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ABSTRACT: Many generating functions of combinatorial systems have palindromic coefficients. A notable
example is the nth Eulerian polynomial A, (z). It is known that a palindromic polynomial f(x) of degree 2n
can be expressed as z"Q(z + %) for some polynomial Q(x) of degree n. By exploring the real-rootedness of
Q(z), we are able to infer the corresponding property of f(z). By representing A, (x) in the said form, we give
new proof of the real-rootedness and interlacing property of A,(x). This same approach applied to the nth
alternating Eulerian polynomial En(a:) allows us to infer the interlacing/alternating property of the real and
imaginary parts of its non-real zeros. The analogous type B results are also presented.
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1. Introduction

Let n be a positive integer. Denote by A,(z) the nth Eulerian polynomial. Two remarkable properties of
A, (x) are the simple (—o0, 0)-rootedness and A, (x) interlacing A, 1(x). The latter interlacing property is a
strengthening of the real-rootedness, which in turn implies the unimodality and log-concavity of coefficients.

Variants of Eulerian polynomials are available in the literature. Chebikin [1] considered A, (z), the alternat-
ing analogue of A, (z). Researchers studied properties of A, (z) that parallel those of A, (z). Ma and Yeh [4]
showed that all the zeros of fin(x) are non-real of moduli 1 with their real and imaginary parts exhibiting
certain interlacing/alternating properties.

Although A\n(m)’s are not real-rooted, they are closely related to some real-rooted polynomials R%(x) by

jn(x) =1+ I)X(n even)deRZ(x + %)’ (1)

where 2d% :=n—1— x(n even). The key to this connection with R%(z) is the palindromicity of the coefficients
of En(x) The real-rootedness and interlacing/alternating property of R%(z), however, allow us to deduce the
interlacing/alternating property of the real, and imaginary, parts of zeros of A\n(a:) See Theorem 4.2.

Analogous representations of the Eulerian polynomials A, (z) allow us to approach their real-rootedness and
interlacing property from the palindromic perspective. The alternating Eulerian polynomial gn(x), although
not being real-rooted, fits the present discussion because it falls within the regime of the equation x + % =«
having non-real zeros; its Eulerian counterparts fall within the regime of having real zeros.

The same can be said about the type B Eulerian polynomial B, (x) as well as its alternating analogue
En(fb) The organization of this paper is as follows. In Sections 2-3, we look at representations of A, (x) and
B, (z) similar to (1) and study properties of the concerned polynomials. In Section 4-5, we do the same to the
alternating Eulerian polynomial A, (z) as well as its type B analogue B, ().

2. The type A Eulerian case

We study in this section the A, (x)-analogue of (1).
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Let n € N. When n is even, the palindromicity of A, (z) implies that  + 1 is a factor of A, (x). Thus, we
let A, (z) = (1 +z)X(mevem) A, (z) for some polynomial A, (z). The first few members of A, () are:

Aj(x) = Ag(z) =1, As(z) =144z +2% Au(z) =1+10z+ 22,
As(z) = 1+ 260 + 662 + 262> + 2*,  Ag(x) = 1+ 56 + 24627 + 562° + 2.
Observe that 2d2 := deg A, (z) = n — 1 — x(n even).
Lemma 2.1. Forn > 1, gn(x) satisfies the following recurrence relations:
Aopi1(z) = (14 (24 2n)z + (2n — 1)2%) Agn (@) + 2(1 — 22) A}, (2), (2)
(14 2) Ao (@) = (20 — V) + 1) A1 (2) + (1 — 2) B, (2). (3)
Proof. Substituting Agy,41(x) = Agni1(z) and Asy, (z) = (1 + 2)As, (x) into the recurrence
Api1(z) = (nx + DA, (2) + 2(1 —2)AL (), n=1,2,...,
and simplifying, (2) follows. The proof of (3), being similar, is omitted. O

Example 2.1. Consider Az(z). We have
Ar(z) = 2® (@ + L)% +120(z + 1)? + 1118(z + 2) + 2176)

so that Az(x) = 23QA(x + 1), where Q#(x) = 2® + 1202% + 1118z + 2176.
Supported by the preceding example, we postulate that
~ 1
Ay(a) = e Qi (a + ) (4)
x
for some polynomial Q2 (z). The first few members of Q4 (x) are:
Q@) =Ql(@) =1, Q@) =z+4, Qi) =2+10, Qf(x)=21’+26x+064,
Qi(x) = 2% 4 56z + 244, Q4 (z) = 23 + 1202° 4 1118z + 2176.
The above list suggests that Q2 () € N[z] is of degree d?.
Proposition 2.1. For n > 1, the polynomial Qﬁ (z) satisfies the following recurrence relations:
Qa1 (7) = (24 20+ n2)Q3, () + (4 — 2%)(Q3,) (@), (5)
Qi (%) = nQhy—1(x) + (2 — 2)(Q3,-1)' (2), (6)
with initial condition Q1 (z) = 1.
Proof. Substituting Ay, 1(z) = 2"Q%, 41 (z + 1) and Agp () = 2"1Q8 (z + 1) into (2), canceling 2" from
both sides, followed by replacing = + % by x, (5) follows. The recurrence (6) follows similarly and whose proof
is omitted. ]

Proposition 2.2. Forn > 1, we have Q*(z), A,(z) € N[z].

A
Proof. Write Q2 (x) = ZZ;O ¢z, By extracting the coefficients of z* in (5)-(6), we have the following
recurrences:

ok = 2+ 2n)ch, .+ (n—k+1)ch, o +4(k + 1)chy x4,

A A
Cfn,k = (n—k)cg, 1+ 2k + 1o 1 111

whose coefficients are all positive. It then follows by induction that c;;‘)k €N, ie., QA(z) € N[z]. By virtue of

(4), Ap(z) € N[z] follows. O

Theorem 2.1. Forn >3, Q{(z) is simply (—oo, —2)-rooted and Qi (x) strictly alternates left of Q4 (z) or
Qi (z) strictly interlaces Q4 (z) depending on whether n is odd or even.
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Proof. Induction on n. It is clear that Q7' (z) alternates left of Q3 (7). Since Q& () =0 <= x = —13++/105
and —13 — /105 < —10 < —13++/105 < —2, it follows that Q7' (z) interlaces QZ'(x). Thus, cases n = 3,4 hold.
Assume that the result holds for n > 3.

If n is odd, then d4 = d4,, = (n—1)/2. Let zh < a:;;‘g << xﬁ)(n_l)m < —2 be the zeros of Q4 (x).
Define also x£70 := —o00 so that sgn Qn+1($f,o) = (=1)(»=D/2 As

sgn Qna (275) = sen((2 — 23,,)(Qn) (2)) = (D)2, =12, 25t

there exist xﬁﬂ,j € (xﬁ,jq@ﬁ,j) such that Qfﬂ(xﬁﬂ’j) = 0. This proves Qi (z) alternating left of Q2 ().
If n is even, then d2 = n/2 —1 and dit,; = n/2. Let xil < xf’z < - < xin/%l < —2 be the zeros of
Qi (). Define also z;} := —o0 and z2} nj2 = —2 so that sgn Qa1 (Tno) = (—1)"/2. As

-1

)

sgn Qi1 (zh ;) = sgn((4 — (zo )NQM) (xa ;) = ()22 j=12...,

and sgnQﬁH(fo‘n/Q) = sgn 2Q4 (v n/2) = 1. Thus, there exist 271 € (xAJ 1 nJ) such that Q4 (z n+17g) =
0,j=1,2,...,%. This proves Q: (z) interlacing Q7 (z).
This finishes the induction and the proof of the theorem. O

w[3

Since Q4 (z) € N[z], in principal, its coefficients are amenable to a combinatorial interpretation so that it is
natural to ask the next question.

Question 2.1. Forn > 1, what do the coefficients of Q2 (z) count?

Lemma 2.2. Let « € (—00,—2). Then the equation x + % = « has distinct negative real roots.

Proof. We have x + + = o <= 2% — az + 1 = 0, whose roots are atvar-4 Vé"2_4. Since 0 < Va2 —4 < |a] = —
atval—l ¢ (_o0,0) follows. O

Lemma 2.3. The mapping ®: (—oco0, —2) — (—o0, —1) defined by &(x) = T=E== V;Z)_‘l for all x € (—o0, —2) is an
order preserving bijection.

o . R s . _ . _ .
Proof. Let z € (—o0, —2). Since &'(z) st >0, xilirlz— O(x) 1 and wEIPoo O(z) 00, ®(x) being
an order preserving bijection follows. O

4 € (o0, —2) satisfies Q2 (a?) = 0, we conclude
from Theorem 2.1 and Lemmas 2.2-2.3 that all zeros of A, (x) are simple and negative. More specifically, let

af},l < oz,?z << O‘ﬁ,d:} be the zeros of Q2 (c). Then xﬁ’j = (I)(O‘ﬁ,j)’ j=1,2,...,d4, are the zeros of A, (z)

s Yo

Since the zeros of A, (z) satisfy x + L = a?, where a

in (—oo 71) in ascending order.
That Q7 () strictly alternating left of Q7 () or Q2 (z) strictly interlacing Q7 (z) depending on whether
n is odd or even then translates to become A, 1 (z) strictly alternates left of A, (z) or A, (x) strictly interlaces
A,i1(z) in (=00, —1) depending on whether n is odd or even.
a’+y/(a4)2-4

. Av—1 _ 2 o . . 1_ A
Since (o)~ = Py vy i 5 is the other root of the equation z + - = o, it follows that
(zo )7t ... (z 4) 7t are the zeros of A,(x) in (—1,0) in descending order. Together with the zero z = —1

when n is even, A, (z) interlacing A,,41(z) follows.

3. The type B Eulerian case

Let n € N. Denote by By, (x) the nth type B Eulerian polynomial. When n is odd, the palindromicity of B,,(x)
implies that 1+ z is a factor of B, (z). So, we write B, (z) = (1 4 z)X(" °d) B (2) for some polynomial B, (z).
The first few members of B, (x) are:

By(z) =146z + 22, Bs(z) =1+ 22z + 22,

B (x)
By + 761 4 23022 4 762° + 2%,  Bs(z) = 1 4 2362 + 144622 + 2362° + 2.

(z)

It is clear that 2d5 := deg B, (z) = n — x(n odd). From the recurrence for B, (z), namely,

1,
1

Bpii(z) = (2n+ 1)z +1)B,(z) +22(1 —x)B,(z), n=12,...,
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we have

égn(x) = (1 +24+4n)z+ (-3+ 4n)x2)§2n_1(3:) +2x(1 — xQ)Bén_l(x),
(14 #)Bani1(z) = ((4n + 1)z + 1) Bon(2) 4 22(1 — 2)Bb,, (2).

We next postulate that

Ba(r) =+ QP w + )

for some polynomial QZ (). The first few members of QZ () are as follows:

Qf (@) =1, Qy(x)=xz+6, QF(x)=x+22, QF(x)=a”+76x+ 228,
QF(x) = 2% + 236z + 1444, QF(x) = 2® + 72222 + 105402 + 22104,

which suggest that Q2 (z) € N[x] is of degree dZ.

Proposition 3.1. For n > 1, the polynomial QB (x) satisfies the following recurrence relations:

Qa1 (z) = (20 +1)Qg, (2) + 2(2 — 2)(Qz,) (), (7)
Qo (7) = (2+4n + (—1 +20)2) Q3,1 (2) +2(4 — 2*)(Q%,—1)'(x)- (8)

B
From the recurrences (7)~(8), the coefficients of Q5 (z) = Y47, B ak satisty

CQBn-i—l,k = (2n -2k + 1)CQBn,k: + 4(k + 1)02Bn7k+17
Can,k = (4n + Q)Canka +(2n -2k + 1)02Bn71,k71 +8(k + 1)Can71,k+1'

It then follows by induction that QB (z) € N[z]. Hence, B, (z) € N[z].
Since QZ(x) € N[z], it is natural to ask the next question.

Question 3.1. For n > 1, what do the coefficients of QB (x) count?
The proof of the next theorem, being similar to that of Theorem 2.1, is omitted.

Theorem 3.1. Forn > 2, QB (x) is simply (—oo, —2)-rooted and QF, | (x) strictly alternates left of QE (z) or
QB () strictly interlaces QF, | (x) depending on whether n is even or odd.

Since the zeros of By, (z) satisfy x + 1 = a8, where of € (—o00, —2) satisfies Q5 (o) = 0, we conclude from

Theorem 3.1 and Lemmas 2.2-2.3 that all zeros of B, (z) are simple and negative. Let ol <afy < <adf i

be the zeros of QB (aP) = 0. Then zf’j = @(af’j), j =1,2,...,dB, are the zeros of B,(z) in (—oo,—1) in
ascending order.
The interlacing/alternating conditions on QZ(x) then translates to become Enﬂ(x) strictly alternates left
of By, (z) or By () strictly interlaces By,11(z) in (—oo, —1) depending on whether n is even or odd.
. _ aP+4/(aB)2—4
Since ®(af)~! = an\/(2a3)274 = (2 )
the order preserving bijection in Lemma 2.3, it follows that (x5 )™,

is the other root of the equation x + % = a®, where ® is

.., (xB ;)" are the zeros of B, (z) in

(=1,0) in descending order. Together with the zero z = —1 when n is odd, B, (z) interlacing B, (z) follows.

4. The (type A) alternating Eulerian polynomials

In this section, we study the representation (1) of A, ().
Let n €N, [n—1]:={1,2,...,n—1} and &,, denotes the symmetric group of degree n. Chebikin [1] defined
the alternating descent set of o € &,, by

Altdes(o) := ({2i: 0(2i) < 0(2i+ 1)} U{2i —1: 0(2i — 1) > o(2))}) N [n — 1],
the nth alternating Eulerian polynomial by

A\H(CE) — Z xaltdes(a)7

oceES,
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where altdes(o) := # Altdes(o) is the number of alternating descents of o, and showed the following recurrence
holds:

2A,41(z) = (L+n+2z+(n— 122 A (x) + (1 —2)(1+22)A,(z), n=12.... (9)

The first few members of A, (z) are:

gl(:c) =1, //l\g(x) =1+z, A\g(.’ﬂ) =242z + 222, g4(x) =54 Tz + T2 + 523,
As(z) = 16 + 262 + 362> + 262° + 162,  Ag(z) = 61 + 117z + 18222 + 1822° + 1172 4 612°.

The palindromicity of A,(z) implies that z + 1 is a factor when n is even. So, we let A, (z) = (1 +
x)X(mevem) 4 (1) for some polynomial A, (). It is known that A, (x) has unimodal coefficients [2, Theorem 1.1].

Proposition 4.1. Forn >1, A, (z) satisfies the following recurrence relations:

240n11(x) = 2((L +n) (1 + 2+ 22) + (n — 1)2®) Ay, (z) + (1 — 2*) Ab, (2), (10)
2(1+ ) Agn(z) = 2(n + 2 + (n = D)a?) Az () + (1 — 2)(1 + 2°) A,y (). (11)

Proof. The recurrence (10) readily follows by substituting As,41(z) = Asni1(2) and As,(z) = (14 z)As, (2)
into (9). The proof of (11), being similar, is omitted. O

The first few members of A, (z) are:
Ay(z) = Ag(z) =1, As(z) =2+ 2z + 222, Ay(z) =5+ 2z + 522,
As(x) = 16 + 26 + 3622 + 262° + 162*,  Ag(z) = 61 + 562 + 12622 + 562> + 612,
Observe that 2d% := deg A,,(z) =n — 1 — x(n even). We postulate that

~ a 1
A, (z) = xd"RZ(x + ;)

for some polynomial R%(z). The first few members of R%(z) are:
Ri(x) =R5(z) =1, R§(x)=2x+2, Ri(z)=>5x+2,
Ri(z) = 162% + 260 +4, R%(z) = 612* + 56z + 4.

The above list suggests that R (z) € N[z] is of degree d2.

Proposition 4.2. For n > 1, the polynomial R%(x) satisfies the following recurrence relations:

2R5, (1 () = ((n = D)a® + (2n + 2)z + 4) B3, (x) + 2(4 — 2°)(R3,,)' (x), (12)
2R5,(x) = (2+ (n— Da) Ry, () + 2(2 — 2)(Rg, )’ (2). (13)

Proof. Substituting As,11(z) = 2" R, 1 (v + 1) and Agy(x) = 2" 'RY, (x + 1) into (10), canceling 2" from
both sides, followed by replacing I'Jr% by xz, (12) follows. The recurrence (13) follows similarly and whose proof
is omitted. O

Write R%(z) = ZZio cg7kxk. By equating coefficients of ¥ on both sides of (12)—(13), we obtain the
following recurrences:

Qan-&-l,k = (4k + 4)an,k + (2TL + 2)an,k—1 + (TL —k+ l)cgn,k—%
chn,k = (2k + 2)057171,]6 + (n - k)cgnfl,kfl‘

Unlike those cases in Sections 2-3, the integrality of Cp.i's does not follow immediately due to the presence
of the factor 2 on the left sides of these recurrences. The most natural way to establish R%(z) € N[z] is the
following:

Problem 4.1. Show that R%(x) is the generating function of a certain combinatorial system.

Theorem 4.1. For n > 3, R%(x) is simply (—2,0)-rooted and R%(z) strictly alternates left of, or strictly
interlaces, R% (), depending on whether n is odd or even.

ECA 4:2 (2024) Article #S2R14 5



Chak-On Chow

Proof. Induction on n. Since R§(z) =0 <= z = —-1and R{(z) =0 <= =z = —%, R§(x) alternating left
of R§(z) in (—2,0) follows. Since R¢(z) =0 = z = =BEM0 apd —2 < A3V o2 o Z3HVI0
holds, R$(x) interlacing RZ(z) in (—2,0) follows. Assume that the result holds for n > 3.

When n is odd, diy = dy 1y = (n —1)/2. Let =2 <way, <af, <--- <y, 4y, <0 be the zeros of Ry (z).
Define also 7, (.. /5 := 0 so that sgn R%+1(x2,(n+1)/2) =1. As

sgn 2Ry (x5 ;) = sgn(xp (2 — 2 ) (Rp) (a5, ) = (=102 =12, ol

there exist a7, ; € (@}, ;, 2% ;1) such that R} (x5, ;) =0forj =1,2,..., o=l ie., R%(z) alternates left
of RY 1 (x) in (—=2,0).

When n is even, dy = (n—2)/2 and dj,,; =n/2. Let =2 <af, <af, < - <l (n—2)/2 < 0 be the zeros

of R} (x). Define also a7  := =2 and a7, , := 0 so that sgn R (27 ) = (—=1)"/2 and sgn R, | (2 ny2) =1L
As
sgn QR?L—H(ITL,]') = Sgn(‘rz,j(4 - (Iz,j)z)(RZ)/(x?L,j)) - (*1)n/27j+17 J=12..., n;2,
there exist x5, ; € (zy, ;1,75 ;) such that Ry (x5, ;) =0for j=1,2,..., 3, i.e, R} () interlaces R} ()
in (—2,0).
This finishes the induction and the proof of the theorem. O

Lemma 4.1. Let o € (—2,0). Then all roots of x + % = a are non-real and of moduli 1.

Proof. We have = + % =a < 22— ax+1=0, whose roots eEivi=a® \/24—(12 have moduli 7W =1. O

Since the zeros of A, (z) satisfy x + 1 = a2 where a® € (—2,0) satisfies R%(a®) = 0, we conclude from
Lemma 4.1 that all zeros of A, () are non-real and of moduli 1.

Lemma 4.2. The mappings ®1,®2: (—2,0) — (—1,0) defined by ®1(x) = 5 and $3(x) = — V4;“"2, for all
x € (=2,0), are bijections with ®1 order preserving and @ order reversing.

Proof. The mapping ®; being an order-preserving bijection is obvious. Since ®4(x) = 5 \/Z—T < 0 for all
z € (—2,0), lim+ Py(z) =07, and lim Py(z) = —1F, P being an order reversing bijection follows. O
r——2 z—0—

Although A, (x)’s are not real-rooted, R%(z)’s are. Let —2 < apq <ap o< <ap . <0 be the zeros of

- ad A (a® )2 )
R} (). For j € [d}], the zeros of A, () corresponding to «, ; are —5+ + iz% = ®y(ay, ;) TiP2(af ;).

Define p%(z) = H;ii/lz(m — ®1(ay, ;) and gp(x) = H;ii/f(m — ®3(ay, ;). The following is a restatement of [4,

Theorem 4].

Theorem 4.2. For n > 3, A,(x) has non-real zeros ®y(aq, ;) £iPa(ay, ;) of moduli 1, j = 1,2,...,d5,, where

y» Yno

—2 < ap; <apy << apg. <0 are the simple zeros of R (). “Moreover, pe(x) alternates left of or
interlaces p | (x), and qp | (x) alternates left of i (x) or qp(x) interlaces qit(x), depending on whether n is
odd or even.

5. The type B alternating Eulerian polynomials

In this section, we study the type B analogue of (1).
Let n € N, [0,n—1]:={0,1,...,n—1} and B,, denotes the nth hyperoctahedral group. Ma et al. [3] defined
the type B alternating descent set of o € B,, by

Altdesp (o) := ({2i: 0(2i) < 0(2i+ 1)} U{2i —1: 0(2i — 1) > o(20)}) N [0,n — 1],

where ¢(0) := 0, the nth type B alternating Eulerian polynomial by

Bn(l‘) _ Z xaltdesB(J)7
oceB,

where altdesp (o) := # Altdesp (o) is the number of type B alternating descents of o, and showed the following
recurrence holds:

Bi1(®) = (1 +n+z+na®)By(z)+ (1 —2)(1+22)B.(z), n=12,...,
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with the initial conditions By () = 1+ 2. The first few members of §n(x)’s are as follows:

Bi(z) =1+, Ba(z)=3+2x+32% Bs(z)=11+ 13z + 132> + 1125,
By(x) = 57 + 76z + 11822 + 762 + 572",

By virtue of the palindromicity, z+1 is a factor of Bn(x)V when n is odd. So, we let En(m) = (14z)X(nodd) B ()
for some polynomial B,,(z). The first few members of B, (z) are:

Bi(x) =1, Bo(x)=3+2x+32% Bs(z) =11+ 22+ 1122,
By(x) = 57+ 76x + 11822 + 762 + 57z,  Bs(x) = 361 + 2362 + 7262 + 2362° + 3612*.

Proofs in this section are similar to those in Section 5. We simply state the results, and leave their proofs to
the interested readers.

Proposition 5.1. Forn > 1, B, (x) satisfies the following recurrence relations:
(1+2)Bani1(x) = (1 +2n + x + 2n2®) By, (z) + (1 — 2)(1 + 22) B, (2),
Bon(z) = (14 2n 4 2nz + (1 + 2n)2% + (=2 + 2n)2*) By, 1 (2) + (1 — 2M)BY,_ (2).
Observe that 2d% := deg B,,(z) = n — x(n odd). We postulate that

Bo(z) = 2% RE (z + 1)
X

for some polynomial RZ(Q:) The first few members of R (z) are:

=
=%
—
SL
|

=1, Rb(x)=32+2, RSx)=11z+2, RY(z)=>572>+ 76z +4,
RE(z) = 36127 4+ 2367 +4, Ry(x) = 27632° + 527022 + 1444z + 8.

The above list suggests that R’ (x) € N[z] is of degree d’.

Proposition 5.2. Forn > 1, the polynomial RY(x) satisfies the following recurrence relations:

R i1 (2) = (na + 1)R3, (2) + 2(2 — 2)(R3,) (2),
Ry, (2) = (2+ 20+ Do + (n = 1)a®) Ry, (2) + (4 — 2*) (R, ) (2).

. d : :
Write R (x) = Y3ty ch 2%, From the preceding recurrences, ¢!, ,’s satisfy

cgnJrl}k: = (2k + 1)cl2)n,k + (n —k+ 1)an,k717
an,k = (4k + Q)an—l,k +(2n + 1)an—1,k—1 +(n—k+ 1)an—1,k—2-

It then follows by induction that R (z) € N[z]. Hence, B, (z) € N[z].
Question 5.1. Forn > 1, what do the coefficients of Rt (z) count?

Theorem 5.1. For n > 2, Rb(x) is simply (—2,0)-rooted and RY(z) strictly alternates left of, or strictly
interlaces, R%_(z), depending on whether n is even or odd.

Since the zeros of B, (z) satisfy x + 1 = oP, where o’ € (—2,0) satisfies RY(a’) = 0, we conclude from
Lemma 4.1 that all zeros of B’ (x) are non-real and of moduli 1. 5
Let =2 <ab ; <ab, <---<ab ,, <O0bethe zeros of R} (x). For j € [dY], the zeros of B, (x) corresponding

toab ; are '”—l—:l:ziﬂ(a):(l) (a? )j:z<I>2(
b

b (x) = H;l (@ — <I>1(ab ) and ¢4 (z) = H;i 1(x <I>2( j))- The type B analogue of Theorem 4.2 is

) where @1, ®5 are those bijections in Lemma 4.2. Define

Theorem 5.2. Forn > 2, B, ( ) has non-real zeros ®1(ab ) Ti®a(a ’.) of moduli 1, j = 1,2,...,d", where

) n’

-2 <ab; < ab, < - <ab <0 are the simple zeros of RY(x). Moreover, pl,(x) alternates left of or

interlaces pb_ | (z), and ¢4 () alternates left of ¢4 (x) or ¢4 () interlaces ¢° ., (z), depending on whether n is
even or odd.
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Ma and Yeh [4] approached the rootedness of A, (z) by connection with the derivative polynomials P, (z):

-~ 1
27(1 + 22) A, () = (1 — z)n+1pn<1 ”), n=1,2,...,
-z
where P, (z)’s are generated by P,.1(z) = (1 +2?)P.(z), n=0,1,..., with Py(z) = z.
Denote by {@,(z)} the other family of derivative polynomials generated by Q,i1(z) = xQ,(x) + (1 +
22)Q!(z), n=1,2,..., with Q;(z) = .
Ma and Yeh [4] conjectured that

— X

Bulw) = (1 —m)"QnG ”),

which was later given a generating function proof by Ma et al. [3]. A combinatorial proof was given recently
by Pan [5]. It would be interesting to approach the interlacing/alternating properties of the real and imaginary
parts of zeros of B,,(x) based on this connection with @Q,,(x).
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