10.
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Example 3.2. Let K be a quadratic field Q(
√
−5). Then its ring of integers is O = Z[

√
−5]. Note that O

is not a principal ideal domain. For example, prime ideals p := 〈2, 1 −
√
−5〉 and q := 〈3, 1 +

√
−5〉 are not

principal.
Let

A := {c1, c2}, where c1 :=

(
2

1−
√
−5

)
, c2 :=

(
1 +
√
−5

3

)
.

Then we have

Imφ{1} = p, Imφ{2} = q, Imφ{1,2} =
〈
(2, 1 +

√
−5), (1−

√
−5, 3)

〉
.

Define a map g : O2 → O by g(a, b) := (1 +
√
−5)a− 2b. Then it holds that ker g = Imφ{1,2} and Im g = p.

We will give a proof only for ker g ⊆ Imφ{1,2} since the rest is clear. Taking (a, b) ∈ ker g, we have 2b =

(1 +
√
−5)a ∈ 〈1 +

√
−5〉 = pq ⊆ q. Since 2 6∈ q, we have b ∈ q. Therefore there exist c, d ∈ O such that

b = 3c + (1 +
√
−5)d. Then (1 +

√
−5)a = 2b = 6c + 2(1 +

√
−5)d and hence a = (1 −

√
−5)c + 2d. Hence

(a, b) = ((1−
√
−5c+2d, 3c+(1+

√
−5)d)) = (1−

√
−5, 3)c+(2, 1+

√
−5)d ∈ Imφ{1,2}. Thus, Imφ{1,2} ⊇ ker g.

We obtain

cokerφ{1} = O/p, cokerφ{2} = O/q, cokerφ{1,2} = Im g = p.

Therefore ρA = lcm{p, q} = pq = 〈1 +
√
−5〉 and the constituents of χquasi

A are given by

f
〈1〉
A (t) = t2 − t, fpA(t) = t2 − 2t, fqA(t) = t2 − 3t, fpqA (t) = t2 − 4t.

Moreover, the hyperplanes H1 =
{
x ∈ K2

∣∣ xc1 = 0
}

and H2 =
{
x ∈ K2

∣∣ xc2 = 0
}

are equal since (1 +
√
−5)c1 = 2c2. Therefore A(K) = {H1} and we obtain χA(K)(t) = t2 − t = f

〈1〉
A (t) directly.

4. The torsion arrangement and its poset of layers

Recall that the hyperplane arrangement A(K) is defined by A(K) = {H1, . . . ,Hn}, where

Hj =
{
x ∈ K`

∣∣ xcj = 0
}

and the torsion arrangement A(K/O) is defined by A(K/O) = { T1, . . . , Tn }, where

Tj =
{
π(x) ∈ (K/O)`

∣∣ xcj ≡ 0 (mod O)
}

and π : K` → (K/O)` denotes the natural projection.
For each ∅ 6= J ⊆ [n], let HJ :=

⋂
j∈J Hj and TJ :=

⋂
j∈J Tj . Moreover, let H∅ := K` and T∅ := (K/O)`.

Note that for each ∅ 6= J ⊆ [n],

π(HJ) =
{
π(x) ∈ (K/O)`

∣∣ xCJ = 0
}
, TJ =

{
π(x) ∈ (K/O)`

∣∣∣ xCJ ∈ O|J| }
and π(HJ) is an O-submodule of TJ .

The intersection poset of A(K) is defined by

L(A(K)) :=
{
HJ ⊆ K`

∣∣ J ⊆ [n]
}

equipped with the order defined by the reverse inclusion. It is well known that L(A) is a finite geometric lattice.
To construct the intersection poset for toric arrangements, one uses connected components of the intersec-

tions of tori. However, the field K may not have reasonable topology to define connected components of the
intersection TJ . To define the poset for the torsion arrangement A(K/O), we use the quotient module TJ/π(HJ)
(See also [15, The paragraph before Lemma 4.5]).

Definition 4.1. Define the poset of layers L(A(K/O)) by

L(A(K/O)) :=
{
Z ⊆ (K/O)

`
∣∣∣ J ⊆ [n], Z ∈ TJ/π(HJ)

}
= { π(x) + π(HJ) | J ⊆ [n],x ∈ TJ } .

equipped with the order defined by the reverse inclusion. The poset L(A(K/O)) has a unique minimal element
T∅ = (K/O)`. We call an element of L(A(K/O)) a layer.

Remark 4.1. Every TJ can be represented as the disjoint union of layers: TJ =
⊔
Z∈TJ/π(HJ ) Z. Thus a layer

behaves like a “connected component” of the intersection TJ . For each J , π(HJ) is a unique component of TJ
containing the unit element π(0).
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4.1 Finiteness of the poset of layers

Lemma 4.1. For each ∅ 6= J ⊆ [n],

TJ/π(HJ) ' tors (cokerφJ) '
r(J)⊕
i=1

O/dJ,i.

as O-modules, where φJ : O` → O|J| is defined by φJ(x) = xCJ and dJ,1, . . . , dJ,r(J) are the ideals determined
in Lemma 3.1.

Proof. The latter isomorphism follows by Lemma 3.1. We verify the former isomorphism.
Define an O-homomorphism fJ : TJ/π(HJ) → tors(cokerφJ) by fJ(x + π(HJ)) := xCJ + ImφJ . Note

that when x ∈ TJ we have xCJ ∈ OJ and, since every element in (K/O)` is a torsion element, we have
xCJ + ImφJ ∈ tors(cokerφJ).

First, we prove that fJ is well-defined. Suppose that π(x) + π(HJ) = π(y) + π(HJ) ∈ TJ/π(HJ). Then
π(x)− π(y) ∈ π(HJ). Hence there exists v ∈ HJ such that π(x)− π(y) = π(v), and hence there exists a ∈ O`
such that x − y − v = a. Since v ∈ HJ and a ∈ O`, xCJ − yCJ = vCJ + aCJ = aCJ ∈ ImφJ . Thus
xCJ + ImφJ = yCJ + ImφJ and hence fJ is well-defined.

Second, we prove that fJ is injective. Assume that xCJ + ImφJ = yCJ + ImφJ , where x,y ∈ K`.
Then xCJ − yCJ ∈ ImφJ and hence there exists a ∈ O` such that xCJ − yCJ = φJ(a) = aCJ . Therefore
(x− y− a)CJ = 0 and x− y− a ∈ HJ . Thus π(x)− π(y) = π(x)− π(y)− π(a) = π(x− y− a) ∈ π(HJ) and
hence fJ is injective.

Finally, we prove that f is surjective. For any element y + ImφJ ∈ tors (cokerφJ), there exists b ∈ O \ {0}
such that b (y + ImφJ) = ImφJ , that is, by ∈ ImφJ . Hence there exists a ∈ O` such that by = φJ(a) = aCJ .
Let x = (1/b)a ∈ K`. Then xCJ = (1/b)aCJ = y ∈ O|J|, and hence π(x) ∈ TJ . Therefore fJ (π(x) + π(HJ)) =
xCJ + ImφJ = y + ImφJ . Hence fJ is surjective.

Thus fJ is isomorphic and we obtain the desired isomorphism TJ/π(HJ) ' tors (cokerφJ) as O-modules.

Theorem 4.1. The poset of layers L(A(K/O)) is finite.

Proof. It follows immediately from Lemma 4.1 and the assumption that O is residually finite. Also note that
T∅/π(H∅) = {T∅}.

4.2 Relations between L(A(K/O)) and L(A(K))

First of all, we will show a crucial lemma for describing relations between L(A(K/O)) and L(A(K). We need
the topology on K` defined by a fixed nonzero prime ideal p of O. Let Op be the local ring of O at p. Then
Op is a discrete valuation ring with the uniformizer p. Since K = Frac (Op), any element x ∈ K \ {0} is given
by the form x = upm uniquely, where u ∈ O×p and m ∈ Z. We denote the exponent m by ordp(x). Putting
ordp(0) := ∞, we obtain a discrete valuation ordp : K → Z ∪ {∞} and then K is a topological space with an
open base consisting of Bm(a) := { x ∈ K | ordp(x− a) > m }, where a ∈ K and m ∈ Z.

We can consider that K` is a topological space defined by the product topology. Note that any vector
subspace of K` is closed and K` has an open base consisting of

Bm(a) :=
{
x ∈ K`

∣∣ ordp(x− a) > m
}
,

where x = (x1, . . . , x`), a = (a1, . . . , a`) ∈ K`, m ∈ Z, and ordp(x− a) := min1≤i≤` ordp(xi − ai).

Lemma 4.2. Let U and V be vector subspaces of K` and x1, . . . ,xr ∈ K`. Suppose that π(U) ⊆
⋃r
i=1(π(xi) +

π(V )). Then U ⊆ V .

Proof. Let u ∈ U . We will show that u is an accumulation point of V , that is, for any m ∈ Z, Bm(u)∩ V 6= ∅.
Take an element a ∈ O\{0} such that axi ∈ O` for each i ∈ {1, . . . , r} and consider the vector a−1p−m−1u ∈ U .

From the assumption, we have π(a−1p−m−1u) = π(xi) + π(v) for some xi and v ∈ V . Then π(p−m−1u) =
π(axi) + π(av) = π(0) + π(av) = π(av). Therefore there exists b ∈ O` such that p−m−1u = av + b. Then
ordp(ap

m+1v − u) = ordp(p
m+1b) > m. Thus apm+1v ∈ Bm(u) ∩ V and hence u is an accumulation point of

V .
Since the vector subspace V is closed, we have u ∈ V . Hence U ⊆ V .

Proposition 4.1. Define a map π : L(A(K)) → L(A(K/O)) by HJ 7→ π(HJ). Then π is an order-preserving
injection.

Proof. It is clear that π preserves the order. Injectivity follows from Lemma 4.2.
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Proposition 4.2. Let Z ∈ TJ1/π(HJ1) be a layer. Suppose that Z ⊆ TJ2 . Then there exists a layer W ∈
TJ2/π(HJ2) such that Z ⊆W .

Proof. Let π(x) ∈ Z. Then Z = π(x) + π(HJ1). Since TJ2/π(HJ2) is finite, there exist π(x1), . . . , π(xr) ∈ TJ2
such that

π(x) + π(HJ1) = Z ⊆ TJ2 =

r⊔
i=1

(π(xi) + π(HJ2)).

Then π(HJ1) ⊆
⊔r
i=1(π(xi − x) + π(HJ2)). Using Lemma 4.2, we have HJ1 ⊆ HJ2 . Therefore the layer

W := π(x) + π(HJ2) is a desired layer.

Lemma 4.3. Given a layer Z ∈ L(A(K/O)), there exists a unique HZ ∈ L(A) such that Z = π(x) + π(HZ)
for any π(x) ∈ Z.

Proof. Since Z ∈ TJ/π(HJ) for some J ⊆ [n], the existence holds. To show the uniqueness, suppose that
Z = π(x) + π(HJ1) = π(x) + π(HJ2), where x ∈ Z and Ji ⊆ [n] for each i ∈ {1, 2}. Then π(HJ1) = π(HJ2).
By Lemma 4.2, we obtain HJ1 = HJ2 .

Definition 4.2. Define a map ψ : L(A(K/O)) → L(A(K)) by ψ(Z) := HZ . Also, define the dimension of Z
by dimZ := dimHZ .

Definition 4.3. Let Z ∈ L(A(K/O)). Define

JZ := { j ∈ [n] | Tj ⊇ Z } , AZ := { cj ∈ A | Tj ⊇ Z } = { cj ∈ A | j ∈ JZ } .

We call AZ the localization of A at Z.

Lemma 4.4. The following statements hold:

(i) The map ψ is order-preserving. Namely, if Z ⊆W , then HZ ⊆ HW .

(ii) The map ψ induces an isomorphism from the interval [T∅, Z] to L(AZ(K)), where

[T∅, Z] := {W ∈ L(A(K/O)) | T∅ ≤W ≤ Z } .

(iii) The Möbius function on L(A(K/O)) strictly alternates in sign.

Proof. (i) Let π(x) ∈ Z. Then Z = π(x) + π(HZ) and W = π(x) + π(HW ) since Z ⊆ W . Then we have
π(HZ) ⊆ π(HW ). By Lemma 4.2, HZ ⊆ HW .

(ii) We show the injectivity of the restriction ψ|[T∅,Z]. Let W1,W2 ∈ [T∅, Z]. Then Z ⊆ W1 ∩W2. Letting
π(x) ∈ Z, we have W1 = π(x) + π(HW1

) and W2 = π(x) + π(HW2
). Suppose that ψ(W1) = ψ(W2). Then

HW1
= HW2

and hence W1 = W2. Thus the restriction ψ|[T∅,Z] is injective.
Now, we show the surjectivity. Let HJ ∈ L(AZ(K)), where J ⊆ JZ . Then TJ ⊇ Z and hence there exists a

layer W ∈ TJ/π(HJ) such that W ⊇ Z by Proposition 4.2. Then ψ(W ) = HJ and hence ψ|[T∅,Z] is surjective.
(iii) Note that the restriction of the Möbius function µ on L(A(K/O)) to the interval [T∅, Z] coincides with

the Möbius function on [T∅, Z]. By (ii), the interval [T∅, Z] is a geometric lattice. Therefore the assertion
holds.

4.3 The κ-torsion subposet

Let M be a O-module and let κ ∈ I(O). An element m ∈ M is called a κ-torsion element if κ ⊆ Annm :=
{ a ∈ O | am = 0 ∈M }.

A layer π(x) + π(HJ) ∈ TJ/π(HJ) is κ-torsion if and only if for any a ∈ κ, π(ax) ∈ π(HJ). In particular
whether a layer Z ∈ L(A(K/O)) is κ-torsion is independent of the choice of J such that Z ∈ TJ/π(HJ) by
Lemma 4.3. Namely, Z is κ-torsion if and only if

κ ⊆ AnnZ := { a ∈ O | aZ ⊆ π(HZ) } ,

where aZ :=
{
π(ax) ∈ (K/O)`

∣∣ x ∈ Z }.

Definition 4.4. For any κ ∈ I(O), the κ-torsion subposet of L(A(K/O)) is defined by

L(A(K/O))[κ] := { Z ∈ L(A(K/O)) | Z is κ-torsion } .
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Remark 4.2. In the original definition [15, Definition 4.4(1)], which can be considered as the case O = Z,
the poset consists of layers containing a κ-torsion element. At least when κ is a principal ideal, one can prove
easily that a layer Z contains a κ-torsion element if and only if Z itself is a κ-torsion element (See also the
formula (4.3) in the proof of Lemma 4.5 in [15] ).

Proposition 4.3. The κ-torsion subposet L(A(K/O))[κ] is an order ideal of L(A(K/O)). Namely if Z ≤ W
in L(A(K/O)), or equivalently Z ⊇ W, and W ∈ L(A(K/O))[κ], then Z ∈ L(A(K/O))[κ]. In particular,
the restriction of the Möbius function on L(A(K/O)) to L(A(K/O))[κ] coincides with the Möbius function on
L(A(K/O))[κ].

Proof. Let π(x) ∈ W . Then W = π(x) + π(HW ) and Z = π(x) + π(HZ) since Z ⊇ W . Let a ∈ κ. Since W is
κ-torsion, π(ax) ∈ π(HW ) ⊆ π(HZ). Therefore Z is κ-torsion.

Given an O-module M and κ ∈ I(O), let M [κ] denote the submodule consisting of κ-torsion elements.

Lemma 4.5. For any κ, a ∈ I(O), (O/a) [κ] = O/(κ+ a).

Proof. Since O is a Dedekind domain, O/(κ+ a) ' a(κ+ a)−1/a. Moreover, since

(O/a) [κ] = { [ω]a ∈ O/a | aω ∈ a for all a ∈ κ } ,

it suffices to show that

(a : κ) := { ω ∈ O | aω ∈ a for all a ∈ κ } = a(κ+ a)−1.

Let ω =
∑
i xiyi ∈ a(κ + a)−1 (xi ∈ a, yi ∈ (κ + a)−1). Since (κ + a)−1 ⊆ a−1, we have ω ∈ a(κ + a)−1 ⊆

aa−1 = O. Since (κ+ a)−1 ⊆ κ−1, for any a ∈ κ,

a

(∑
i

xiyi

)
=
∑
i

xi(ayi) ∈ aO = a.

Therefore ω ∈ (a : κ) and hence (a : κ) ⊇ a(κ+ a)−1.
Let ω ∈ (a : κ). Since O = (κ+ a)(κ+ a)−1, there exist xi ∈ (κ+ a), yi ∈ (κ+ a)−1 such that 1 =

∑
i xiyi.

Since ωxi ∈ ω(κ+ a) ⊆ ωκ+ a ⊆ a, we have

ω = ω

(∑
i

xiyi

)
=
∑
i

(ωxi)yi ∈ a(κ+ a)−1.

Hence (a : κ) ⊆ a(κ+ a)−1. Therefore (a : κ) = a(κ+ a)−1.

Theorem 4.2. Let ∅ 6= J ⊆ [n]. For any κ ∈ I(O),

(TJ/π(HJ)) [κ] '
r(J)⊕
i=1

O/ (κ+ dJ,i) .

In particular, |(TJ/π(HJ)) [κ]| =
∏r(J)
i=1 N (κ+ dJ,i) = m(J, κ), where dJ,1, . . . , dJ,r(J) are the ideals determined

in Lemma 3.1.

Proof. By Lemma 4.1 and 4.5, we obtain

(TJ/π(HJ)) [κ] '
r(J)⊕
i=1

(O/dJ,i) [κ] '
r(J)⊕
i=1

O/(κ+ dJ,i).

Corollary 4.1. For any κ ∈ I(O),

L(A(K/O))[κ] = L(A(K/O))[κ+ ρA],

where ρA = lcm
{
dJ,r(J)

∣∣ ∅ 6= J ⊆ [n]
}

denotes the LCM-period of A.

Proof. Since κ+ ρA + dJ,i = κ+ dJ,i for each i, the assertion holds.

Corollary 4.2. L(A(K/O))[〈1〉] ' L(A(K)) and L(A(K/O))[ρA] = L(A(K/O)).

Proof. A layer Z ∈ L(A(K/O)) is 〈1〉-torsion if and only if Z = π(HZ). Therefore L(A(K/O))[〈1〉] ' L(A(K))
by Proposition 4.1.

By Theorem 4.2, we have TJ/π(HJ)[ρA] = TJ/π(HJ). Therefore L(A(K/O))[ρA] = L(A(K/O)).
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4.4 The constituents and the characteristic polynomials

The characteristic polynomial χA(K)(t) is defined by

χA(K)(t) :=
∑

X∈L(A(K))

µ(H∅, X)tdimX ,

where µ denotes the Möbius function on L(A(K)).
The characteristic polynomial χA(K/O)(t) is defined by

χA(K/O)(t) :=
∑

Z∈L(A(K/O))

µ(T∅, Z)tdimZ ,

where µ denotes the Möbius function on L(A(K/O)) and dimZ = dimHZ .

Definition 4.5. For each κ | ρA, the κ-characteristic polynomial of A(K/O) is defined by

χκA(K/O)(t) :=
∑

Z∈L(A(K/O))[κ]

µ(T∅, Z)tdimZ ,

where µ denotes the Möbius function on L(A(K/O)).

By Proposition 4.3, the restriction of the Möbius function on L(A(K/O)) to L(A(K/O))[κ] coincides with the

Möbius function on L(A(K/O))[κ]. Also, it follows that χ
〈1〉
A(K/O)(t) = χA(K)(t) and χρAA(K/O)(t) = χA(K/O)(t)

by Corollary 4.2.

Example 4.1. Let O = Z[
√
−1],K = Q(

√
−1), and

A =

{(
1
1

)
,

(
1
−1

)
,

(
1√
−1

)
,

(
1

−
√
−1

)}
as in Example 3.1. Figure 1 shows the Hasse diagram of L(A(K/O)).

T∅

{x1 + x2 ∈ O} {x1 − x2 ∈ O} {x1 +
√
−1x2 ∈ O} {x1 −

√
−1x2 ∈ O}

(
1

2
,

1

2

) (√
−1

2
,

√
−1

2

)
(0, 0)

(
1 +
√
−1

2
,

1 +
√
−1

2

) (√
−1

2
,

1

2

) (
1

2
,

√
−1

2

)

Figure 1: The Hasse diagram of L(A(K/O)) in Example 4.1

Recall that the LCM-period of A is ρA = 〈2〉 = p2, where p = 〈1 +
√
−1〉. The subposets of L(A(KO)) are

as follows:

L(A(K/O))[〈1〉] = [T∅, (0, 0)]

L(A(K/O))[p] = [T∅, (0, 0)] ∪
[
T∅,

(√
−1

2
,

√
−1

2

)]
L(A(K/O))[p2] = L(A(K/O)).

Therefore we obtain

χ
〈1〉
A(K/O)(t) = t2 − 4t+ 3, χp

A(K/O)(t) = t2 − 4t+ 6, χp2

A(K/O)(t) = t2 − 4t+ 10.

In particular, by Example 3.1, we have fκA(t) = χκA(K/O)(t) for each ideal κ | ρA = p2.
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Example 4.2. Let O = Z[
√
−5],K = Q(

√
−5), and

A = {c1, c2}, where c1 =

(
2

1−
√
−5

)
, c2 =

(
1 +
√
−5

3

)
as in Example 3.2. Then H := H{1} = H{2} = H{1,2} = 〈(−3, 1 +

√
−5)〉K ⊆ K2 and we have

TJ/π(HJ) =



{T∅} if J = ∅,{
(0, 0), (1/2, 0)

}
if J = {1},{

(0, 0), (0, 1/3), (0, 2/3)
}

if J = {2},{
(0, 0)

}
if J = {1, 2},

where (a, b) denotes π(a, b) + π(H). Figure 2 shows the Hasse diagram of the poset of layers L(A(K/O)).

(0, 0) (1/2, 0) (0, 1/3) (0, 2/3)

T∅

Figure 2: The Hasse diagram of L(A(K/O)) in Example 4.2

Recall the LCM-period of A is ρA = pq = 〈1 +
√
−5〉, where p = 〈2, 1−

√
−5〉, q = 〈3, 1 +

√
−5〉. The torsion

subposets of L(A(K/O)) are as follows:

L(A(K/O))[〈1〉] = {T∅, (0, 0)}, L(A(K/O))[p] = {T∅, (0, 0), (1/2, 0)},

L(A(K/O))[q] = {T∅, (0, 0), (0, 1/3), (0, 2/3)}, L(A(K/O))[pq] = L(A(K/O)).

Since dimT∅ = 2 and dimZ = dimH = 1 for each Z ∈ L(A(K/O)) \ {T∅}, we obtain

χ
〈1〉
A(K/O)(t) = t2 − t, χp

A(K/O)(t) = t2 − 2t,

χq
A(K/O)(t) = t2 − 3t, χpq

A(K/O)(t) = t2 − 4t.

In particular, by Example 3.2, we have fκA(t) = χκA(K/O)(t) for each ideal κ | ρA = pq.

In the rest of this subsection, we will prove that for each ideal κ | ρA, the κ-constituent fκA(t) of the

characteristic quasi-polynomial χquasi
A coincides with the κ-characteristic polynomial χκA(K/O)(t) of A(K/O).

Definition 4.6. Given a layer Z ∈ L(A(K/O)), define D(Z) by

D(Z) := { J ⊆ [n] | Z ∈ TJ/π(HJ) } .

Lemma 4.6. Let Z ∈ L(A(K/O)). Then the following hold.

(i) If J ∈ D(Z), then HJ = HZ .

(ii) JZ = { j ∈ [n] | Tj ⊇ Z } is a unique maximal element of D(Z).

(iii)
⊔

W∈L(A(K/O))
W⊇Z

D(W ) = { J ⊆ [n] | J ⊆ JZ } .

Proof. (i) It follows from Lemma 4.3.
(ii) Let J ∈ D(Z). Then TJ ⊇ Z and hence Tj ⊇ Z for any j ∈ J . Therefore J ⊆ JZ and hence the

maximality holds. Also, we have HZ = HJ ⊇ HJZ .
For each j ∈ JZ , we have Tj ⊇ Z and hence TJZ ⊇ Z. By Proposition 4.2, there exists a layer W ∈

TJZ/π(HJZ ) such that W ⊇ Z. Therefore we have HJZ ⊇ HZ by Lemma 4.4(i). Thus HJZ = HZ and
JZ ∈ D(Z).

(iii) First, we prove that the union is disjoint. Suppose that W1∩W2 ⊇ Z and W1 6= W2. Assume that there
exists J ∈ D(W1) ∩D(W2). Then HW1

= HJ = HW2
. By Lemma 4.4(ii), we have W1 = W2, a contradiction.

Thus D(W1) ∩D(W2) = ∅.
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Second, let J ∈ D(W ) such that W ⊇ Z. We will prove J ⊆ JZ . By (i) and Lemma 4.4(i), HJZ = HZ ⊆
HW = HJ . Thus HJ∪JZ = HJ ∩ HJZ = HJZ . Furthermore, since Z ⊆ TJZ and Z ⊆ W ⊆ TJ , we have
Z ⊆ TJZ ∩ TJ = TJ∪JZ . Therefore Z can be written as Z = π(x) + π(HJ∪JZ ) with π(x) ∈ TJ∪JZ and hence
J ∪ JZ ∈ D(Z). By (ii), we have J ∪ JZ ⊆ JZ . Thus J ⊆ JZ .

Finally, suppose that J ⊆ JZ . Then we have Z ⊆ TJZ ⊆ TJ and HJZ ⊆ HJ . Let π(x) ∈ Z and
W := π(x) + π(HJ). Then Z = π(x) + π(HJZ ) ⊆ π(x) + π(HJ) = W and W = π(x) + π(HJ) ∈ TJ/π(HJ),
that is, J ∈ D(W ).

Lemma 4.7 (See also [10, Lemma 5.5]). For any Z ∈ L(A(K/O)),

µ(T∅, Z) =
∑

J∈D(Z)

(−1)|J|.

Proof. We prove it by induction on the codimension of Z. If codimZ = 0 then Z = T∅ and D(T∅) = {∅}.
Hence the statement holds. We assume that codimZ ≥ 1. By the definition of the Möbius function, the
induction hypothesis, and Lemma 4.6(iii), we have

µ(T∅, Z) = −
∑
W)Z

µ(T∅,W )

= −
∑
W)Z

∑
J∈D(W )

(−1)|J|

=
∑

J∈D(Z)

(−1)|J| −
∑
W⊇Z

∑
J∈D(W )

(−1)|J|

=
∑

J∈D(Z)

(−1)|J| −
∑
J⊆JZ

(−1)|J|

=
∑

J∈D(Z)

(−1)|J|.

Theorem 4.3 (Generalization of Theorem 1.4). Let κ | ρA. Then

fκA(t) = χκA(K/O)(t).

Proof. By Theorem 3.1, the κ-constituent fκA(t) of the characteristic quasi-polynomial χquasi
A is given by

fκA(t) =
∑
J⊆[n]

(−1)|J|m(J, κ)t`−r(J) = t` +
`−1∑
r=0

 ∑
J⊆[n]

`−r(J)=r

(−1)|J|m(J, κ)

 tr.

The κ-characteristic polynomial χκA(K/O)(t) of A(K/O) is given by

χκA(K/O)(t) =
∑

Z∈L(A(K/O))[κ]

µ(T∅, Z)tdimZ = t` +

`−1∑
r=0

 ∑
Z∈L(A(K/O))[κ]

dimZ=r

µ(T∅, Z)

 tr.

Since if J ∈ D(Z) then dimZ = dimHJ = `− r(J), by Theorem 4.2 and Lemma 4.7, for each 0 ≤ r ≤ `− 1,∑
Z∈L(A(K/O))[κ]

dimZ=r

µ(T∅, Z) =
∑

Z∈L(A(K/O))[κ]
dimZ=r

∑
J∈D(Z)

(−1)|J|

=
∑
J⊆[n]

`−r(J)=r

∑
Z∈L(A(K/O))[κ]

J∈D(Z)

(−1)|J|

=
∑
J⊆[n]

`−r(J)=r

(−1)|J|m(J, κ).

Therefore we obtain fκA(t) = χκA(K/O)(t).
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5. Minimality of the LCM-period

For a layer Z ∈ L(A(K/O)), put

τ(Z) := AnnZ = { a ∈ O | aZ ⊆ π(HZ) } .

Note that Z ∈ L(A(K/O))[κ] if and only if τ(Z) | κ.

Lemma 5.1 (See also [4, Lemma 6.2]). Let ∅ 6= J ⊆ [n].

(i) τ(Z) | dJ,r(J) for any Z ∈ TJ/π(HJ).

(ii) τ(Z) = dJ,r(J) for some Z ∈ TJ/π(HJ).

Proof. It follows immediately from Lemma 4.1.

For r ∈ {0, . . . , `− 1} we define

Lr(A(K/O)) := { Z ∈ L(A(K/O)) | dimZ = r }

and

dr(a) :=
∑

∅ 6=J⊆[n]
r(J)=`−r

(−1)|J|m(J, a).

By the proof of Theorem 4.3, we have

fκA(t) = t` +

`−1∑
r=0

dr(κ)tr and dr(κ) =
∑

Z∈Lr(A(K/O))
τ(Z)|κ

µ(T∅, Z),

for each κ | ρA.

Lemma 5.2 (See also [4, Claim 6.3]). For each r ∈ {0, . . . , ` − 1}, dr(a) is a quasi-constant (quasi-monomial
of degree 0) with the minimum period

ρr := lcm { τ(Z) | Z ∈ Lr(A(K/O)) } .

Proof. We first prove that ρr is a period of dr(a). By Lemma 3.2, m(J, a) has the minimum period dJ,r(J).
Hence dr(a) has a period

lcm
{
dJ,r(J)

∣∣ ∅ 6= J ⊆ [n], r(J) = `− r
}
.

By Lemma 5.1, this period equals lcm { τ(Z) | Z ∈ Lr(A(K/O)) } = ρr.
Next, we show the minimality of ρr. Let ρ be the minimum period of dr(a). Then ρ | ρr and dr(ρ) = dr(ρr).

By the definition of ρr, we have τ(Z) | ρr for any Z ∈ Lr(A(K/O)). Hence we obtain∑
Z∈Lr(A(K/O))

(−1)`−rµ(T∅, Z) =
∑

Z∈Lr(A(K/O))
τ(Z)|ρr

(−1)`−rµ(T∅, Z)

= (−1)`−rdr(ρr) = (−1)`−rdr(ρ)

=
∑

Z∈Lr(A(K/O))
τ(Z)|ρ

(−1)`−rµ(T∅, Z).

Since (−1)`−rµ(T∅, Z) > 0 by Lemma 4.4 (iii), we have

Lr(A(K/O)) = { Z ∈ Lr(A(K/O)) | τ(Z) | ρ } .

Therefore ρr | ρ and hence ρr = ρ.

Theorem 5.1 (Generalization of Theorem 1.5). The LCM-period ρA is the minimum period of the characteristic

quasi-polynomial χquasi
A .
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Proof. The characteristic quasi-polynomial χquasi
A is given by

χquasi
A (a) = N(a)` +

`−1∑
r=0

dr(a)N(a)r.

By Lemma 5.2, each coefficient dr(a) has the minimum period ρr. Hence the characteristic quasi-polynomial

χquasi
A has the minimum period lcm { ρr | 0 ≤ r ≤ `− 1 }. By Lemma 5.1, we obtain

ρA = lcm
{
dJ,r(J)

∣∣ ∅ 6= J ⊆ [n]
}

= lcm { τ(Z) | Z ∈ L(A(K/O)) \ {T∅} } = lcm { ρr | 0 ≤ r ≤ `− 1 } .

6. Localizations of the base rings

Let S be a multiplicative subset of O and OS denotes the localization of O with respect to S. Since O is a
Dedekind domain, so is OS .

Let IS(O) := { A ∩ O | A ∈ I(OS) }, where I(OS) denotes the set of nonzero ideals of OS . By standard ring
theory, we have a one-to-one correspondence between ideals in IS(O) and I(OS) as follows:

IS(O) ←→ I(O)
a 7−→ aOS

A ∩ O 7−→ A.

Note that this correspondence preserves prime ideals and

IS(O) ∩ Spec(O) = { p ∈ I(O) ∩ Spec(O) | p ∩ S = ∅ } ,

where Spec(O) denotes the set of prime ideals of O.

Lemma 6.1. The following statements hold:

(i) For any s ∈ S and a ∈ IS(O), a + 〈s〉 = 〈1〉.

(ii) For any ideal a ∈ IS(O), we have OS/aOS ' O/a. In particular, N(aOS) = N(a). Moreover, OS/A '
O/(A ∩ O) and N(A) = N(A ∩ O) for each A ∈ I(OS).

(iii) OS is residually finite.

Proof. (i) Since OS is a Dedekind domain, the ideal aOS is decomposed into a product of prime ideals as
aOS = (p1OS) · · · (prOS), where pi ∈ IS(O) ∩ Spec(O). Then aOS = (p1OS) · · · (prOS) = (p1 · · · pr)OS and
hence a = p1 · · · pr. Since O is a Dedekind domain and pi is a prime ideal, pi+〈s〉 equals pi or 〈1〉. If pi+〈s〉 = pi,
then s ∈ pi, which contradicts to pi ∩ S = ∅. Therefore pi + 〈s〉 = 〈1〉. Thus a + 〈s〉 = 〈1〉.

(ii) By (i), every element of S is a unit of O/a. Therefore OS/aOS ' (O/a)⊗O OS ' O/a.
(iii) This follows immediately from (ii).

Let AS denote the finite set A considered as a subset of OS via the natural inclusion O ⊆ OS . Since OS
is a residually finite Dedekind domain by Lemma 6.1(iii), we can consider the characteristic quasi-polynomial
and the torsion arrangement of AS .

6.1 The characteristic quasi-polynomial of AS

The characteristic quasi-polynomial χquasi
AS of AS is a quasi-polynomial on I(OS) defined by χquasi

AS (A) =

|M(AS(OS/A))|. The following proposition shows that χquasi
AS is equivalent to the restriction of χquasi

A to IS(O)
via the correspondence described above.

Theorem 6.1. The following statements hold:

(i) The LCM-period of AS is ρAS = ρAOS.

(ii) For any A ∈ I(OS), χquasi
AS (A) = χquasi

A (A ∩ O).

(iii) For any δ | ρAS , fδAS (t) = fδ∩OA (t).
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Proof. (i) For each nonempty subset J ⊆ [n], we define φJ,S : O`S → O|J|S by x 7→ xCJ . Then we have
cokerφJ,S = (cokerφJ)⊗O OS . Hence by Lemma 3.1, we obtain

cokerφJ,S = (cokerφJ)⊗O OS '

r(J)⊕
i=1

O/dJ,i ⊕ d⊕O|J|−r(J)−1

⊗O OS
'
r(J)⊕
i=1

OS/dJ,iOS ⊕ dOS ⊕O|J|−r(J)−1
S .

Therefore ρAS = lcm
{
dJ,r(J)OS

∣∣ ∅ 6= J ⊆ [n]
}

= ρAOS .

(ii) By Lemma 6.1(ii), χquasi
AS (A) = |M(AS(OS/A))| = |M(A(O/(A ∩ O)))| = χquasi

A (A ∩ O).
(iii) Let A ∈ I(OS) be any ideal satisfying A + ρAS = δ. Then (A ∩ O) + ρA = δ ∩ O. Therefore

fδAS (N(A)) = χquasi
AS (A) = χquasi

A (A ∩ O) = fδ∩OA (N(A ∩ O)) = fδ∩OA (N(A)).

Hence we obtain fδAS (t) = fδ∩OA (t).

6.2 The torsion arrangement AS(K/OS)

The torsion arrangement AS(K/OS) consists of

Tj,S :=
{
πS(x) ∈ (K/OS)`

∣∣ xcj ≡ 0 (mod OS)
}

(j ∈ [n]),

where πS : K` → (K/OS)
`

is the natural projection. For each ∅ 6= J ⊆ [n], let TJ,S :=
⋂
j∈J Tj,S and let

T∅,S := (K/OS)`.
The posets of layers of A(K/O) and AS(K/OS) are as follows:

L(A(K/O)) = { π(x) + π(HJ) | J ⊆ [n], π(x) ∈ TJ } ,
L(AS(K/OS)) = { πS(x) + πS(HJ) | J ⊆ [n], πS(x) ∈ TJ,S } .

Let ηS : (K/O)` → (K/OS)` be the canonical O-homomorphism. Since ηS ◦ π = πS , the O-homomorphism
ηS induces the following order-preserving map:

ηS : L(A(K/O)) −→ L(A(K/OS))
Z 7−→ ηS(Z) = { ηS(z) | z ∈ Z } .

Note that dimZ = dim ηS(Z) since if Z = π(x) + π(HJ) then ηS(Z) = πS(x) + πS(HJ).
The map ηS induces isomorphisms between torsion subposets as follows:

Theorem 6.2. For any ideal δ | ρAS , the restriction

ηS : L(A(K/O))[δ ∩ O] −→ L(AS(K/OS))[δ]

is an isomorphism as finite posets. In particular,

L(AS(K/OS)) ' L(A(K/O))[ρAOS ∩ O].

Proof. First, we show that if Z ∈ L(A(K/O))[δ ∩ O], then ηS(Z) ∈ L(AS(K/OS))[δ]. Suppose that Z =
π(x) + π(HZ). Then ηS(Z) = πS(x) + πS(HZ).

Assume a/s ∈ δ (a ∈ O, s ∈ S). Since a ∈ δ ∩ O and Z ∈ L(A(K/O))[δ ∩ O], we have π(ax) ∈ π(HZ) and
hence πS(ax) ∈ πS(HZ). Then there exists v ∈ HZ such that ax− v ∈ O`S . Therefore (a/s)x− (1/s)v ∈ O`S .
Since (1/s)v ∈ HZ , we have πS((a/s)x) ∈ πS(HZ). Thus ηS(Z) ∈ L(AS(K/OS))[δ].

Secondly, we prove the injectivity. Suppose Z1, Z2 ∈ L(A(K/O))[δ∩O] and Zi = π(xi)+π(HZi) for i ∈ {1, 2}
and assume that ηS(Z1) = ηS(Z2). Then πS(x1) + πS(HZ1) = πS(x2) + πS(HZ2) and hence H := HZ1 = HZ2

by Lemma 4.3. Therefore there exists v ∈ H such that x1 − x2 − v ∈ O`S . Hence there exists s ∈ S such that
sx1 − sx2 − sv ∈ O`. Then we have π(sx1) ≡ π(sx2) (mod π(H)).

By Lemma 6.1(i), we have (δ∩O)+〈s〉 = 〈1〉 and hence there exist d ∈ δ∩O and a ∈ O such that d+as = 1.
Since π(dx1), π(dx2) ∈ π(H) by the assumption Z1, Z2 ∈ L(A(K/O))[δ ∩ O], we have

π(x1) = π(dx1) + π(asx1) ≡ aπ(sx1)

≡ aπ(sx2) = π(dx2) + π(asx2) = π(x2) (mod π(H)).
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Thus Z1 = π(x1) + π(H) = π(x2) + π(H) = Z2 and hence the map ηS is injective.
Finally, we prove the surjectivity. A layer in L(AS(K/OS))[δ] belongs to (TJ,S/πS(HJ))[δ] for some J ⊆

[n]. From the discussion so far, when we restrict the map ηS to (TJ/π(HJ))[δ ∩ O], we have an injection
ηJ : (TJ/π(HJ))[δ ∩ O]→ (TJ,S/πS(HJ))[δ]. By Theorem 4.2 and Lemma 6.1(ii),

|(TJ/π(HJ))[δ ∩ O]| =
r(J)∏
i=1

N((δ ∩ O) + dJ,i) =

r(J)∏
i=1

N(δ + dJ,iOS) = |(TJ,S/πS(HJ))[δ]|.

Therefore ηJ is a bijection and hence ηS is surjective.

Corollary 6.1. Let δ | ρAS . Then

χδAS(K/OS)(t) = χδ∩OA(K/O)(t).

Proof. It follows immediately from Theorem 6.2.

Remark 6.1. Corollary 6.1 also can be obtained by Theorem 4.3 and Theorem 6.1(iii).

7. Computing methods for the characteristic
quasi-polynomials

7.1 The LCM-periods

Recall that the LCM-period ρA is defined by

ρA = lcm
{
dJ,r(J)

∣∣ ∅ 6= J ⊆ [n]
}
,

where the ideals dJ,i are described in Lemma 3.1. In this subsection, we will prove that the size of J can be
restricted as follows:

Proposition 7.1 (See also [6, p.323 Formula (11)]).

ρA = lcm
{
dJ,r(J)

∣∣ J ⊆ [n], 1 ≤ |J | ≤ min{`, n}
}
.

In order to prove Proposition 7.1, we show the following lemma.

Lemma 7.1 (See also [6, Lemma 2.3]). Let J1 and J2 be two subsets of [n] such that J1 ⊇ J2 and r(J1) = r(J2).
Then dJ1,r(J1) | dJ2,r(J2).

Proof. Since J1 ⊇ J2, we have TJ1 ⊆ TJ2 and HJ1 ⊆ HJ2 . Moreover, since r(J1) = r(J2), we have H := HJ1 =
HJ2 . Then we obtain an inclusion TJ1/π(H) ⊆ TJ2/π(H). Since dJi,r(Ji) = Ann(TJi/π(H)) for each i ∈ {1, 2}
by Lemma 4.1, we have dJ2,r(J2) ⊆ dJ1,r(J1). Thus dJ1,r(J1) | dJ2,r(J2).

Proof of Proposition 7.1. Assume that ` < n. Let J be a subset of [n] with ` < |J | ≤ n. Then we can choose
a subset J ′ ⊆ J such that r(J ′) = |J ′| = r(J) ≤ `. Lemma 7.1 implies that dJ,r(J) | dJ′,r(J′). This leads to the
desired result.

7.2 Coefficients

Recall that the κ-constituent of χquasi
A is given by

fκA(t) =
∑
J⊆[n]

(−1)|J|m(J, κ)t`−r(J)

by Theorem 3.1, where m(J, κ) =
∏r(J)
i=1 N (κ+ dJ,i).

Proposition 7.2 (See also [8, Corollary 2.3]). Suppose that κ, κ′ ∈ I(O) both divide ρA and assume that there
exists s ∈ Z>0 such that κ+ dJ,r(J) = κ′ + dJ,r(J) for all J ⊆ [n] with |J | ≤ s. Then

deg
(
fκA(t)− fκ

′

A (t)
)
< `− s.

In particular, we have deg
(
fκA(t)− f 〈1〉A (t)

)
< `− s if dJ,r(J) + κ = 〈1〉 for all J ⊆ [n] with |J | ≤ s.
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Proof. It is sufficient to show that m(J, κ) = m(J, κ′) for each J ⊆ [n] with r(J) ≤ s. Let J ′ be a subset of J
such that r(J ′) = |J ′| = r(J) ≤ s. By the assumption, we have κ + dJ′,r(J′) = κ′ + dJ′,r(J′). By Lemma 7.1,
dJ,r(J) | dJ′,r(J′). Hence we obtain

m(J, κ) =

r(J)∏
i=1

N(κ+ dJ,i) =

r(J)∏
i=1

N(κ+ dJ,r(J) + dJ,i) =

r(J)∏
i=1

N(κ′ + dJ,r(J) + dJ,i)

=

r(J)∏
i=1

N(κ′ + dJ,i) = m(J, κ′).

Proposition 7.3 (See also [8, Corollary 2.4]). Suppose that κ, κ′ ∈ I(O) both divide ρA and that κ+ κ′ = 〈1〉.
Assume that there exists s ∈ Z>0 such that κ + dJ,r(J) = 〈1〉 or κ′ + dJ,r(J) = 〈1〉 for all J ⊆ [n] with |J | ≤ s.
Then

deg
(
f
〈1〉
A (t) + fκκ

′

A (t)− fκA(t)− fκ
′

A (t)
)
< `− s.

Proof. For each J ⊆ [n] with r(J) ≤ s, it is sufficient to show that

1 +m(J, κκ′)−m(J, κ)−m(J, κ′) = 0.

Let J ′ be a subset of J such that r(J ′) = |J ′| = r(J) ≤ s. By the assumption, we have κ + dJ′,r(J′) = 〈1〉 or
κ′ + dJ′,r(J′) = 〈1〉. By Lemma 7.1, dJ,r(J) | dJ′,r(J′). Hence we have κ + dJ,r(J) = 〈1〉 or κ′ + dJ,r(J) = 〈1〉.
Since dJ,i | dJ,r(J) for each i, we have

m(J, κ) =

r(J)∏
i=1

N(κ+ dJ,i) = 1 or m(J, κ′) =

r(J)∏
i=1

N(κ′ + dJ,i) = 1.

Thus we have

0 = (1−m(J, κ)) (1−m(J, κ′)) = 1−m(J, κ)−m(J, κ′) +m(J, κ)m(J, κ′)

= 1−m(J, κ)−m(J, κ′) +

r(J)∏
i=1

N ((κ+ dJ,i) (κ+ dJ,i)) .

Since κ+ κ′ = 〈1〉,

(κ+ dJ,i) (κ′ + dJ,i) = κκ′ + dJ,i (κ+ κ′ + dJ,i) = κκ′ + dJ,i (〈1〉+ dJ,i) = κκ′ + dJ,i.

Therefore

r(J)∏
i=1

N ((κ+ dJ,i) (κ+ dJ,i)) =

r(J)∏
i=1

(κκ′ + dJ,i) = m(J, κκ′),

which leads to the desired result.

Proposition 7.4 (See also [8, Corollary 2.5]). Suppose that κ, κ′ ∈ I(O) both divide ρA and that κ+ κ′ = 〈1〉.
If dJ,r(J) are powers of prime ideals for all J , we have fκκ

′

A (t) = fκA(t) + fκ
′

A (t)− f 〈1〉A (t).

Proof. Since κ + κ′ = 〈1〉, it is always true that κ + pm = 〈1〉 or κ′ + pm = 〈1〉 for any prime ideal p and
m ∈ Z≥0. Therefore the claim follows immediately from Proposition 7.3.

8. The characteristic quasi-polynomials of
non-crystallographic root systems of types H2, H3, and
H4

Let Φ be an irreducible crystallographic root system and Φ+ a positive system of Φ. Every positive root
is expressed as a linear combination of the simple roots with integral coefficients. Gathering the coefficient
column vectors, we obtain the set AΦ consisting of integral column vectors. Kamiya, Takemura, and Terao [5,7]
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computed the characteristic quasi-polynomial of AΦ and its LCM-period explicitly by using the classification
of root systems. Note that Suter [13] gave essentially the same calculation in terms of the number of lattice
points in the fundamental alcoves (the Ehrhart quasi-polynomials).

Now, by the results in this paper, we can consider the non-crystallographic cases. The irreducible non-
crystallographic root systems are classified into one infinite family I2(m) together with two exceptional types
H3 and H4. We consider the root systems of types H2 := I2(5),H3, and H4.

We assume that every root in ΦHn is normalized. Then every positive root is represented as a linear

combination of the simple roots over O := Z[τ ], where τ denotes the golden ratio τ := 1+
√

5
2 . The ring O is a

residually finite Dedekind domain since it is the ring of integers of the quadratic field K := Q(
√

5).
We calculate the characteristic quasi-polynomials and the LCM-periods (the minimum periods) of the root

systems of types H2,H3, and H4, using with SageMath [14] and propositions obtained in Section 7. The minimum
periods are shown in Table 1 with the exponents and the Coxeter numbers.

Exponents Coxeter number Minimum period
H2 1, 4 5 〈1〉
H3 1, 5, 9 10 〈2〉
H4 1, 11, 19, 29 30 〈6

√
5〉

Table 1: Minimum periods for H2,H3, and H4

8.1 The characteristic quasi-polynomial χquasi
H2

Suppose that

ΦH2 =

{
±
(

cos
2πk

5
, sin

2πk

5

) ∣∣∣∣ 0 ≤ k ≤ 4

}
.

Note that the convex hull of ΦH2 is the regular decagon. One may choose simple roots as follows.

α1 = (1, 0), α2 =

(
cos

4π

5
, sin

4π

5

)
.

The coefficient matrix of the positive roots with respect to {α1, α2} is(
1 0 τ 1 τ
0 1 1 τ τ

)
.

The LCM-period is ρH2
= 〈1〉 and the constituent of χquasi

H2
is as follows:

f
〈1〉
H2

(t) = t2 − 5t+ 4 = (t− 1)(t− 4).

8.2 The characteristic quasi-polynomial χquasi
H3

Suppose that

ΦH3 =

{
(±1, 0, 0) and all permutations

1
2 (±τ,±1,±τ−1) and all even permutations

}
.

Note that the convex hull of ΦH3 is known as the icosidodecahedron. One may choose simple roots as follows:

α1 =
1

2
(τ,−1, τ−1), α2 =

1

2
(−τ, 1, τ−1), α3 =

1

2
(1, τ−1,−τ).

The coefficient matrix of the positive roots with respect to {α1, α2, α3} is1 0 τ 1 τ 0 0 τ τ τ2 1 τ τ τ2 τ2

0 1 1 τ τ 0 1 1 τ2 τ2 τ τ τ2 τ2 2τ
0 0 0 0 0 1 1 1 1 1 τ τ τ τ τ

 .

The LCM-period is ρH3
= 〈2〉 and the constituents of χquasi

H3
is as follows:

f
〈1〉
H3

(t) = t3 − 15t2 + 59t− 45 = (t− 1)(t− 5)(t− 9),

f
〈2〉
H3

(t) = t3 − 15t2 + 59t− 60 = (t− 4)(t2 − 11t+ 15).
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8.3 The characteristic quasi-polynomial χquasi
H4

Suppose that

ΦH4
=


(±1, 0, 0, 0) and all permutations

1
2 (±1,±, 1,±1,±1) and all permutations

1
2 (±τ,±1,±τ−1, 0) and all even permutations

 .

Note that the convex hull of ΦH4
is known as the 600-cell. One may choose simple roots as follows:

α1 =
1

2
(τ,−1, τ−1, 0), α2 =

1

2
(−τ, 1, τ−1, 0),

α3 =
1

2
(1, τ−1,−τ, 0), α4 =

1

2
(−1,−τ, 0, τ−1).

The coefficient matrix of the positive roots with respect to {α1, α2, α3, α4} is
1 0 1 τ τ 0 0 τ τ τ + 1
0 1 τ 1 τ 0 1 1 τ + 1 τ + 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0

1 τ τ τ + 1 τ + 1 0 0 0 τ τ
τ τ τ + 1 τ + 1 2τ 0 0 1 1 τ + 1
τ τ τ τ τ 0 1 1 1 1
0 0 0 0 0 1 1 1 1 1

τ + 1 τ τ + 1 τ + 1 2τ + 1 2τ + 1 2τ + 1 1 τ τ
τ + 1 τ + 1 τ + 1 2τ + 1 2τ + 1 2τ + 2 2τ + 2 τ τ τ + 1

1 τ + 1 τ + 1 τ + 1 τ + 1 τ + 1 τ + 2 τ τ τ
1 1 1 1 1 1 1 τ τ τ

τ + 1 τ + 1 τ τ + 1 τ + 1 2τ + 1 2τ + 1 τ + 1 τ + 1 2τ + 1
τ + 1 2τ τ + 1 τ + 1 2τ + 1 2τ + 1 2τ + 2 2τ 2τ + 1 2τ + 1
τ τ τ + 1 τ + 1 τ + 1 τ + 1 τ + 1 2τ 2τ 2τ
τ τ τ τ τ τ τ τ τ τ

2τ + 1 2τ + 2 2τ + 1 2τ + 1 2τ + 2 3τ + 1 2τ + 2 2τ + 1 2τ + 1 2τ + 1
3τ + 1 3τ + 1 2τ + 2 3τ + 1 3τ + 1 3τ + 2 3τ + 2 2τ + 2 2τ + 2 3τ + 1

2τ 2τ 2τ + 1 2τ + 1 2τ + 1 2τ + 1 2τ + 1 τ + 2 2τ + 1 2τ + 1
τ τ τ τ τ τ τ τ + 1 τ + 1 τ + 1

2τ + 2 2τ + 2 3τ + 1 2τ + 2 3τ + 1 3τ + 1 3τ + 2 3τ + 2 3τ + 2 3τ + 2
3τ + 1 3τ + 2 3τ + 2 3τ + 2 3τ + 2 3τ + 3 3τ + 3 4τ + 2 4τ + 2 4τ + 2
2τ + 1 2τ + 1 2τ + 1 2τ + 2 2τ + 2 2τ + 2 2τ + 2 2τ + 2 3τ + 1 3τ + 1
τ + 1 τ + 1 τ + 1 τ + 1 τ + 1 τ + 1 τ + 1 τ + 1 τ + 1 2τ

 .

The LCM-period is ρH4
= 〈6
√

5〉 and the constituents of χquasi
H4

is as follows:

f
〈1〉
H4

(t) = t4 − 60t3 + 1138t2 − 7140t+ 6061 = (t− 1)(t− 11)(t− 19)(t− 29),

f
〈3〉
H4

(t) = t4 − 60t3 + 1138t2 − 7140t+ 9261 = (t− 9)(t− 21)(t2 − 30t+ 49),

f
〈
√

5〉
H4

(t) = t4 − 60t3 + 1138t2 − 7140t+ 14125 = (t− 5)(t− 25)(t2 − 30t+ 113),

f
〈3
√

5〉
H4

(t) = t4 − 60t3 + 1138t2 − 7140t+ 17325,

f
〈2〉
H4

(t) = t4 − 60t3 + 1138t2 − 8040t+ 17536 = (t− 4)(t− 16)(t2 − 40t+ 274),

f
〈6〉
H4

(t) = t4 − 60t3 + 1138t2 − 8040t+ 20736,

f
〈2
√

5〉
H4

(t) = t4 − 60t3 + 1138t2 − 8040t+ 25600 = (t− 20)(t3 − 40t2 + 338t− 1280),

f
〈6
√

5〉
H4

(t) = t4 − 60t3 + 1138t2 − 8040t+ 28800.

8.4 Observations

Kamiya, Takemura, and Terao [7, Theorem 3.1] gave an explicit formula of the generating function ΓΦ :=∑∞
q=1 χ

quasi
Φ (q)tq for an irreducible crystallographic root system Φ in terms of the coefficient of the highest root

and the Coxeter number. We obtain the following corollary.
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Corollary 8.1 (Kamiya-Takemura-Terao [7, Corollary 3.4]). Let h be the Coxeter number of Φ. Then χquasi
Φ (q) >

0 if and only if q ≥ h.

In order to consider the analogue, we list the Coxeter numbers and possible values of the absolute norms of
nonzero ideals of O. The Coxeter numbers are

hH2
= 5, hH3

= 10, hH4
= 30.

The possible values of absolute norms are positive integers of the form a2 + ab− b2:

1, 4, 5, 9, 11, 16, 19, 20, 25, 29, 31, . . . .

From the lists above, we obtain the following theorem.

Theorem 8.1. Let ` ∈ {2, 3, 4} and a a nonzero ideal of O. Then χquasi
H`

(a) > 0 if and only if N(a) ≥ hH` .

It is well known that the exponents of a root system satisfy duality with respect to the Coxeter number.
Namely, if d is an exponent, then h−d is also an exponent, where h denotes the Coxeter number. The exponents
for H2,H3, and H4 are

(1, 4), (1, 5, 9), (1, 11, 19, 29),

respectively. They appear in the factorization of the characteristic polynomials.
The characteristic quasi-polynomial of an irreducible crystallographic root system also has duality with

respect to the Coxeter number. The duality can be shown from the explicit expressions given by Kamiya,
Takemura, and Terao [5], or Suter [13]. Yoshinaga [17] gave a classification-free proof.

Theorem 8.2 (Yoshinaga [17, Corollary 3.8]). Let Φ be an irreducible crystallographic root system of rank `

and h its Coxeter number. Then χquasi
Φ (q) = (−1)`χquasi

Φ (h− q).

Note that the duality holds as quasi-polynomials but not the level of the constituents. Yoshinaga [16] studied
the condition for the constituents to hold the duality in detail.

We consider an analogue of Theorem 8.2 for our cases. One can see that if κ | ρH` is not a multiple of
〈2〉, then the κ-constituent satisfies the duality. Namely fκH`(t) = (−1)`fκH`(hH` − t) when 〈2〉 - κ. However,
unfortunately, it seems that the κ-constituent does not satisfy the duality when κ is a multiple of 〈2〉.

Question 8.1. Are there any reasons for Theorem 8.1 and the partial duality above?
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