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Abstract: In parking problems, a given number of cars enter a one-way street sequentially, and try to park
according to a specified preferred spot in the street. Various models are possible depending on the chosen rule
for collisions, when two cars have the same preferred spot. In classical parking functions, if a car’s preferred
spot is already occupied by a previous car, it drives forward and looks for the first unoccupied spot to park.

In this work, we introduce a variant of classical parking functions, called friendship parking functions, which
imposes additional restrictions on where cars can park. Namely, a car can only end up parking next to cars
which are its friends (friendship will correspond to adjacency in an underlying graph). We characterise and
enumerate such friendship parking functions according to their outcome permutation, which describes the final
configuration when all cars have parked. We apply this to the case where the underlying friendship graph is the
cycle graph. Finally, we consider a subset of classical parking functions, called cyclic parking functions, where
cars end up in an increasing cyclic order. We enumerate these cyclic parking functions and exhibit a bijection
to permutation components.
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1. Introduction

In this section, we introduce parking functions and friendship parking functions. Throughout the paper, n
represents a positive integer, and we denote [n] B {1, . . . , n}. Permutations will play a key role in our paper.
We denote Sn the set of permutations of the set [n]. For π ∈ Sn, we write π = π1 · · ·πn using standard one-line
notation. We also denote π−1 the inverse permutation of π. That is, for any i ∈ [n], π−1i is the unique j ∈ [n]
such that πj = i.

1.1 Parking functions and their variations

A parking preference is a vector p = (p1, . . . , pn) ∈ [n]n. We will regard pi as the preferred spot of car i in a car
park with spots labelled 1, . . . , n. Given a parking preference p, the classical parking process for p is described
as follows.

Cars enter the car park sequentially in order 1, . . . , n, and initially all spots in the car park are unoccupied.
When car i enters, it will occupy (park in) the first spot k ≥ pi which is unoccupied at that point. If no such
spot exists, car i exits the car park, having failed to park. We say that p is a classical parking function if all
n cars are able to park through this process. We denote PFn the set of all classical parking functions with n
cars/spots.

The outcome map of classical parking functions is the map OPFn
: PFn → Sn which associates a permutation

OPFn (p) = π = π1 · · ·πn of [n] to a classical parking function p as follows. For any i ∈ [n], we set πi to be the
label of the car ending up in spot i after all cars have parked in the classical parking process for p.
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The displacement vector of a classical parking function p ∈ PFn is defined by disp (p) = (d1, d2, . . . , dn),
where di B π−1i − pi for all i ∈ [n]. Note that for i ∈ [n], di measures the distance that car i has travelled
between its preferred spot pi and the spot π−1i where it finally parks. We say that di is the displacement of car
i in the parking function p. The total displacement of p is defined by |disp (p) | B

∑n
i=1 di.

Example 1.1. Consider the parking preference p = (3, 1, 1, 2), and let us illustrate the classical parking process
for p.

• Car 1 has preference p1 = 3. Spot 3 is unoccupied at that point, so car 1 parks in spot 3 (in fact, car 1
will always park in its preferred spot), with displacement d1 = 0.

• Car 2 has preference p2 = 1. Spot 1 is unoccupied at that point, so car 2 parks in spot 1, with displacement
d2 = 0.

• Car 3 has preference p3 = 1. However, spot 1 is occupied at this point (by car 2), so car 3 cannot park
there. Instead, it continues to drive forward and finds the first unoccupied spot after its preference, which
is spot 2, and so car 3 parks there. The displacement is given by d3 = 2− 1 = 1.

• Lastly, car 4 has preference p4 = 2. Again, spot 2 is occupied (by car 3), as is spot 3 (by car 1). Thus,
car 4 will park in spot 4, which is in fact the only unoccupied spot at this point. The displacement is given
by d4 = 4− 2 = 2.

Finally, the cars are all able to park, so p = (3, 1, 1, 2) is a classical parking function. We also get the outcome
OPFn

(p) = 2314, and the displacement vector disp (p) = (0, 0, 1, 2). The entire classical parking process is
illustrated in Figure 1 below.
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Figure 1: Illustrating the parking process for the classical parking function p = (3, 1, 1, 2).

Parking functions were originally introduced by Konheim and Weiss [16] in their study of hashing functions.
Since then, they have been a popular research topic in Mathematics and Computer Science, with rich connections
to a variety of fields such as graph theory, representation theory, hyperplane arrangements, discrete geometry,
and the Abelian sandpile model [5,11,22,23]. We refer the interested reader to the excellent survey by Yan [26].

We may notice that in classical parking functions, the handling of collisions – when a car’s preferred spot
is already occupied when it enters the car park – appears quite flexible. Indeed, many variations of parking
functions with different parking rules have been discussed in the literature. We list some of them briefly here.
For a more detailed survey of generalisations and open problems related to parking functions, see [4].

• Defective parking functions [3]. This model follows classical parking rules, with m cars and n spots,
and k cars being unable to park (k is called the defect of the parking function).

• Naples parking functions [7,9,25]. This model allows for some backward movement of cars from their
preferred spot if it is already occupied.

• Parking assortments and parking sequences [1, 6, 13, 14]. These models involve cars of different
sizes, with the car park having just enough space for all cars to park.

• Subset parking functions [21]. In this model, cars have a preferred ordered subset of spots in which they
can park. See also [8] for an in-depth treatment of interval parking functions, where each preference
subset is a sub-interval of [n], and [2] for recent work on generalisations of these.

• Vector parking functions, or u-parking functions [20, 27]. For a vector u = (u1, . . . , un), we say that
a parking preference p = (p1, p2, . . . , pn) is a u-parking function if the non-decreasing rearrangement
a = (a1, . . . , an) of p satisfies ai ≤ ui for all i ∈ [n]. These correspond to classical parking functions when
u = (1, 2, . . . , n) (see e.g. [26, Section 1.1] for this characterisation of classical parking functions).
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• Graphical parking functions on some graph G, or G-parking functions [17]. In this model, cars park
on the vertices of the graph G instead of in a one-way street.

• Higher-dimensional parking functions. There are several relevant models in this area, such as the
(p, q)-parking functions of Cori and Poulalhon [10], or the tiered parking functions of Dukes [12].
Both of these models involve cars of different colours or tiers, with extra conditions on where a car can
park depending on its tier/colour. Snider and Yan [19, 20] then defined a concept of multidimensional
U-parking functions, where U is a collection of multidimensional vectors. These generalise the (p, q)-
parking functions of Cori and Poulalhon and the (one-dimensional) vector parking functions, and also
connect to the graphical parking functions discussed above.

• MVP parking functions [15,18]. In this model, priority is given to cars which enter later in the parking
process. That is, when a car enters the car park, if its preferred spot is occupied by a previous car, it will
“bump” the earlier car out of that spot, forcing it to drive on and find a new spot to park in.

In this paper, we consider a new variation on parking functions, which we call friendship parking functions.
Informally, cars follow the classical parking process, but can only park next to cars which they are “friends”
with (friendship will be determined by adjacency in an underlying graph).

1.2 Friendship parking functions

In this section, we formally define the concept of friendship parking functions. Let G be a graph with vertex
set [n]. We say that two vertices i and j are adjacent in the graph G if {i, j} is an edge of G. As in the classical
case, we consider a parking preference p = (p1, . . . , pn) ∈ [n]n. The friendship parking process is described as
follows.

Cars enter sequentially in order 1, . . . , n into a car park with spots labelled 1, . . . , n. All spots are initially
unoccupied. For i ≥ 1, we say that a spot k is available for car i if it is unoccupied when car i enters the car
park, and each of the two neighbouring spots k − 1 and k + 1 are either unoccupied, or occupied by a car j
(necessarily j < i) which is adjacent to i in the graph G. Here we consider spots 0 and n+ 1 to be unoccupied
by convention when handling the cases k = 1 or k = n. When car i enters the car park, it occupies (parks in)
the first spot k ≥ pi which is available for i. If no such spot exists, the car exits the car park, having failed to
park.

We say that p is a friendship parking function for G, or G-friendship parking function, if all n cars are able
to park following this process. We denote FPF (G) the set of all G-friendship parking functions. As in the
classical case, we can define the outcome map OFPF(G) : FPF (G)→ Sn. For a G-friendship parking function p,
we let π = π1 · · ·πn = OPFG

(p) be the permutation such that for any i ∈ [n], πi is the label of the car ending
up in spot i when running the friendship parking process for p.

Note that if G is the complete graph on n vertices (with edges between any pair of distinct vertices), the
notions of classical and friendship parking functions are identical. Indeed, in this case, a spot is available for i
if, and only if, it is unoccupied when i enters the car park.

Example 1.2. Let G be the cycle on n = 4 vertices, with edges {1, 2}, {2, 3}, {3, 4}, {4, 1}. Consider the parking
preference p = (2, 1, 2, 2), and let us illustrate the G-friendship parking process for p.

• Car 1 has preference p1 = 2. Spot 2 is available for car 1 since both adjacent spots are both unoccupied
(this will always be the case for car 1’s preferred spot). Therefore car 1 parks in spot 2.

• Car 2 has preference p2 = 1. The neighbouring spot 2 is occupied by car 1 at this point, but vertices 1 and
2 are adjacent in the graph G, so spot 1 is available for car 2, allowing it to park there.

• Car 3 has preference p3 = 2. However, spot 2 is occupied at this point (by car 1), so is not available for
3. Spot 3 is unoccupied, but the adjacent spot 2 is occupied by car 1, and 1 and 3 are not adjacent in G.
Therefore spot 3 is not available for car 3. Finally, spot 4 is also unoccupied, as is its neighbouring spot
3, which implies that it is available, and thus car 3 parks in spot 4.

• Lastly, car 4 has preference p4 = 2. Spot 2 is occupied, so car 4 can’t park there. But spot 3 is unoccupied,
and the cars occupying its neighbouring spots 2 (car 1) and 4 (car 3) are both adjacent to 4 in G, which
means spot 3 is available for car 4, so it parks there.

Finally, the cars are all able to park, so p = (2, 1, 2, 2) is a G-friendship parking function, and we get the
outcome OFPF(G) (p) = 2143. The entire friendship parking process is illustrated in Figure 2 below.
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Figure 2: Illustrating the parking process for the friendship parking function p = (2, 1, 2, 2).

Example 1.3. Let G again be the cycle graph on 4 vertices, as in Example 1.2, and consider the parking
preference p = (4, 2, 2, 1). Car 1 parks in spot 4, and car 2 parks in spot 2 (both neighbouring spots are
unoccupied). However, car 3 cannot park. Indeed, the preference of car 3 is p3 = 2. At this point, the only
unoccupied spot k ≥ 2 is k = 3, but the neighbouring spot 4 is occupied by car 1, which is not adjacent to 3 in
G. Therefore spot 3 is not available for car 3, and so there are no available spots on or after car 3’s preference
for it to park in. Thus p is not a G-friendship parking function. This parking process is illustrated on Figure 3
below.
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Figure 3: Illustrating the friendship parking process for the parking preference p = (4, 2, 2, 1). Here, car 3 is
unable to park, so p is not a friendship parking function.

It is worth noting that in the previous example, p = (4, 2, 2, 1) is a classical parking function (we get the
outcome OPF4

(p) = 4231). This shows that our new notion of friendship parking functions is a meaningful
variant of classical parking functions.

1.3 Contents of the paper

Our paper is organised as follows. In Section 2 we study this new friendship parking process. We begin in
Section 2.1 by exhibiting a link between G-friendship parking functions and Hamiltonian paths of the graph
G (Proposition 2.1), and by giving some results connecting friendship and classical parking functions (Propo-
sitions 2.2 and 2.3). Section 2.2 then gives a characterisation and enumeration formula for friendship parking
functions on general graphs (Theorem 2.1 and Corollary 2.1). In Section 2.3 we apply these results to the case
where G is the cycle graph on n vertices, yielding the enumeration formula from Theorem 2.2.

In Section 3 we return to the study of classical parking functions, considering those whose outcome is an
increasing cycle of the form IncCyci,n B i(i + 1) · · ·n12 · · · (i − 1) for some i ∈ [n]. We call such parking
functions cyclic parking functions, and count them (Proposition 3.1 and Corollary 3.1). We then describe a
bijection between cyclic parking functions and permutation components, which maps the displacement of cars
to inversions in the corresponding permutation (Theorem 3.2). Finally, Section 4 gives a brief summary of our
results, and outlines some possible future research directions on friendship parking functions.

2. Characterising and counting friendship parking func-
tions

In this section, we give characterisations and enumeration formulas for friendship parking functions on general
graphs G. We then apply these to the case where G is the cycle graph on n vertices.

ECA 4:3 (2024) Article #S2R21 4
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2.1 Friendship parking functions and Hamiltonian paths

We begin by exhibiting a connection between G-friendship parking functions and Hamiltonian paths of the
graph G. To do this, we first recall some relevant concepts. Given a graph G, with vertex set [n], a path of
G is a sequence of distinct vertices P = (v1, v2, . . . , vk) ∈ [n]k such that {vi, vi+1} is an edge of E for each
i ∈ {1, . . . , k − 1}. Moreover, P is called a Hamiltonian path if k = n, i.e. every vertex of G appears in P.

Recall that for a G-friendship parking function p ∈ FPF (G), we can define its outcome π = OFPF(G) (p) =
π1 · · ·πn, which is a permutation of all the cars (for i ∈ [n], car πi is the car that ends up in spot i). In friendship
parking functions, the relationship among cars is indicated by a graph G and the permutation reflects that cars
(vertices) that can park next to each other must be “friends” (adjacent in the graph G). We can therefore
obtain the following fact.

Proposition 2.1. Let G = (V,E) be a graph. Then the set of G-friendship parking functions is non-empty if,
and only if, G contains a Hamiltonian path.

Proof. Suppose there exists some p ∈ FPF (G), and consider its outcome OFPF(G) (p) = π1 · · ·πn. We claim
that P B (π1, . . . , πn) is a Hamiltonian path of G. Indeed, consider a car i = πk which parks in some spot
k ≤ n − 1 in the friendship parking process. We wish to show that j B πk+1 is adjacent to i in G. If j < i,
then car j has already parked in spot k+ 1 when car i arrives. This means that for i to park in spot k, vertices
i and j must be adjacent in G (since spot k must be available for car i when it arrives). The same applies if
j > i: when car j arrives, car i has already parked in spot k, so j can only park in spot k + 1 if i and j are
adjacent in G. Therefore P is a Hamiltonian path, as desired.

Conversely, suppose that G contains a Hamiltonian path, say P = (v1, v2, . . . , vn) ∈ [n]n where the vi are
distinct. By construction, π B v1 · · · vn is a permutation of [n]. Define a parking preference p = (p1, . . . , pn) by
pi = π−1i for all i ∈ [n]. Then it is straightforward to check that p ∈ FPF (G) and OFPF(G) (p) = π. Indeed, in
the friendship parking process for p, each car can simply park in its preferred spot (since P is a Hamiltonian
path, these are always available).

Proposition 2.1 establishes a connection between the outcomes of G-friendship parking functions and Ha-
miltonian paths of G. With a slight abuse of notation, we will henceforth consider a Hamiltonian path of G to
be a permutation π = π1 · · ·πn of [n] such that {πi, πi+1} is an edge of G for all i ∈ [n− 1]. We denote H (G)
the set of Hamiltonian paths of G. We end this section by stating two fairly straightforward propositions that
connect classical and friendship parking functions.

Proposition 2.2. We have FPF (G) ⊆ PFn.

Proof. We first recall a well-known characterisation of classical parking functions. For a parking preference
p = (p1, . . . , pn), we denote p̃ = (p̃1, . . . , p̃n) the non-decreasing rearrangement of p. Then p ∈ PFn if, and only
if, we have p̃i ≤ i for all i ∈ [n] (see e.g. [26, Section 1.1]).

Now let p ∈ FPF (G) be a G-friendship parking function, and denote p̃ its non-decreasing rearrangement.
Seeking contradiction, suppose there is some i ∈ [n] such that p̃i > i. By construction, this means that
|{j ∈ [n]; pj ≤ i}| ≤ i− 1. But in the friendship (or indeed classical) parking process, each car necessarily ends
up parking on or after its preferred spot. In particular, for any i ∈ [n], there must be at least i cars whose
preference is one of the first i spots (since exactly i cars must end up in these spots). This yields the desired
contradiction with the above inequality.

Proposition 2.3. Let p ∈ PFn be a parking function such that its outcome OPFn
(p) is a Hamiltonian path of

the graph G. Then we have p ∈ FPF (G), and OFPF(G) (p) = OPFn
(p).

Proof. In fact, in this case, the friendship and classical parking processes are identical. Indeed, when a car i
parks in some spot k in the classical parking process, it will never move from spot k thereafter. As such, since
π B OPFn

(p) ∈ H (G), this implies that the spot k is available at that time for car i in the friendship parking
process. Since by definition k is the first value greater than or equal to pi which is unoccupied when i enters
the car park, car i also parks in k for the friendship parking process. This completes the proof.

Remark 2.1. Propositions 2.2 and 2.3 are not quite converse to each other. Indeed, there exist friendship
parking functions (which are thus also classical parking functions) whose classical outcome is not a Hamiltonian
path. Example 1.2 gives an example of such a parking function given by p = (2, 1, 2, 2). This is a friendship
parking function for the 4-cycle, but its classical outcome is OPF4

(p) = 2134, which is not a Hamiltonian path
of the 4-cycle (vertices 1 and 3 are not adjacent). As such, friendship parking functions are not just classical
parking functions whose outcome is a Hamiltonian path.

ECA 4:3 (2024) Article #S2R21 5
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2.2 Characterising friendship parking functions according to their outcomes

In this section, we characterise and enumerate friendship parking on general graphs according to their outcome
permutation. For π ∈ Sn, the outcome fibre of π is the set O−1FPF(G) (π) B {p ∈ FPF (G) ; OFPF(G) (p) = π} of

G-friendship parking functions whose (friendship) outcome is π. We begin by giving the definitions of blocker
and blocking sequence, which will be used in the subsequent results.

Definition 2.1. Let π ∈ H (G) be a Hamiltonian path of the graph G, and i ∈ [n]. We say that j = πk is a
blocker for i in π, or equivalently that i is blocked by j in π, if either of the two following conditions holds:

1. We have j ≤ i; or

2. We have j > i, but there is a neighbour ` of j in π, i.e. ` ∈ {πk−1, πk+1} such that ` < i and ` is not
adjacent to i in G.

The blocking sequence for i in π is the longest sub-sequence of π, ending at i, whose elements are all blockers
for i. We denote B(i, π,G) the blocking sequence for i, and b(i, π,G) B |B(i, π,G)| its length.

Example 2.1. Let G be the graph in Figure 4, with Hamiltonian path π = 87152463 (drawn in red). Then
i = 4 is blocked by: 1, 2, 3, 4 (all ≤ 4), as well as 5 and 7. For 5 and 7, note that they are both neighbours of
` = 1 in π, which satisfies ` = 1 < 4 = i, and 1 is not adjacent to 4 in G, so Condition (2) of Definition 2.1
applies.

However, j = 8 is not a blocker, since its only neighbour ` = 7 in π is not strictly less than i = 4. Neither
is j = 6 a blocker. Indeed, its neighbours in π are 3 and 4. Among these, the only value which is strictly less
than i = 4 is ` = 3, and there is an edge between ` = 3 and i = 4 in G, so Condition (2) of Definition 2.1 does
not apply here. The blocking sequence for 4 is then B(4, π,G) = 71524, with length b(4, π,G) = 5.

1

2

3

4

5

6

78

Figure 4: The graph G with Hamiltonian path π = 87152463 (red)

We now state the main result of this section, which gives a complete characterisation of the outcome fibres
of friendship parking functions in terms of blocking sequences.

Theorem 2.1. Let π ∈ H (G) be a Hamiltonian path of G, and p = (p1, . . . , pn) ∈ [n]n a parking preference.
Then we have p ∈ O−1FPF(G) (π) if, and only if, for all i ∈ [n], we have pi ∈ Si, where Si B {s ∈ [n]; πs ∈
B(i, π,G)} is the set of spots that are occupied in the outcome π by an element in the blocking sequence for i in
π.

Example 2.2. Consider the graph G from Figure 4 with corresponding Hamiltonian path π = 87152463 as in
Example 2.1. We wish to calculate the fibre set O−1FPF(G) (π) by applying Theorem 2.1. For this we calculate the

blocking sequences B(i, π,G) for each element i ∈ [8], and their corresponding index sets Si B {s ∈ [n]; πs ∈
B(i, π,G)}.

• For i = 1, B(1, π,G) = 1 = π3, so S1 = {3}.

• For i = 2, B(2, π,G) = 7152 = π2π3π4π5, so S2 = {2, 3, 4, 5}.

• For i = 3, B(3, π,G) = 3 = π8, so S3 = {8}.

• For i = 4, B(4, π,G) = 71524 = π2 · · ·π6, so S4 = [2, 6].

• For i = 5, B(5, π,G) = 15 = π3π4, so S5 = {3, 4}.

• For i = 6, B(6, π,G) = 715246 = π2 · · ·π7, so S6 = [2, 7].

• For i = 7, B(7, π,G) = 7 = π2, so S7 = {2}.

• For i = 8, B(8, π,G) = 8 = π1, so S8 = {1}.

ECA 4:3 (2024) Article #S2R21 6
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Finally, we get the fibre set O−1FPF(G) (π) =
8∏
i=1

Si = {3} × [2, 5] × · · · × {2} × {1}, and the fibre size∣∣∣O−1FPF(G) (π)
∣∣∣ =

8∏
i=1

|Si| = 1 · 4 · 1 · 5 · 2 · 6 · 1 · 1 = 240.

Theorem 2.1 immediately implies enumeration formulas for the fibres and total number of friendship parking
functions.

Corollary 2.1. For any Hamiltonian path π ∈ H (G) of G, we have
∣∣∣O−1FPF(G) (π)

∣∣∣ =
∏
i∈[n]

b(i, π,G). In partic-

ular, this implies that the total number of G-friendship parking functions is equal to
∑

π∈H(G)

( ∏
i∈[n]

b(i, π,G)

)
.

Proof of Theorem 2.1. Fix π ∈ H (G) a Hamiltonian path of G. For i ∈ [n], denote Si B {s ∈ [n]; πs ∈
B(i, π,G)} the set of spots occupied in π by cars in the blocking sequence of i, and si B minSi the first such
spot. Note that by definition of the blocking sequence, we have Si =

[
si, π

−1
i

]
.

We first assume that p = (p1, . . . , pn) ∈ O−1FPF(G) (π) is a friendship parking function whose outcome is the

Hamiltonian path π. We wish to show that for all i ∈ [n], we have pi ∈ Si. Seeking contradiction, suppose that
is not the case. Let i ∈ [n] be such that pi /∈ Si, and define j B π−1i to be the spot where car i ends up. Since
Si =

[
si, π

−1
i

]
= [si, j], we have two cases to consider.

1. Case 1: pi > j. That is, car i prefers a spot (strictly) to the right of spot j. But by definition, we have
j = πi, so car i should end up in spot j, which is impossible given the parking process (cars necessarily
end up parking on or to the right of their preference).

2. Case 2: pi < si. Consider the spot k B si−1, and the corresponding car πk. Note that we have pi ≤ k < j.
By definition of the blocking sequence, πk is not a blocker for i in π. In particular, we must have πk > i,
so spot k is unoccupied when car i arrives. Moreover, none of the neighbouring spots k − 1, k + 1 can be
occupied by cars arriving before i which are not adjacent to i in G. This means exactly that spot k is
available for i in the G-friendship parking process for p. But since pi ≤ k, this means that car i will end
up either in spot k or to its left. In particular, it is impossible for car i to end up in spot j, since j > k.
This gives the desired contradiction.

We now show the converse. That is, suppose that p = (p1, . . . , pn) is a parking preference such that pi ∈ Si
for all i ∈ [n]. We wish to show that p ∈ O−1FPF(G) (π). Consider the friendship parking process for p. We show

by induction on i ≥ 1 that car i always ends up in spot π−1i .
For i = 1, we note that 1 has no blockers other than itself, since it is the minimal element of [n], and the

condition for j > i to be a blocker (Condition (2) of Definition 2.1) relies on the existence of an element `
satisfying ` < i. That is, B(1, π,G) = 1, so S1 = {π−11 } by definition. Therefore, since p1 ∈ S1 by assumption,
we have p1 = π−11 . Finally, since car 1 always parks in its preferred spot, we have that car 1 ends up in spot
π−11 , as desired.

Now suppose that, for some i ≥ 2, we have shown that car j parks in spot π−1j for all j ≤ i − 1. Consider

how car i parks. By assumption, we have pi ∈ Si =
[
si, π

−1
i

]
. Consider a spot k ∈ Si \ {π−1i }, and j B πk the

corresponding car. We wish to show that i cannot park in spot k. By definition, j is a blocker for i, and j 6= i
(since k = π−1j < π−1i ). We distinguish two cases.

1. Case 1: j < i. By the induction hypothesis, j occupies spot π−1j = k, so car i cannot park in spot k.

2. Case 2: j > i. In this case, by definition of blockers, for at least one of the values ` ∈ {k − 1, k + 1}, we
must have that π` < i and π` is not adjacent to i in G. By the induction hypothesis, car π` occupies spot
`, which neighbours spot k in π, and since π` and i are not adjacent in G, this prevents car i from parking
in spot k in the friendship parking process.

As such, car i cannot park in any of the spots si, si + 1, . . . , π−1i − 1. It therefore remains to show that it is
allowed to park in spot π−1i in the friendship parking process, i.e. that spot π−1i is available for i. First, note
that by the induction hypothesis, cars 1, . . . , i− 1 occupy spots π−11 , . . . , π−1i−1. Therefore, when car i enters the

car park, spot π−1i is unoccupied. Now consider N(i) B {π−1i − 1, π−1i + 1} the two neighbouring spots to π−1i .
By definition, if s ∈ N(i), then πs is a neighbour of i in the Hamiltonian path π, and therefore is adjacent to i in
the graph G. Moreover, by the induction hypothesis, when i enters the car park, such a spot s is either occupied
by πs (if πs < i), or unoccupied (if πs > i). Finally, we have shown that when car i enters the car park, spot
π−1i is unoccupied (see above), and each of its two neighbouring spots is either unoccupied, or is occupied by a
car adjacent to i in G. This means exactly that spot π−1i is available for i in the friendship parking process, as
desired.
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2.3 Application: the cycle graph case

In this section, we are interested in the specific case where G is a cycle graph. For n ≥ 3, we denote the cycle
graph on n vertices by Cn. This is the graph with vertex set [n] and edge set {(i, i+ 1)}i∈[n−1] ∪ {(n, 1)} (see
Figure 5).

1 2

3

45

6

Figure 5: The cycle graph C6 on six vertices.

We wish to apply Theorem 2.1 and Corollary 2.1 to the cycle graph case. First, note that Hamiltonian paths
of the cycle graph are of one of the following two types:

1. Increasing cycles, which are of the form IncCyci,n B i(i+ 1) · · ·n12 · · · (i− 1) for some i ∈ [n];

2. Decreasing cycles, which are of the form DecCyci,n B i(i− 1) · · · 1n(n− 1) · · · (i+ 1) for some i ∈ [n].

We characterise the blocking sequences for both types of outcome. We begin with the decreasing cycle case.
For technical reasons (see Remark 2.2) we assume that n ≥ 4.

Proposition 2.4. Decreasing cycle case, n ≥ 4.

1. Case i ≤ n− 2. Let i ≤ n− 2. For any j ∈ [n], we have:

B
(
j,DecCyci,n, Cn

)
=

 j if j ≤ n− 2,
i(i− 1) · · · 1n(n− 1) if j = n− 1,
i(i− 1) · · · 1n if j = n.

In particular, this implies that
∣∣∣O−1FPF(Cn)

(
DecCyci,n

)∣∣∣ = (i+ 1)(i+ 2).

2. Case i = n− 1. For any j ∈ [n], we have:

B
(
j,DecCycn−1,n, Cn

)
=

{
j if j ≤ n− 1,
(n− 1) · · · 1n = DecCycn−1,n if j = n.

In particular, this implies that
∣∣∣O−1FPF(Cn)

(
DecCycn−1,n

)∣∣∣ = n.

3. Case i = n. For any j ∈ [n], we have B (j,DecCycn,n, Cn) = j. In particular, this implies that∣∣∣O−1FPF(Cn)
(DecCycn,n)

∣∣∣ = 1.

Proof. Fix some i, j ∈ [n], and consider the blocking sequence for j in the decreasing cycle DecCyci,n =
i(i−1) · · · 1n(n−1) · · · (i+1). We first note that if j ≤ n−2, then DecCyci,n = · · · (j+2)(j+1)j · · · (assuming
j doesn’t appear in position 1 or 2). This implies that j+1 is not a blocker for j, since it is strictly greater than j
and both of its neighbours in DecCyci,n are greater than or equal to j. This shows that B

(
j,DecCyci,n, Cn

)
= j,

as desired.
Now consider j = n − 1. If i ≤ n − 2, then we have DecCyci,n = i · · · 1n(n − 1) · · · . As the vertices

1 and n − 1 are not adjacent in Cn (since n ≥ 4), and 1 < n − 1, this implies that n is a blocker for
n − 1. Moreover, all values i, i − 1, . . . , 1 are strictly less than n − 1, so are all blockers. Thus, we have
B
(
n− 1,DecCyci,n, Cn

)
= i(i− 1) · · · 1n(n− 1), as desired. However, this relies on 1 (immediately) preceding

n in DecCyci,n, which only occurs if i ≤ n − 2. Otherwise, n − 1 appears in first or second position, and is at
most preceded by n, which is not a blocker in that case, so B

(
n− 1,DecCyci,n, Cn

)
= n− 1 if i ∈ {n− 1, n},

as desired.
Finally, consider j = n. If i ≤ n − 1, then we have DecCyci,n = i · · · 1n · · · . All elements in i, i − 1, . . . , 1

are strictly less than n, so are blockers in this case. This gives B
(
n,DecCyci,n, Cn

)
= i(i− 1) · · · 1n as desired.

If i = n, then n appears in first position in DecCycn,n = n(n − 1) · · · 1, so B
(
n,DecCyci,n, Cn

)
= n. This

completes the proof.
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Remark 2.2. The above proof in the case j = n− 1 shows why we assumed that n ≥ 4. Otherwise, for n = 3,
in the outcome 132, the blocking sequence for j = n− 1 = 2 is just 2. Indeed, in this case, 3 is not a blocker for

2, since 1 and 2 are adjacent in C3. We therefore get
∣∣∣O−1FPF(C3)

(132)
∣∣∣ = 1 ∗ 1 ∗ b(3, 132, C3) = 2, instead of the

value 2 ∗ 3 = 6 as would be given by Case (1) of Proposition 2.4.

Proposition 2.5. Increasing cycle case.

1. Case i ≥ 4. Let i ≥ 4. For any j ∈ [n], we have:

B
(
j, IncCyci,n, Cn

)
=


i(i+ 1) · · · j if j ≥ i,
n12 · · · j if 3 ≤ j ≤ i− 1,
12 if j = 2,
1 if j = 1.

In particular, this implies that
∣∣∣O−1FPF(Cn)

(
IncCyci,n

)∣∣∣ = (n− i+ 1)!i!/3.

2. Case i ≤ 3. Let i ≤ 3. For any j ∈ [n], we have:

B
(
j, IncCyci,n, Cn

)
=

{
i · · · j if j ≥ i,
1 · · · j if j ≤ i− 1.

In particular, this implies that
∣∣∣O−1FPF(Cn)

(
IncCyci,n

)∣∣∣ = (n+ 1− i)!(i− 1)!.

Proof. Fix i, j ∈ [n]. If j ≥ i, we have B
(
j, IncCyci,n, Cn

)
= i(i + 1) · · · j. Indeed, all elements to the left

of j in IncCyci,n are less than or equal to j, so they are all blockers for j. Moreover, it is straightforward to
check that B

(
1, IncCyci,n, Cn

)
= 1 (true in fact for any graph G and Hamiltonian path π ∈ H (G), see proof of

Theorem 2.1).
Now consider the case j = 2 where j ≤ i − 1, i.e. 2 is not in first position in IncCyci,n. In this case, 2

immediately follows 1 in IncCyci,n, and therefore 1 is in the blocking sequence for 2. Moreover, n is not a
blocker for 2, since its neighbours in IncCyci,n are n− 1 (which is greater than or equal to 2), and 1 (which is
adjacent to 2 in Cn). Therefore if i ≥ 3 we have B

(
2, IncCyci,n, Cn

)
= 12 = 1 · · · j, as desired.

It therefore remains to consider the case 3 ≤ j ≤ i − 1. Necessarily we have i ≥ 4, so that IncCyci,n =
· · ·n12 · · · j · · · . By definition, 1, 2, . . . , j are all blockers for j, since they are less than or equal to j. Moreover,
since 3 ≤ j ≤ i − 1 ≤ n − 1, the elements j and 1 are not adjacent in Cn (n and 2 are the vertices adjacent
to 1). Since n is followed by 1 in IncCyci,n, this implies that n is a blocker for j. Finally, n − 1 is not
a blocker for j, since both its neighbours in IncCyci,n are greater than or equal to j. Therefore, we get
B
(
2, IncCyci,n, Cn

)
= n12 · · · j, as desired. This completes the proof.

Combining Propositions 2.4 and 2.5, we get the following enumeration for the total number of Cn-friendship
parking functions.

Theorem 2.2. Let n ≥ 4. The total number of friendship parking functions for the cycle graph Cn is given by

∣∣FPF (Cn)
∣∣ = n+ 1 +

n−2∑
i=1

(i+ 1)(i+ 2) +

3∑
i=1

(n+ 1− i)!(i− 1)! +

n∑
i=4

(n− i+ 1)!i!/3.

For the case n = 3, the enumeration is given by the same formula, except that we replace the product
(i + 1)(i + 2) in the left-most sum with just (i + 1), as per Remark 2.2. Calculating these numbers for the
first few values of n ≥ 3, we get the sequence 16, 65, 256, 1331, 8710, 67135, . . ., which doesn’t appear in the
OEIS [24].

3. Cyclic parking functions and permutation components

In this part, we consider classical parking functions whose outcome is an increasing cycle, i.e. of the form
IncCyci,n B i(i + 1) · · ·n12 · · · (i − 1) for some i ∈ [n]. This is a slight variant on the Cn-friendship parking
functions from Section 2.3. We say that p = (p1, . . . , pn) is a cyclic parking function if we have OPFn

(p) =
IncCyci,n, for some i ∈ [n]. We denote CycPFn B

⋃
i∈[n]
O−1PFn

(
IncCyci,n

)
the set of cyclic parking functions of

length n.

Proposition 3.1. For any i ∈ [n], we have
∣∣O−1PFn

(
IncCyci,n

)∣∣ = (n+ 1− i)!(i− 1)!.
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Proof. The proof is similar to that of Theorem 2.1 and Proposition 2.5, so we allow ourselves to be briefer
here. Let i ∈ [n], and consider how a parking preference p = (p1, . . . , pn) can yield the outcome permutation
IncCyci,n = i(i + 1) · · ·n12 · · · (i − 1) (for the classical parking process). Car 1 ends up in spot j B n + 2 − i
(with the convention that j = 1 if i = 1). Since car 1 always ends up in its preferred spot in the classical
parking process, we must have p1 = j. Then car 2 ends up in spot j + 1. This occurs if, and only if, we have
p2 ∈ {j, j + 1} (since car 1 occupies j).

We repeat this reasoning on the first i − 1 cars, and see that each car k ∈ {1, . . . , i − 1} has exactly k
possibilities for its parking preference. This gives the (i − 1)! factor in the formula. The (n + 1 − i)! factor
comes from an analogous reasoning on cars i, i + 1, . . . , n. Car i ends up in spot 1, so must prefer that spot.
Car (i + 1) ends up in spot 2, so must prefer spot 1 (occupied by car i) or spot 2, and so on. This completes
the proof.

Remark 3.1. The formula in Proposition 3.1 is quite similar to that of friendship parking functions on the
cycle graph Cn whose outcome is an increasing cycle (see Proposition 2.5). The key difference lies in the role
of the car/vertex n. In Cn-friendship parking functions, this vertex plays the role of a blocker for cars j ≥ 3
which park to its right, whereas in classical parking functions it is never a “blocker” (if car j wanted to park in
the corresponding spot, it could).

As an example, consider the parking function p = (2, 3, 1, 1). In the friendship parking process for C4, car
3 cannot park in spot 1, since spot 2 is occupied by car 1, and there is no edge (1, 3) in C4. Therefore we
get the outcome OFPF(4) (p) = 4123 = IncCyc4,4, and p is a C4-friendship parking function. However, in the
classical parking process, car 3 can park in spot 1, and so car 4 will end up in spot 4, yielding the outcome
OPF4

(p) = 3124, so p is not a cyclic parking function in the sense of this section.

Summing the right-hand side of the enumeration in Proposition 3.1 over values of i from 1 to n, combined
with the change of variable i→ n+ 1− i, immediately yields the following.

Corollary 3.1. We have |CycPFn| =
n−1∑
i=0

i!(n− i)!.

Calculating these numbers for the first few values of n, we get the sequence 1, 3, 10, 40, 192, . . ., which
corresponds to Sequence A136128 in the OEIS [24]. The entry for this sequence states “Number of components
in all permutations of [n]”, and the goal of this section is to give a bijective proof of this fact by exhibiting
a bijection between cyclic parking functions and permutation components. As such, cyclic parking functions
provide a new combinatorial interpretation for this Sequence A136128. Before defining our bijection, we first
need to introduce some terminology relating to permutations.

Given a permutation π = π1 · · ·πn, a component of π is a sub-sequence πiπi+1 · · ·πj for some 1 ≤ i ≤ j ≤ n
such that {πi, πi+1, . . . , πj} = {i, i+1, . . . , j}, which is minimal for inclusion (i.e. it does not contain any smaller
such sub-sequence). It is straightforward to see that every permutation can be uniquely decomposed into its
components. For example, the permutation 31248657 has three components: 312, 4, 8657. We will use a slash
to separate the components of a permutation, for example 312/4/8657. The set of components of a permutation
π is denoted comp (π).

Note that the same sub-sequence can be a component of more than one permutation. For example, 1 is a
component of both 1/32 or 1/2/3. In this section, we consider the set of all components of permutations of
length n, Compn B

⊔
π∈Sn

comp (π), where
⊔

denotes the disjoint union. That is, we distinguish between the

component 1 in the permutation 1/32 and the component 1 in the permutation 1/2/3. For c ∈ Compn, we will
denote Perm (c) ∈ Sn the underlying permutation, i.e. c ∈ comp (Perm (c)).

In our bijection between cyclic parking functions and permutation components, permutation inversions will
play a key role. Given a permutation π = π1 · · ·πn ∈ Sn, we say that an ordered pair (i, j) is an inversion of
π if i > j and i appears before j in the permutation π. The inversion number of i in π, denoted invi (π), is
the number of j < i such that (i, j) is an inversion of π. In words, the inversion number of i counts how many
letters less than i appear after i in π. For example, the permutation π = 3152476 has the following inversions:
(3, 1), (3, 2), (5, 2), (5, 4), (7, 6). We have inv1 (π) = inv2 (π) = inv4 (π) = inv6 (π) = 0, inv3 (π) = inv5 (π) = 2,
and inv7 (π) = 1. Note that any inversion of π is necessarily contained in a component of π.

Definition 3.1. Let a = (a1, . . . , an) be a sequence of non-negative integers. We say that a is an inversion
sequence if ai < i for all i ∈ [n].

The terminology inversion sequence comes from the following classical result, of which we give a brief proof
for completeness.

Theorem 3.1. The map InvSeq : π = π1 · · ·πn 7→ InvSeq (π) B (inv1 (π) , . . . , invn (π)) is a bijection from the
set of n-permutations to the set of inversion sequences of length n.
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Proof. Let π = π1 · · ·πn ∈ Sn, and InvSeq (π) B (inv1 (π) , . . . , invn (π)). By definition, for any i ∈ [n], invi (π)
is the number of j < i such that (i, j) is an inversion of π, which immediately implies that invi (π) < i, i.e. that
InvSeq (π) is an inversion sequence. Moreover, it is straightforward to see that there are n! inversion sequences
of length n. Indeed, we have 1 choice (0) for the entry a1, 2 choices (0 and 1) for the entry a2, and so on.

To show that the map InvSeq is a bijection, it is therefore sufficient to show that it is surjective. Let
a = (a1, . . . , an) be an inversion sequence. We construct a permutation π as follows. Start with i = 0 and
the empty word π0 = ∅. Suppose that after i steps we have constructed a word πi = πi1 · · ·πii ∈ Si such that
invj

(
πi
)

= aj for all j ∈ [i]. Then at step i + 1, we define πi+1 = πi+1
1 · · ·πi+1

i+1 by simply inserting (i + 1) in
the permutation πi at index i + 1 − ai+1 (i.e. ai+1 spots starting from the right). By construction, we get a
permutation πi+1 ∈ Si+1 such that invj

(
πi+1

)
= aj for all j ∈ [i+ 1]. Therefore, the final permutation πn ∈ Sn

obtained satisfies InvSeq (πn) = a, as desired.

Example 3.1. Consider the inversion sequence a = (0, 0, 1, 3, 2). We start with the empty word π0 = ∅. At
step 1, we insert the letter 1 in the empty word so that there are a1 = 0 letters to its right, i.e. we get π1 = 1
(we will always have this step). At step 2, we have a2 = 0, so we insert 2 into the permutation π1 = 1, so that
there are 0 letters to its right, yielding π2 = 12. Then at step 3, we have a3 = 1. As such, we insert 3 into the
permutation 12 so that it has 1 letter to its right, yielding π3 = 132. At step 4, we insert 4 into 132 so that it
has a4 = 3 letters to its right, yielding π4 = 4132. Finally, at step 5, we insert 5 so that it has a5 = 2 letters to
its right, yielding the permutation π = π5 = 41532. We can then check that InvSeq (π) = (0, 0, 1, 3, 2) = a, as
desired.

Inversion sequences are linked to the displacement vector of parking functions by the following result.

Proposition 3.2. Let p ∈ PFn be a parking function. Then its displacement vector disp (p) is an inversion
sequence.

Proof. Let p ∈ PFn, and write disp (p) = (d1, . . . , dn) for its displacement vector. Fix i ∈ [n]. By definition, di
is the distance car i travels from its preferred spot to its final parking spot. In the classical parking process,
this means that spots pi, pi + 1, . . . , pi + di− 1 must all be occupied when car i enters the car park. Since there
are i − 1 cars entering before car i, and each of these occupies at most one of those spots, this implies that
di ≤ i− 1 < i, as desired.

We are now equipped to define the bijection from cyclic parking functions to permutation components. Given
a cyclic parking function p, whose outcome is IncCyci,n for some i ∈ [n], we define Ψ(p) to be the component
of π containing i, where π ∈ Sn is the unique permutation such that InvSeq (π) = disp (p).

Example 3.2. Consider the parking function p = (4, 4, 6, 6, 7, 9, 7, 1, 2, 1). By running the parking process, we
get OPF10 (p) = 89(10)1234567 = IncCyc8,10. The displacement vector of p is disp (p) = (0, 1, 0, 1, 1, 0, 3, 0, 0, 2).
The corresponding permutation π such that disp (p) = InvSeq (π) is π = 21/47536/(10)89, and we map this to
the component containing car i = 8, so Ψ(p) = (10)89.

Example 3.3. Here we fix n = 3, and consider the images of all cyclic parking functions of length n under the
map Ψ. These are illustrated in Table 1 below. We have partitioned cyclic parking functions (listed in Column 2)
according to their outcome (in Column 1). Column 3 then gives the displacement vector of each parking function,
with Column 4 listing the permutation whose inversion sequence is the displacement vector. Finally, in the
component column (Column 5), we have copied in this permutation for clarity, with the corresponding component
Ψ(p) in bold.

Outcome Parking function p disp (p) Permutation π Component c = Ψ(p)

123

(1, 1, 1) (0, 1, 2) 321 321
(1, 1, 2) (0, 1, 1) 231 231
(1, 1, 3) (0, 1, 0) 213 21/3
(1, 2, 1) (0, 0, 2) 312 312
(1, 2, 2) (0, 0, 1) 132 1/32
(1, 2, 3) (0, 0, 0) 123 1/2/3

231
(3, 1, 1) (0, 0, 1) 132 1/32
(3, 1, 2) (0, 0, 0) 123 1/2/3

312
(2, 2, 1) (0, 1, 0) 213 21/3
(2, 3, 1) (0, 0, 0) 123 1/2/3

Table 1: All cyclic parking functions of length n = 3, with their corresponding permutation components.
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Theorem 3.2. The map Ψ : CycPFn → Compn is a bijection from cyclic parking functions to permutation
components. Moreover, for any cyclic parking function p and any i ∈ [n], the displacement of car i in p is equal
to the inversion number of i in the underlying permutation Perm (Ψ(p)).

Lemma 3.1. Let p ∈ CycPFn be a cyclic parking function with outcome OFPF(Cn) (p) = IncCyci,n, i.e. car i
ends up in spot 1. Then we have i = min Ψ(p).

Proof. Let p ∈ CycPFn be a cyclic parking function, and disp (p) = (d1, . . . , dn) its displacement vector. Define
π ∈ Sn to be the unique permutation such that InvSeq (π) = disp (p). Denote c B Ψ(p) the component of the
permutation π corresponding to the parking function p, and let i′ B min c and k = |c| be its minimal element
and size respectively. By definition, the component c is a permutation of the set {i′, . . . , i′ + k − 1}. Moreover,
by construction we have dj = invj (π) = invj (c) for any j ∈ c, since all inversions of the permutation π are
necessarily contained in its components.

Seeking contradiction, suppose that i′ < i. We consider cars i′, i′+ 1, . . . , i− 1 in the parking process, which
are the i−i′ smallest elements of the component c. By the remarks above, we have di′+j−1 < j for all j ∈ [i−i′].
Now consider cars i, i+ 1, . . . , i′ + k − 1. By definition of i, these occupy spots 1, . . . , k + i′ − i. In particular,
we must have disp (i+ j − 1) < j for all j ∈ [k + i′ − i]. These inequalities can be summarised as below.

cars: i′ · · · i− 1 i · · · i′ + k − 1
di′ · · · di−1 di · · · di′+k−1

displacement: ∧ · · · ∧ ∧ · · · ∧
1 · · · i− i′ 1 · · · k + i′ − i

Now recall that disp (p) = InvSeq (π), and that c is a sub-sequence in π which is a permutation of the set
{i′ . . . , i′ + k − 1}. It is straightforward, using the inverse construction from Theorem 3.1, to check that the
inequalities above imply that c can be written as c = c1 ·c2, where c1, resp. c2, is a permutation of the set
{i′, . . . , i− 1}, resp. of the set {i, . . . , i′ + k − 1}. This contradicts the minimality of the component c.

Proof of Theorem 3.2. We first show that Ψ is injective. For this, let p, p′ be two cyclic parking functions such
that c B Ψ(p) = Ψ(p′). Let i B min c. By Lemma 3.1, we have that OFPF(n) (p) = OFPF(n) (p′) = IncCyci,n.
Moreover, by construction, we have disp (p) = disp (p′) = Perm (c). We claim that two parking functions which
share the same outcome and displacement vector are necessarily equal. Indeed, the preference of any car is
equal to its index in the outcome permutation minus its displacement (this is the definition of the displacement
vector).

It remains to show that Ψ is surjective, which we do by constructing its inverse. Let c ∈ comp (π) be a
component of some permutation π ∈ Sn. Define i B min c to be its minimal element. Let s = (s1, . . . , sn) B
InvSeq (π) be the inversion sequence of π. For j ∈ [n], denote j the index of j in the cyclic permutation
IncCyci,n. That is, j̄ = n+ j + 1− i if j ≤ i− 1, and j̄ = j + 1− i if j ≥ i.

We claim that sj < j̄ for all j ∈ [n]. If j ≤ i − 1, this simply follows from the fact that s is an inversion
sequence: we have j̄ ≥ j + 1 and sj < j. Now note that since i is the minimal element in a component of
the permutation π, this means in particular that π can be decomposed as π<i ·π≥i, where π<i, resp. π≥i, is a
permutation of the set {1, . . . , i− 1}, resp. {i, . . . , n}. In particular, if j ≥ i, all inversions (j, j′) of π must be
in the right-hand permutation π≥i. This implies in particular that sj < j − (i− 1) = j̄, as desired.

We can then define p = (p1, . . . , pn) by setting pj = j̄ − sj for all j ∈ [n]. By the above claim, we have
pj > 0 for all j, so p is a parking preference. Moreover, by construction, we have OFPF(n) (p) = IncCyci,n,
and Ψ(p) = c. This shows that Ψ is surjective, and thus a bijection, as desired. The fact that Ψ maps the
displacement of a car to its inversion number in the underlying permutation is by construction: the permutation
Perm (Ψ(p)) is defined so that InvSeq (Perm (Ψ(p))) = disp (p).

Example 3.4. We show an example of the construction of Ψ−1 in the previous proof. Consider the permu-
tation π = 3412/7865/9, with component c = 7865. We first calculate the inversion sequence of π, yielding
InvSeq (π) = (0, 0, 2, 2; 0, 1, 2, 2; 0) where we have used a semi-colon to separate the permutation components for
clarity. The minimal element of c is i = 5. This indicates that car 5 must end up in spot 1, cars 6 to 9 end up
in spots 2 to 5, and cars 1 to 4 end up in spots 6 to 9. For each car i, we determine its parking preference pi
by subtracting its inversion number (which will be equal to its displacement) from its final spot. For example,
car 8 ends up in spot 4, and 8 has inversion number 2 in π, corresponding to the inversions (8, 6) and (8, 5), so
we set p8 = 4− 2 = 2. We do this for each car, and finally get the parking preference p = (6, 7, 6, 7, 1, 1, 1, 2, 5).
We can check that OFPF(9) (p) = 567891234, and that disp (p) = InvSeq (π), as desired.

Remark 3.2. Theorem 3.2 implies a converse for Proposition 3.2. Namely, if a = (a1, . . . , an) is an inversion
sequence, then there exists a cyclic parking function p such that disp (p) = a. In fact, the number of such cyclic
parking functions is equal to the number of components of the permutation π such that a = InvSeq (π). Indeed,
given an inversion sequence a with corresponding permutation π (i.e. InvSeq (π) = a), then the set of cyclic
parking functions p satisfying disp (p) = a is exactly the set Ψ−1 (comp (π)).
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4. Conclusion and future work

In this paper, we introduced a new variation on classical parking functions, called friendship parking functions.
These essentially follow classical parking rules, with the added restriction that a car can only park next to its
“friends” (adjacent vertices in an underlying graph G). We gave a full characterisation of G-friendship parking
functions according to their outcome, or equivalently Hamiltonian paths of G (Theorem 2.1). We then applied
this result and its enumerative consequence to the case where G is the cycle graph on n vertices (Section 2.3).
Finally, in Section 3 we returned to classical parking functions, considering cyclic parking functions whose
(classical) outcome is an increasing cycle of the form i(i + 1) · · ·n12 · · · (i − 1). We exhibited (Theorem 3.2) a
bijection between cyclic parking functions of permutation components, which maps the displacement of each car
to its inversion number in the corresponding permutation.

One natural question from this last work is to ask whether other families of permutations have natural
combinatorial interpretations of their outcome fibres (whether for classical parking functions or one of the
variations thereon). For example, in [18] it was shown that the outcome fibre of a permutation π can be
interpreted in terms of certain subgraphs of the corresponding permutation graph Gπ, and various families of
permutations were studied under that representation. It would be interesting to ask similar questions of classical
parking functions.

Regarding friendship parking functions, a first question to consider would be to pursue the study of graph
families. In this paper we studied the case of cycle graphs. We could also investigate other families such as cycle
graphs with different labelling, wheel graphs, complete graphs with one edge removed, and so on. We should
look for both closed enumeration formulas and combinatorial interpretations of friendship parking functions in
those cases.

Finally, we could also consider the case where the underlying graph G does not have a Hamiltonian path. In
this case, there will be no friendship parking functions allowing all cars to park, but we could consider defective
parking functions, as in the classical case [3]. In other words, for some fixed k > 0, how many friendship parking
functions are there where exactly k cars fail to park? What are the minimal/maximal values of such a k? Of
particular interest could be the case where G is a disjoint union of cliques, i.e. where the friendship relationship
is transitive. In other words, we partition the set [n] into subsets F1, . . . , Fj where any pair of elements in F` are
friends, but there is no friendship between elements of distinct F` and F`′ . What can be said about friendship
parking functions under this model?
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