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Abstract: This paper describes the homology of various simplicial complexes associated with set families from
combinatorial number theory, including primitive sets, pairwise coprime sets, product-free sets, and coprime-free
sets. We present a condition on a set family that results in easy computation of the homology groups and show
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address the complexes associated with coprime-free sets and a generalization of primitive sets.
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1. Introduction

Homology theory has been a fundamental tool in enumerative combinatorics since G.-C. Rota’s watershed
1964 paper [14] established links between the topological data of a poset and its combinatorial properties.
Combinatorial problems, reciprocally, give rise to a wealth of topological spaces to study. In particular, many
families of sets that arise in the field of combinatorial number theory possess interesting topological structures.

In this paper, we consider a number of simplicial complexes associated with set families defined by conditions
of a number-theoretic nature. It turns out that many of these complexes are in some sense the same, topologically
speaking, and we introduce a definition—namely, that of a partition-intersecting family—to capture a condition
that engenders this structure. The remainder of the introduction will be devoted to this task. In the second
section, we detail well-known relationships between the homology groups of a poset and alternating sums
associated with its elements. Three that fall into our definition of partition-intersecting are primitive sets,
pairwise coprime sets, and product-free sets. In Section 3 we describe these homologies without breaking a
sweat and enumerate a few more examples that can be dealt with in the same way. On the other hand, the
family of coprime-free sets is not partition-intersecting, and in this case, we can only fully characterize the
zeroth and first homology groups. This is done in Section 4. In Section 5, we tackle an analogous generalisation
of primitive sets, whose corresponding homology groups are derivable nearly free of charge from the machinery
used to deal with coprime-free sets.

The number-theoretic properties of the set families underlying this paper have been extensively studied; we
have chosen to defer the exposition of this background to Section 3, when these sets are defined in more detail.

1.1 Definitions and notation

For integers n ≥ 1 we denote by [n] the discrete interval {1, . . . , n}. The main object of study will be some
family F of finite subsets of integers, so for brevity, we shall let Fn denote the finite set F ∩ 2[n]. Consider the
partially ordered set (poset) obtained by taking Fn as a ground set and ordering its elements by inclusion. If
∅ ∈ Fn, then it is the bottom element of the poset, since ∅ ⊆ x for all x ∈ Fn. It will become important later
to add the restriction [n] /∈ Fn for all n ≥ 2, so that Fn does not have a top element, but in this case, we may
adjoin an artificial top element to obtain a lattice; we shall denote this element by 1̂. An element y is said to
cover an element x 6= y if x ≤ y and x ≤ z ≤ y implies that z = x or z = y. In a lattice, an element covered by
1̂ is called a coatom.
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1.2 Cross-cuts

A chain in a poset X is a set {x1, x2, . . . , xk} ⊆ X such that x1 < x2 < · · · < xk. A chain is maximal if adding
any new element to the chain causes the chain property to be violated. Let L be a lattice with top element 1̂
and bottom element 0̂. A cross-cut C is a subset of L \ {1̂, 0̂} such that no two elements of C are comparable
and every chain in L contains some element of C. It is easy to see that the set of coatoms in a lattice is a
cross-cut.

A subset S ⊆ L is said to be spanning if the join of all its elements is 1̂ and the meet of all its elements is 0̂.
The cross-cut complex ∆(C) of a cross-cut C is the simplicial complex obtained from taking C as the vertex set
and adding a face for any subset of C that is not spanning. (For us, a simplicial complex is a set of subsets of
a finite set that is closed under intersection.) It is a classical result that the homology groups of ∆(C) depend
only on the lattice L and not the choice of cross-cut C, so it makes sense to speak of the homology of L. For
the rest of the paper, by homology, we shall mean reduced homology (i.e., the zeroth homology of a connected

space is trivial) over the group Z. So we write H̃k(∆) for H̃k(∆,Z).

1.3 Partition-intersecting families

We now define a criterion on a poset that leads to easily-described homology groups. Let F be a family of
subsets of N. For n ≥ 2 in the definition below, let Fn = F ∩ 2[n] for brevity and let Mn be the set of maximal
elements in Fn. These are the elements S ∈ Fn such that for all x ∈ [n] \ S, S ∪ {x} /∈ Fn. We shall say that
F is partition-intersecting with m components if there exists m such that for all n ≥ 2, the set Mn ⊆ Fn of
maximal elements can be partitioned into m disjoint nonempty classes Mn = C1 t · · · t Cm with the property
that for all i, the intersection

⋂
S∈Ci

S is nonempty, and for all i 6= j and any S ∈ Ci and T ∈ Cj , S ∩ T = ∅.
The following lemma describes the homology groups of partition-intersecting families.

Lemma 1.1. Let F be a downward closed set family that is partition-intersecting with m components. Suppose
further that [n] /∈ Fn for all n ≥ 2. Then for any cross-cut C of the lattice L = (F ∩ 2[n]) ∪ 1̂, we have

H̃0

(
∆(C)) = Zm−1 and for all k > 0, H̃k(∆(C)) = 0.

Proof. Fix n ≥ 2. By hypothesis, the set Mn of coatoms of Fn can be partitioned into Mn = C1 tC2 t · · · tCm
where each Ci is nonempty, and for all i, and all subsets C ′ of Ci, the intersection

⋂
S∈C′ S is nonempty. This

tells us that for any i, any subset of Ci is not spanning and is thus a face in ∆(Mn). In other words, the simplicial

complex ∆(Mn) is the union of m disjoint simplices, which has H̃0(∆(Mn)) = Zm−1 and H̃k(∆(Mn)) = 0 for
all k > 0. This completes the proof.

The proof of this lemma is shorter than the very definition of partition-intersecting family, and from this one
might suspect that the definition is too artificial or convoluted to be applicable. However, we shall see that in
fact, many set families arising in combinatorial number theory are partition-intersecting. Hence Lemma 1.1 can
be used to find the homology groups of the resulting lattices and in turn, the homology groups give alternating-
sum identities for the cardinalities of the sets in the family.

2. The Möbius function and alternating sums

This short section relates Lemma 1.1 to the cardinalities of the sets in a partition-intersecting family. Recall
that the Möbius function µX of a poset X is defined on pairs of elements (x, y) ∈ X2 with x ≤ y, and is given
by the recursive formula µX(x, x) = 1 for all x ∈ X and

µX(x, y) = −
∑

x≤z<y

µX(x, z).

The following theorem, which appears in Rota’s 1964 paper [14], relates the Möbius function to the homological
data of a poset.

Theorem (Cross-cut theorem). Let L be a lattice with bottom element 0̂ and top element 1̂. For any cross-cut
C of L,

µL(0̂, 1̂) =

n∑
k=0

(−1)k rank H̃k(∆(C)),

where H̃k(∆(C),Z) is the kth reduced homology group of ∆(C).
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The Möbius function generalizes the counting method used to derive the inclusion-exclusion formula; indeed,
letting Bn denote the lattice of all subsets of [n], ordered by inclusion, one checks that µBn

(∅, S) = (−1)|S| for
any S ∈ Bn. This fact will be used in the proof of the following proposition, which is a corollary of Lemma 1.1.
Combined with the proof of the earlier lemma, the overall method employed is similar to one used by M. K. Goh,
J. Hamdan, and J. Saks [9] to show that the Möbius function of the poset of all arithmetic progressions contained
in [n] equals the number-theoretic Möbius function evaluated at n− 1.

Theorem 2.1. Let F be a family of integer sets that is partition-intersecting with m components. Suppose
furthermore that F is downward closed and that for all n ≥ 2, Fn = F ∩ 2[n] does not contain [n] itself. Then,
letting Fn,k denote the number of elements of cardinality k in Fn for 0 ≤ k < n, we have

n−1∑
k=1

(−1)kFn,k = 1−m

for all n ≥ 2.

Proof. Fix n ≥ 2 and let Ln be the lattice obtained by adjoining a top element to Fn. Since Fn is downward
closed, for all x ∈ Fn the induced subposet

{z ∈ Ln : 0 ≤ z ≤ x}

is isomorphic to the Boolean lattice B|x| and we have µLn
(0, x) = (−1)|x|. Then since [n] /∈ Fn, we have

n−1∑
k=1

(−1)kFn,k =
∑

x∈Ln\{1̂}

µLn
(∅, x) = −µLn

(∅, 1̂).

But letting C be the cross-cut of coatoms in Ln, by Theorem A we have

µLn(∅, 1̂) =

n∑
k=0

(−1)k rank H̃k(∆(C)),

and since F is partition-intersecting, Lemma 1.1 tells us that

n∑
k=0

(−1)k rank H̃k(∆(C)) = rank H̃0(∆(C)) = m− 1,

which is what we wanted.

3. Primitive, pairwise coprime, and product-free sets

We now show that many families of integer sets that arise in combinatorial number theory are partition-
intersecting. As motivation, observe that the set {2, 3, 5, 7, 11, . . .} of primes possesses many pleasant properties
that may be generalized to other sets of integers. For instance, a set S of integers is said to be

i) primitive if for any two distinct i, j ∈ S, i does not divide j;

ii) pairwise coprime if any two distinct i, j ∈ S have gcd(i, j) = 1; and

iii) product-free if for any i, j ∈ S not necessarily distinct, ij /∈ S.

It is easily seen that the set of prime numbers satisfies the requirements for all three of these definitions, and of
course, so does any finite subset of the primes. Denote {1, 2, . . . , n} by [n] for short and let Pn be the number
of primitive subsets of [n]. Likewise, let Qn be the number of pairwise coprime subsets of [n] and let Rn be
the number of product-free subsets of [n]. These quantities have been the subject of interest of several papers
over the past thirty years. All of them were treated by a 1990 paper of P. J. Cameron and P. Erdős [6]. They
showed that

c1
n ≤ Pn ≤ c2n

where c1 = 1.44967 . . . and c2 = 1.59 . . .,

2π(n)e(1/2+o(1))
√
n ≤ Qn ≤ 2π(n)e(2+o(1))

√
n
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where π is the prime-counting function. This result was subsequently improved to

Q(n) = 2π(n)e
√
n(1+O(log logn/ logn))

by N. J. Calkin and A. Granville [5]. The paper of Cameron and Erdős also gives the lower bound Rn ≥ 2n−
√
n,

and the authors note that any product-free sequence has an upper density of less than 1, but there are product-
free sequences with density more than 1− ε for any ε > 0.

Regarding primitive sets, Cameron and Erdős conjectured that the limit limn→∞ P (n)1/n exists; this was
proven by R. Angelo in 2017 [3]. A separate proof was presented in a paper by H. Liu, P. P. Pach, and
R. Palincza [12]; it yielded constants c1 = 1.571068 and c2 = 1.574445. Shortly afterward, an independent
approach of N. McNew [13] further improved the lower bound c1 to 1.572939.

A great deal of attention has been given to infinite primitive sets. In 1993, P. Erdős and Z. Zhang [8] proved
that for any primitive set A, ∑

a∈A

1

a log a
≤ 1.84.

The sum
∑
p 1/(p log p) equals 1.6366 . . . when p ranges over all primes, and Erdős conjectured that the bound

he and Zhang gave could be improved to this value. This was proven very recently, in a 2022 preprint of
J. D. Lichtman [11].

Let Pn,k be the number of primitive subsets of [n] of cardinality exactly k, so that Pn =
∑n
k=0 Pn,k. Define

Qn,k and Rn,k analogously for pairwise coprime sets and product-free sets. None of these quantities have any
known formula, as far as the authors are aware. In this section, we shall prove alternating-sum identities for
these three counts. First, we list some simple facts about these quantities in special cases.

Proposition 3.1. For n ≥ 2 we have

i) Pn,1 = Qn,1 = n and Rn,1 = n− 1;

ii) Pn,2 =
∑n
i=2

(
i− d(i)

)
, where d(i) counts the number of divisors of i;

iii) Qn,2 =
∑n
i=2 ϕ(i), where ϕ is Euler’s totient function;

iv) Rn,2 =
(
n
2

)
− n− b

√
nc+ 2; and

v) for any p prime and k ≥ 3, F (p, k) = F (p− 1, k) + F (p− 1, k − 1), where F can be any of P , Q, or R.

Proof. Assertion (i) is obvious, as are assertions (ii) and (iii) once one notes that in both cases the sum runs
over the larger element in each 2-element set. To prove (iv), we start with all 2-element subsets of [n], then
remove the n− 1 subsets containing 1 as well as the b

√
nc− 1 subsets that contain a square and its square root.

For the final assertion, note that every primitive k-subset of [p] either does not contain p or it does. In
the first case, it is counted by Pp−1,k, and in the second case, it is counted by Pp−1,k−1, since we can add p
to any primitive (k − 1)-subset of [p − 1] without violating primitivity (for this we need k ≥ 3, otherwise the
(k− 1)-subset could be {1}). The same argument works in the case of relatively coprime and product-free sets,
since p is coprime to all smaller integers.

Theorem 3.1. The families of primitive sets, pairwise coprime sets, and product-free sets are all partition-
intersecting, with two components in the first case and one component in the other two cases.

Proof. Fix n ≥ 2 and let p be the largest prime less than or equal to n. By the famous 1852 theorem of
P. Chebyshev [7], we have 2p > n. This will be important in two of the cases. We now show that each of these
families is partition-intersecting, computing the number m of components along the way.

We deal with primitive sets first. In this case, the collection C of maximal primitive sets contains the
singleton {1}, but no other element of C contains 1, since 1 divides every other positive integer. So we set
C1 = {{1}} and C2 = C \ {1}. To any subset of {2, 3, . . . , n}, we may add the element p without violating
primitivity, since no element divides p and 2p > n. Thus every element of C2 contains p and we see that m = 2.

For the family of pairwise coprime sets, every maximal set contains 1, since gcd(1, i) = 1 for all 1 ≤ i ≤ n.
So we have C1 = C and m = 1.

Lastly, we note that no product-free set contains 1, since 1 · 1 = 1, and every maximal product-free subset
of [n] must also contain p, since p is not the product of any two elements of {2, 3, . . . , n} and 2p > n. Hence
again we have C1 = C and m = 1 in this case as well.

The interval [n] is neither primitive, nor pairwise coprime (for n ≥ 4), nor product-free. Furthermore, these
three properties are all closed under taking subsets, so the families are downward closed, which gives us the
following corollary of Theorem 2.1. (Note that since [2] and [3] are pairwise coprime, the cases n = 2 and n = 3
must be verified separately in the case of pairwise coprime sets.)

ECA 4:2 (2024) Article #S2R12 4
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Corollary 3.1. For n ≥ 2, we have

i)
∑n
k=0(−1)kPn,k = −1;

ii)
∑n
k=0(−1)kQn,k = 0; and

iii)
∑n
k=0(−1)kRn,k = 0.

Values of Pn,k, Qn,k, and Rn,k for small n and k are presented in the appendix. For the purpose of exposition,
we have chosen to focus on three specific set families in this section, but many more multiplicative conditions
can be placed on integer sets to yield partition-intersecting families. Two more examples from [6] are treated
by the following proposition.

Proposition 3.2. If F is the family of all finite subsets S of N such that

i) for all i, j, k, l ∈ S all distinct, ij 6= kl;

ii) for all i, j, k ∈ S with i /∈ {j, k}, i does not divide jk; or

iii) for all i, j ∈ S with i < j, i divides j,

then F is partition-intersecting with one component and, letting Fn,k denote the number of sets in F ∩ 2[n] of
cardinality k, we have

n∑
k=0

(−1)kFn,k = 0,

for n large enough depending on the case.

Proof. Cases (i) and (ii) are proved in a fashion similar to the case of product-free sets. Case (iii) is similar to
the case of pairwise coprime sets. The details are left to the reader.

Note that if m is a constant not depending on n, then for a family to be partition-intersecting with m
components we must have m equal to either 1 or 2, since there are at most two maximal elements in F2. But
by relaxing n ≥ 2 to n ≥ N for some larger N in the definition of partition-intersecting, the value of m would
then range between 1 and

(
N
N/2

)
. One could also imagine extending the definition to let m vary as a function of

n, which may allow more set families to be treated.
Lastly, note that for all of these examples, the alternating-sum identities themselves are not so difficult to

prove from scratch. For six of the seven families mentioned above, let p be a prime in the interval (n/2, n] and
note that any S ⊆ [n]\{p} is in the family if and only if S∪{p} is. The one exception is in the case of primitive
sets, when S = {1} is primitive but {1, p} is not, which explains why the alternating sum equals −1 in this case.

4. Coprime-free sets

In part (iii) of Proposition 3.2 above, we negated the condition “i does not divide j” from the definition of
primitive sets and ended up with another partition-intersecting family. In this section, we show what happens
if one negates the condition gcd(i, j) = 1, that is, if we require that gcd(i, j) > 1 for all i 6= j in each of our
sets. These sets are said to be coprime-free, and they are not partition-intersecting in general. The asymptotic
number of coprime-free sets was treated by the paper [6] of Cameron and Erdős, and subsequently in the
paper [5] by Calkin and Granville. (Both papers were mentioned in the previous section.) The latter paper
showed that the number of subsets S ⊆ [n] for which gcd(i, j) 6= 1 for all distinct i, j ∈ S is

2bn/2c + 2bn/2c−N +O

(
2bn/2c−N exp

(
−C n

log2 n log log n

))
,

for an absolute constant C > 0, where N =
(
e−γ + o(1)

)
n/ log log n. (Here γ denotes the Euler-Mascheroni

constant 0.5772 . . ..)
In the proof of the proposition below we will make use of the notion of a nerve complex, which we define

here, alongside some more terminology concerning simplicial complexes. Let C = {Ui}i∈I be a set family. The
nerve complex of C is a simplical complex defined on the vertex set I, where a set J ⊆ I forms a face if and
only if

⋂
i∈J Ui 6= ∅. Borsuk’s nerve theorem [4] states that for a simplicial complex ∆ and a set {∆i}i∈I of

subcomplexes of ∆, if

i)
⋃
i∈I ∆i = ∆; and

ii) any nonempty intersection of finitely many ∆i is contractible,
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then the nerve complex of {∆i}i∈I is homotopy equivalent to ∆.
The simplicial star of a vertex x in a simplicial complex is the set of all faces containing x. The link of x is

the set of all faces F such that x /∈ F but F ∪ {x} is a face.
Also of use to us is the the Mayer–Vietoris sequence, which for reduced simplicial homology says that

· · · → H̃s(A)⊕ H̃s(B)→ H̃s(X)→ H̃s−1(A ∩B)→ H̃s−1(A)⊕ H̃s−1(B)→

· · · → H̃0(A ∩B)→ H̃0(A)⊕ H̃0(B)→ H̃0(X)→ 0,

whenever A and B are simplicial subcomplexes whose union is the simplicial complex X (see, e.g., Remark 5.18
of [10]).

The following proposition computes the zeroth homology of the posets corresponding to coprime-free subsets
of [n], and shows that the first homology is trivial.

Proposition 4.1. Let F be the family of finite coprime-free subsets of N. Let Fn denote F ∩ 2[n] and let ∆n

be the simplicial complex corresponding to the cross-cut of coatoms in the lattice Fn ∪ 1̂. Then we have

H̃0(∆1) = 0, H̃0(∆2) = Z, H̃0(∆3) = Z2,

and for n ≥ 4 we have H̃0(∆n) = ZC(n)+1, where C(n) is the number of primes in the range (n/2, n]. Further-

more, H̃1(∆n) is trivial.

Proof. The assertions for 1 ≤ n ≤ 3 easily follow from the observation that the only nonempty coprime-free
subsets of {1, 2, 3} are the singleton sets {1}, {2}, and {3}.

Now fix n ≥ 4. Any prime p in the range (n/2, n] is coprime to every integer in [n] \ {p}, so the set {p}
is a maximal coprime-free subset of [n] and hence is an isolated vertex of ∆n. The set {1} is also an isolated

vertex for the same reason, giving us C(n) + 1 isolated points in ∆n. To prove that H̃0(∆n) = ZC(n)+1 we must
show that the rest of ∆n forms one nonempty connected component. Note first that for every prime p ∈ [2, n/2]
(there are such primes because n ≥ 4), the set xp = pN ∩ [n] is a non-singleton maximal coprime-free subset of
[n]. Since 2p ∈ xp for all p ∈ (2, n/2], xp∩x2 6= ∅ for all these coatoms, and thus these vertices are connected by
some nontrivial face in ∆n. Lastly, consider an arbitrary vertex of ∆n that is not one of the C(n) + 1 singletons
described above. This coatom must contain some multiple of a prime p in [2, n/2]. Hence x ∩ xp 6= ∅.

We will now prove that H̃1(∆n) is trivial for all n. To do so, we will use Borsuk’s nerve theorem to reduce
the problem to studying a simpler simplicial complex. For all i ∈ [n], let Ui be the simplicial subcomplex of ∆n

induced on the vertices that contain i. Note that the set {Ui}i∈[n] covers ∆n. This is true because faces of ∆n

are present wherever a set of maximal coprime-free subsets have nonempty intersection, and this intersection
must contain some element of [n]. Moreover, for any J ⊆ [n], let UJ =

⋂
i∈J Ui. A face of ∆n belongs to this

intersection precisely when each of its vertices contains every element of J , so this is the subcomplex of ∆n

induced on vertices x such that J ⊆ x. If J is not coprime-free, then clearly UJ is empty, and if J is coprime-free
and nonempty, then since all vertices in UJ are supersets of J , they all intersect and thus the complex UJ is
a simplex and a fortiori contractible. Applying Borsuk’s nerve theorem, we have shown that ∆n is homotopy
equivalent to the simplicial complex Xn whose vertex set is [n] and in which a subset J ⊆ [n] is a face if and
only if J is coprime-free.

We proceed by induction on n. That H̃1(Xn) = 0 for 1 ≤ n ≤ 4 can easily be verified by hand. Now let

n > 4. If n is prime, then Xn is simply the union of Xn−1 and a new isolated vertex, so H̃0(Xn) = H̃0(Xn−1)⊕Z

but all other homologies remain unchanged, and by the induction hypothesis, H̃1(Xn) = 0.
The interesting case is when n > 4 is not prime. We let A be the simplicial star of the vertex n in Xn, and

let B = Xn−1, considered as a subset of Xn. It is clear that the union of A and B is Xn, since A contains all
faces containing n and B contains all other faces. The relevant section of the Mayer–Vietoris sequence is

· · · → H̃1(A)⊕ H̃1(B)→ H̃1(Xn)→ H̃0(A ∩B)→ H̃0(A)⊕ H̃0(B)→ H̃0(Xn)→ 0.

Note that A, being a simplicial star, is contractible. Moreover, we proved above that H̃0(Xn) = C(n) + 1 and

H̃0(B) = C(n− 1) + 1, and by the induction hypothesis, H̃1(B) = 0.
Next we count the connected components in A ∩ B, whose vertices are the integers in [n − 1] that share a

prime factor with n. Let i, j ∈ A ∩ B, let p be a prime that divides both i and n, and let q be a prime that
divides both j and n. Writing n = kp = lq, we have k, l ≥ 2, since n is not prime. If, furthermore, n/2 is not
prime, then k, l ≥ 3, so both 2p and 2q are in A∩B and we have the path i→ 2p→ 2q → j along the 1-skeleton
of A∩B. In the case that n/2 is prime, the case that k or l is equal to 2 corresponds to either i or j being n/2,
and we already know that the prime n/2 is an isolated vertex of Xn−1, so it is also an isolated vertex of A∩B.
We have shown that

rank H̃0(A ∩B) = 1n/2 is prime.
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Marcel K. Goh and Jonah Saks

Putting all these facts into the exact sequence above, we have

· · · → 0→ H̃1(Xn)→ Z1n/2 is prime → 0⊕ ZC(n−1)+1 → ZC(n)+1 → 0.

But since n is composite, we have

C(n− 1) =

{
C(n) + 1, if n/2 is prime;

C(n), otherwise.

Thus we see that C(n− 1) + 1 = C(n) + 1 + 1n/2 is prime, and can conclude that rank H̃1(Xn) = 0.

This proof illustrates that the situation with coprime-free sets is rather different from the partition-intersect-
ing families we considered before. From Proposition 4.1 we cannot conclude anything about the alternating sum
corresponding to coprime-free sets, and next we will show that the proposition cannot be improved in general.

In the following description of ∆143, which was communicated to us by M. Adamaszek [1], we shall use
terminology established in the work of J. A. Barmak and E. G. Minian [2]. A vertex x in a simplicial complex
X is said to be dominated by another vertex y if the link of x is the simplicial star of y in the subcomplex
X \ {x}. In other words, for every face F of X that contains x, F ∪ {y} is also a face of X. Hence removing
the vertex x from the complex does not change the homotopy type and the replacement of X with X \ {x} is
called an elementary strong collapse of X.

Proposition 4.2. Let F be the family of finite coprime-free subsets of N. Let F143 denote F ∩ 2[143] and
let ∆143 be the simplicial complex corresponding to the cross-cut of coatoms in the lattice F143 ∪ 1̂. We have
H̃2(∆143) 6= 0.

Proof. By Borsuk’s nerve theorem as we employed it in the proof of Proposition 4.1, ∆143 is homotopy equivalent
to the simplicial complex X143 whose vertex set is [143] and in which a nonempty subset S ⊆ [143] forms a face
if and only if S is coprime-free.

We now describe a sequence of elementary strong collapses. We check every pair (i, j) ∈ [143] with i 6= j
to see if j dominates i. For each such pair, we may remove i from the complex without altering the homology
groups. Note that in our context, j dominates i if and only if the set of primes dividing i is a subset of the set
of primes dividing j. It is possible that both i dominates j and j dominates i (this happens if they have the
same set of distinct prime factors with different multiplicities). In this case. it is valid to remove either i or j,
but we shall make the choice to eliminate the larger integer. When the algorithm terminates, we are left with a
simplicial complex X ′ whose vertex set is the set of all maximal squarefree integers in [143], that is, squarefree
integers i such that no squarefree multiple of i belongs to [143].

We can safely ignore vertices in X ′ corresponding to primes in (143/2, 143] as these isolated vertices have

no bearing on H̃2(X ′). The main component in X ′ is the simplicial complex on the vertex set

{30, 42, 58, 62, 66, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93,

94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119,

122, 123, 129, 130, 133, 134, 138, 141, 142, 143},

where, again, a set of vertices forms a face if and only if it is coprime-free. Consider the subcomplex on the
vertices {42, 66, 77, 78, 91, 143}. From the factorizations

42 = 2 · 3 · 7, 66 = 2 · 3 · 11, 77 = 7 · 11,

78 = 2 · 3 · 13, 91 = 7 · 13, and 143 = 11 · 13,

it is easy to check by hand that these vertices form the surface of an octahedron. For this to be a nontrivial
generator of H̃2(X ′), we must rule out the possibility that it is the boundary of a larger cycle. The complex X ′

is small enough that this is amenable to machine-assisted verification.

In Appendix B, we include a Sage program that performs the computation alluded to in the proof of
Proposition 8. This program reports that H̃2(X143) = Z, and H̃2(Xn) = 0 for all n ≤ 142.

5. A generalisation of primitive sets

A primitive set is a set S that does not contain more than one multiple of any integer in the set. We now
generalize the condition to forbid having more than s multiples of an integer in the set. We will refer to sets
satisfying this condition as s-multiple sets, and when s = 1 we recover the definition of a primitive set. In the
more general case, we still have the useful property that any maximal s-multiple set contains 1 or it contains
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every prime in the range (n/2, n]. The following theorem describes the homology of lattices associated with
s-multiple set families.

As with coprime-free sets, s-multiple families are not partition-intersecting in general, but unlike in the
previous section, we are able to fully describe the homology of the simplicial complexes corresponding to s-
multiple set families.

Theorem 5.1. Let s ≥ 2 be an integer and let Fs be the family of s-multiple subsets of N. Fix n > s, let
Fs,n = Fs ∩ 2[n], and let ∆n is the simplicial complex formed by the cross-cut of coatoms in Ls,n = Fs,n ∪ 1̂.
Then we have

rank H̃t(∆n) =

{(
n−2
s−1
)
, if t = s− 1;

0, otherwise.

Proof. Borsuk’s nerve theorem once again tells us that it suffices to study the simplicial complex Xn on the
vertex set {1, . . . , n}, with a face for every s-multiple set of vertices. We again use the Mayer–Vietoris sequence,
so let A be the simplicial star of 1 in Xn, and let B be the full simplicial subcomplex on {2, . . . , n}. The
intersection A ∩ B is the link of 1, in which every subset of {2, . . . , n} of cardinality s − 1 is a maximal face,
since 1 may be added to any such set without violating the s-multiple condition, but any subset of {2, . . . , n}
of cardinality s already contains s multiples of 1. Thus A∩B is the (s− 2)-skeleton of an (n− 2)-simplex, and
we have

rank H̃t(A ∩B) =

{(
n−2
s−1
)
, if t = s− 2;

0, otherwise.

The subcomplex A, being the simplicial star of 1, is evidently contractible. Now let p be a prime in the
range (n/2, n]. Since 1 is not a vertex of B, and since any multiple of p is greater than n, we see that for any F
in B such that p 6= F , the set F ∪{p} is also a face of B. This means that the entire simplicial complex B is the

simplicial star of p, and is thus contractible as well. But since H̃k(A)⊕ H̃k(B) ∼= 0 for all k, the Mayer–Vietoris
sequence informs us that

H̃k(Xn) ∼= H̃k−1(A ∩B)

for all k ≥ 1. This completes the proof.

Finally, by reasoning as in the proof of Theorem 2.1, we have a corollary concerning alternating sums of
counts of s-primitive sets.

Corollary 5.1. Let s ≥ 2 be an integer, let n > s, and let Ps,n,k denote the number of s-multiple subsets of [n]
with cardinality exactly k. Then

n∑
k=0

(−1)kPs,n,k = (−1)s
(
n− 2

s− 1

)
.
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[6] P. J. Cameron and P. Erdős, On the number of sets of integers with various properties, Number Theory,
Banff, 1990, 61–79.
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A. Numerical tables

This appendix contains values of Pn,k, Qn,k, and Rn,k for small values of n and k. The row sums of Pn,k, which
we called Pn in section 3, appear as A051026 in the On-line Encyclopedia of Integer Sequences (OEIS). The
row sums of Qn,k and Rn,k were referred to as Qn and Rn in section 3 and appear as A084422 and A326489,
respectively. The triangular numbers Pn,k, Qn,k, and Rn,k are A355145, A355146, and A355147 in the OEIS,
respectively.

Table 1: The number Pn,k of primitive k-subsets of [n]

n Pn,0 Pn,1 Pn,2 Pn,3 Pn,4 Pn,5 Pn,6 Pn,7 Pn,8 Pn,9

1 1 1 0 0 0 0 0 0 0 0
2 1 2 0 0 0 0 0 0 0 0
3 1 3 1 0 0 0 0 0 0 0
4 1 4 2 0 0 0 0 0 0 0
5 1 5 5 2 0 0 0 0 0 0
6 1 6 7 3 0 0 0 0 0 0
7 1 7 12 10 3 0 0 0 0 0
8 1 8 16 15 5 0 0 0 0 0
9 1 9 22 26 13 2 0 0 0 0

10 1 10 28 38 22 4 0 0 0 0
11 1 11 37 66 60 26 4 0 0 0
12 1 12 43 80 76 35 6 0 0 0
13 1 13 54 123 156 111 41 60 0 0
14 1 14 64 161 227 180 74 12 0 0
15 1 15 75 206 323 299 161 47 6 0
16 1 16 86 253 425 421 242 75 10 0
17 1 17 101 339 678 846 663 317 85 10
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Table 2: The number Qn,k of pairwise coprime k-subsets of [n]

n Qn,0 Qn,1 Qn,2 Qn,3 Qn,4 Qn,5 Qn,6 Qn,7 Qn,8

1 1 1 0 0 0 0 0 0 0
2 1 2 1 0 0 0 0 0 0
3 1 3 3 1 0 0 0 0 0
4 1 4 5 2 0 0 0 0 0
5 1 5 9 7 2 0 0 0 0
6 1 6 11 8 2 0 0 0 0
7 1 7 17 19 10 2 0 0 0
8 1 8 21 25 14 3 0 0 0
9 1 9 27 37 24 6 0 0 0

10 1 10 31 42 26 6 0 0 0
11 1 11 41 73 68 32 6 0 0
12 1 12 45 79 72 33 6 0 0
13 1 13 57 124 151 105 39 6 0
14 1 14 63 138 167 114 41 6 0
15 1 15 71 159 192 128 44 6 0
16 1 16 79 183 228 157 56 8 0
17 1 17 95 262 411 385 213 64 8

Table 3: The number Rn,k of product-free k-subsets of [n]

n Rn,0 Rn,1 Rn,2 Rn,3 Rn,4 Rn,5 Rn,6 Rn,7 Rn,8 Rn,9

1 1 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0
3 1 2 1 0 0 0 0 0 0 0
4 1 3 2 0 0 0 0 0 0 0
5 1 4 5 2 0 0 0 0 0 0
6 1 5 9 6 1 0 0 0 0 0
7 1 6 14 15 7 1 0 0 0 0
8 1 7 20 29 22 8 1 0 0 0
9 1 8 26 43 38 17 3 0 0 0

10 1 9 34 68 76 47 15 2 0 0
11 1 10 43 102 144 123 62 17 2 0
12 1 11 53 143 234 238 149 55 11 1

B. Computer verification of Proposition 8

The following Sage program verifies that n = 143 is the first example for which Xn, as defined in Proposition 8,
has nontrivial second homology, and in fact, it shows that H̃2(X143) = Z. We did not pay particular attention
to the efficiency of runtime; nonetheless the entire computation took less than eight minutes on a standard
laptop computer with 16 GB of RAM and a 2.4 GHz Intel Core i5 processor.

def coprime free second homology(n):

F = set()

# build set of maximal squarefree integers in [n]
for i in reversed(range(1,n+1)):

if not is squarefree(i):

continue

dominated = False
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for j in F:

if j % i == 0:

dominated = True

break

if not dominated:

F.add(i)

# build graph on composite numbers in F ,
# where i−− j if and only if gcd(i, j) > 1
G = Graph()

for i in F:

if not is prime(i):

G.add vertex(i)

for i in G.vertices():

for j in G.vertices():

if i < j and gcd(i,j) > 1:

G.add edge(i,j)

S = G.clique complex()

return(S.homology(2))

# verify that the smallest example with nontrivial
# second homology is when n = 143
for n in range(1,144):

print(n, coprime free second homology(n))
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