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ABSTRACT: The associative spectrum of a groupoid (i.e., a set with a binary operation) measures its nonas-
sociativity while the associative-commutative spectrum measures both nonassociativity and noncommutativity
of the groupoid. The two spectra are also the coefficients of the Hilbert series of certain operads. We establish
upper bounds for the two spectra of various varieties of groupoids defined by different sets of identities and
provide examples (often groupoids with three elements) for which the upper bounds are achieved. Our results
have connections to many interesting combinatorial objects and integer sequences and naturally lead to some
questions for future studies.
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1. Introduction

A groupoid (G, *) is a basic algebraic structure that consists of a set G together with a binary operation =
defined on G. Associativity and commutativity are common properties that could be satisfied by a groupoid.
Csdkdny and Waldhauser [3] defined the associative spectrum (also called the subassociativity type by Braitt
and Silberger [2]) to measure the failure of a groupoid to be associative, and we introduced the associative-
commutative spectrum, or simply ac-spectrum, to measure both nonassociativity and noncommutativity of a
groupoid in earlier work [6]; see the definition below.

Definition 1.1. Fiz a countable list of distinct variables x1,xo,. ... Let B, denote the set of all bracketings of
T1,.-.,Tn, which are terms in the language of groupoids obtained by inserting pairs of parentheses into the word
T1To -+ - Ty 0 all valid ways. Let F,, denote the set of full linear terms over x1,...,x,, which are obtained by
permuting the variables in the bracketings of x1,...,x,. We can view B, as a subset of F,,. Every term t e F,
induces an n-ary operation t* on a groupoid (G,#). It is often convenient to think about the terms in F,, or
the n-ary operations induced by them in terms of the corresponding (ordered, full) binary trees with n labeled
leaves; see the example below for By, which can give Fy if the variables are permuted in all possible ways.

4 7 1
((z1%x2)*x3)%*Ta (z1%22)*(x3%T4) (z1%(T2%x3))*Ta x1#((x2%ws)*Ta) x1# (2% (x3%Ta))

The associative spectrum (resp., ac-spectrum) of a groupoid (G, =), or of its binary operation *, 1S a sequence
whose nth term is sy, () := | P, (x)| (resp., s3°(x) := [Pp(%)]), where P, (x) := {t* : t € B} (resp., Pp(x) := {t* :
te Fn}), form=1,2,.... It turns out that {P,(*)}n>1 (1esp., {Pn(*)}n>1) together with a composition function
becomes a nonsymmetric operad (resp., symmetric operad) that satisfies certain coherence azioms [11], and the
Hilbert series of this operad is the generating function (resp., exponential generating function) of the associative
spectrum (resp., ac-spectrum) of (G, *).

By the above definition, we have (1) s2(%) = 1 for n = 1,2, (2) s§°(%) = 1, and (3) s§°(x) is either 1 or 2,

n
depending on whether * is commutative. Thus we may assume n > 3 when necessary. It is easy to see that
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isomorphic or anti-isomorphic groupoids have the same associative spectrum and the same ac-spectrum, where
two groupoids (G, ) and (H,®) are said to be anti-isomorphic, denoted by G ~ H°P_ if there is a bijection
f: G — H such that f(a+b) = f(b)® f(a) for all a,be G.

It is clear that s2 () = 1 for all n € N if and only if * associative and that s2°(x) = 1 for all n € N if and only
if = is associative and commutative, where N := {1,2,...}. On the other hand, we have s2(x) < C),,_1, where

Cp = %_H(ZT:‘) is the ubiquitous Catalan number, and thus s2°(x) < nlC,_;. We showed in previous work [6]
that a commutative groupoid (G, ) must have s2°(x) < D,,_1, where D,, := (2n!)/(2"n!) is the solution to

Schroder’s third problem [13, A001147], and that an associative groupoid (G, *) must have s2°(*) < n!, which
holds as an equality if the groupoid is noncommutative and has an identity element (see Theorem 7.1 for a
generalization).

In addition, the precise values of the associative spectrum and ac-spectrum have been determined for various
groupoids [3-6,8,9], including 2-element groupoids, generalizations of addition and subtraction, exponentiation,
arithmetic/geometric/harmonic mean, cross product, Lie algebras with an sly-triple, graph algebras, and so on.
The results show connections with interesting combinatorial objects, avoided patterns, and integer sequences.
However, the ac-spectra of 3-element groupoids are largely undetermined.

* |0 1 2 * |0 1 2 * |0 1 2 * |0 1 2
0[0 0 © 0/0 0 © 0/0 0 © 01 1 1
11 1 0 12 1 1 110 0 0 112 2 2
2|2 2 2 21 2 2 21 0 0 2/0 0 0
SCa71 SC356 SC10 SC3242
~ SC1610°P ~ 5C2032°° = SC367°° = SC3302°°
* |0 1 2 * |0 1 2 * |0 1 2 * |0 1 2
00 1 1 00 1 2 0/0 0 1 01 2 0
1o 1 2 1o 1 2 10 0 0 1|1 2 0
20 1 2 211 0 2 2/0 0 0 21 2 0
SC1610 $C2032 SC367 SC3302
* [0 1 2 * [0 1 2 * 0 1 2
0/0 0 2 0/0 0 1 0/0 0 ©
110 0 2 110 0 1 10 1 0
22 2 1 21 1 0 210 0 1
SC1066 SC405 SC79
= SC1066°7 = SC405°P = SC79°P

Table 1: Some 3-element groupoids

According to the Siena Catalog [1], there are 3330 non-isomorphic 3-element groupoids, which are indexed
from 1 to 3330. Each of these groupoids is determined by a binary operation * defined on the set {0, 1,2}. We
write them as SC1,SC2,...,5C3330. There are 729 idempotent 3-element groupoids, which can be labeled in a
different way: 1D0,1D1,...,ID728. Csdkany and Waldhauser [3] showed the following (see Table 1).

e Both ID35 = SC271(~ SC1610°P) and ID68 = SC356(~ SC2032°?) have associative spectrum s? () = 272
for n > 2.

e Both SC1066 and SC10(~ SC367°P) have associative spectrum s2 (%) =n — 1 for n > 1.

e Both SC405 and SC3242(~ SC3302°P) have associative spectrum s2 () = 3 for n > 3 (it is easy to check
that s2 (%) =1 for n = 1,2 and s2(*) = 2 for n = 3).

e The groupoid SC79 has associative spectrum s2 (%) = F,,;1 — 1 for n > 2, where F), 1 is the Fibonacci
number defined by F, .1 :=F, + F,_1 forn>1and F; =i fori=0,1,

Our original motivation for this work was to determine the ac-spectra of the above 3-element groupoids,
whose Cayley tables are given in Table 1. However, we are able to establish more general results on various
varieties of groupoids, where a wvariety of groupoids axiomatized by a set ¥ of identities is the family of all
groupoids satisfying the identities in 3. For each variety of groupoids considered in this paper, we establish an
upper bound for the associative spectra and an upper bound for the ac-spectra of the groupoids belonging to
this variety; if the latter upper bound is reached by a member of the variety, so is the former. Moreover, we
show that both upper bounds are attained by at least one 3-element groupoid.

For example, we showed in earlier work [6] that a commutative groupoid must have s2°(x) < D,,_; and if
the equality in this upper bound holds, so does the equality in the upper bound s2(*) < Cj,_1. In the same
paper, we showed that s2¢(x) = D,,_; for a 3-element groupoid called the rock-paper-scissors groupoid, which
turns out to be isomorphic to SC1108, and the proof is also valid for SC2407 and SC3093.
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* [0 1 2 * [0 1 2 * [0 1 2
0fo 02 o0/1 00 O0[1 10
1o 1 1 110 2 0 111 20
202 1 2 2/0 0 0 20 0 1
SC1108 SC2407 SC3093

Therefore, we have the following result.

Theorem 1.1 ([6]). A groupoid (G, *) satisfying the identity xy ~ yx must have s2(x) < Cp_1 and s2°(x) <
Dy formn =1,2,..., where the first inequality holds as an equality whenever the second does and both equalities
hold for the 3-element groupoids SC1108, SC2407, and SC3093.

In this paper, we provide a series of results that are similar to the above one. A summary of our results is
given by Table 2, where we use the well-known Bell number B, counting partitions of the set {1,2,...,n} into
unordered nonempty blocks, the restricted Bell number B, ,, counting partitions of {1,2,...,n} into unordered
nonempty blocks of size at most m [12], and the ordered Bell number or Fubini number B], counting partitions
of {1,2,...,n} into ordered nonempty blocks [13, A000670]. The “n =" column in Table 2 gives the smallest
values of n for which the upper bounds of s2 (%) and s2°(x) are valid and sharp. Note that different varieties of
groupoids in the table may have the same associative spectrum upper bound but different ac-spectrum upper
bounds (the upper bounds for s2°(x) in Prop. 3.2 and Prop. 3.3 are different when n = 3). Therefore, the
ac-spectrum may offer a finer distinction between groupoids than the associative spectrum.

Identities satisfied by (G,*) n > s3(x) < s2°(%) < Examples for = reference

(1) 1,1 1 n SC275(~ SC2029°*)  Prop. 3.1

(3), (4), (5), (7) 3,3 2 n+1 SSCCQ;((ZSS%%OP)) Prop. 3.2

(2), (7), (15) 4,4 3 n+1 SC405 Prop. 3.3

3), (5), (7), (8), (9) 3,3 2 on SC189(~ SC170°°)  Prop. 3.4

(5), (7), (10), (11), (12), (16) 4,4 3 3n SC3242(~ SC3302°")  Prop. 3.5

(5), (7), (11), (13), (17), (18) 4,4 4 22 SC3162(~ SC2467°°) Thm. 3.1

2), (7) 2,2 n-1 gn=1_1 SC1066 Prop. 4.1
n—3

(4), (5), (7) 21 n—1 a4 ) &l (2) SC367(~ SC10°°)  Prop. 4.2
k=0

(3), (6), (14) 2,2 2n2 9n 9 SC2302(~ SC2155°")  Prop. 4.3

(3), (7), (12) 2,2 22 n(2"! 1) SCanioscaosoen)  Thm. 4.1

(2), (11) 2,2 Fpii—1 Bpas—1 SC79, SC1701 Prop. 5.1

~ op
(3), (5) 2,1 2"2 nB,_: Soon(sCion™) Thm. 5.1
SC262(~5C1441°P)
(5), (7) 2,1 2n—2 nBl,_, SC1812(~SC1793°P) Thm. 5.2

SC2446(~SC2430°P)

Wry~z Q) ay~yr ) (ey)z~ (x2)y  (4) 2(yz) ~y(ez) () z(yz) ~ x(zy)  (6) x(yz) ~ z(yz)
(7) w(z(yz)) ~ wl(zy)z)  (8) (wr)(yz) ~ (wlzy))z  (9) w(z(yz)) ~ (wr)y)z
(10) (wz)y)z ~ ((wy)x)z  (11) (wr)y)z ~ (wr)2)y  (12) (wz
(13) (w(zy))z ~ (w(zz))y  (14) w(z(yz)) ~ (w(zy))z (15
(16) ((vw)z)y)z ~ v(w(x(yz)))  (17) v(w(z(y2))) ~ (v(wz))y)z  (18) (

Table 2: Summary of results

It is sometimes convenient to use not only identities but other conditions to describe a family of groupoids
satisfying certain upper bounds for their spectra. Recall that every term t € F,, corresponds to a binary tree
with n leaves labeled by 1,...,n. Each leaf i has its depth d;(t) (resp. left depth 0;(t) or right depth p;(t)) defined
as the number of edges (resp., left /right edges) in the unique path to the root of ¢t. By abuse of notation, we also
speak of these three kinds of depths for the variables in ¢. Previous work [4, 6] used the congruence modulo m
relation on depths to study the associative spectra and ac-spectra of certain groupoids, and some of the results
there can be rephrased to include Proposition 4.3 as a special case. We can also generalize Proposition 3.4 and
Proposition 3.5 in a similar way.

The paper is structured as follows. We give some basic definitions and properties on the associative spectrum
and ac-spectrum in Section 2. We establish some polynomial upper bounds and exponential upper bounds in
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Section 3 and Section 4, respectively. We provide more upper bounds related to set partitions in Section 5.
We use congruence on leaf depths in binary trees to provide generalizations of some of our results in Section 6.
Finally, we make some remarks and pose some questions for future research in Section 7.

2. Preliminaries

We first give some notation and terminology. A term* t over a set of variables X (we often use X, :=
{z1,...,2,}) is a bracketing of a word x;, - - - x;,, where x;,, ..., x;, € X; let var(¢) denote the set of all variables
int. Ifiq, ..., 4 are distinct, then ¢ is called a linear term with |¢| := k. Define the leftmost bracketing [t1, . .., tk]
of terms t1,...,t; recursively by [t1] := t1 and [t1,...,tnt1] i= ([t1, ..., tn]tny1]) for n > 1. Similarly, define
the rightmost bracketing {ti,...,tx) recursively by {t1) :=t; and {t1,...,tn41) = (t1{t2, ..., tnt1y) for n > 1.
We can write every term as t = [to,t1,...,tn] With |[tg] = 1 for some m € N; this is known as the leftmost
decomposition [6, Definition 6.1.2], which can also be obtained by writing ¢t = (¢1tg) if ¢ is not a variable, then
further writing ¢, = (¢1,t) if the left subterm ¢r, is not a variable, and continuing in this way to decompose left
subterms until we reach one that is a single variable.

Terms can be evaluated in a groupoid (G, =) as follows. Given an assignment h: X — G of values from G
for the variables in X, we can extend h to a map h defined on the set of all terms over X with the following
recursive definition. We have h(z) := h(z) for every variable z € X (because h extends h), and if t = (t1t5)
for subterms ¢; and to, then we define h(t) := h(t;) = h(tz). In this way, every term t over X,, induces an
n-ary operation t* on (G, %) (called a term function): t*(ai,...,a,) := ha(t), where hy is the extension of the
assignment h,: X, — G that maps x; to a; for all i € {1,...,n}. For notational simplicity, we will denote the
extension h of an assignment A also by h.

An identity is a pair of terms, usually written as s ~ t. A groupoid (G, *) satisfies an identity s ~ ¢ if
s* = t*. (Here we have assumed that s and ¢ are terms over X,, for some n € N — this can always be done.)

In the subsequent sections, we will prove several results, each of which provides upper bounds for the ac-
spectrum and the associative spectrum of a variety of groupoids axiomatized by a set X of identities, i.e., the
family of all groupoids satisfying the identities in . We will employ the following proof technique. We assume
that a groupoid (G, *) satisfies certain identities. Using these identities, we transform each full linear term ¢
into an equivalent term ¢’ that is in “standard form” (terms ¢t and ¢’ are equivalent if (G, *) satisfies t ~ t/, i.e.,
t* = (¢)*). It thus follows that s2°(x), i.e., the number of term functions induced by full linear terms with
n variables on (G, ), is bounded above by the number of terms in standard form, so it is then a matter of
counting the possible standard forms. Similarly, finding s? (x) amounts to counting the standard forms that can
be obtained from bracketings.

Let t be a linear term. Assume that var(t) = {z;,,...,2;, } and that z;, occurs to the left from x;, in ¢ if
and only if k < ¢. Assume further that {ji,...,5m} = {i1,...,im} and j; < jo < -+ < jpm. Let

tL tL<

= [l‘i17"'7xi7n]’ = [le""7xjm]’

= iy, ), th= = Ejyse s T ),

i.e., t* and tP< (t® and tR< resp.) are leftmost (rightmost, resp.) bracketings of the variables of ¢; in the
former, the variables occur in the same order as in ¢, while in the latter, the variables occur in the increasing
order of the indices.

The next lemma will be frequently used to establish our main results.

Lemma 2.1. Let (G, *) be a groupoid, and write an arbitrary term in F, as t = [to,t1,...,tm] with |tp] = 1
(leftmost decomposition).

(i) If (G, %) satisfies the identity w(z(yz)) ~ w((xy)z), then (G, =) also satisfies the identitiest ~ [to,t7, ... %]
and t ~ [to,t%, ... tR].

(ii) If (G, *) satisfies the identities w(z(yz)) ~ w((zy)z) and either x(yz) ~ z(zy) or xy ~ yx, then (G, *)

also satisfies the identities t ~ [to, t¥<,... tE<] and t ~ [to,t}=, ...  t’=].

(iii) If (G, =) satisfies the identity (wy)z ~ (x2)y, then (G, *) also satisfies the identity t ~ [to,ts(1),- - -, Lo(m)]
for every permutation o € &, .

(iv) If (G, =) satisfies the identities x(yz) ~ x(zy) and (xy)z ~ (x2)y, then (G,*) also satisfies the identity
t~ [to, tv=,... tE<].

*More specifically, we are speaking about terms in the language of groupoids, i.e., terms of type (2). Since our language contains
only one operation symbol, which is binary, we may simply omit it from terms. Variables and brackets are sufficient for writing
down terms unambiguously in this language.

ECA 4:4 (2024) Article #S2R29 4
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Proof. (i) We can use the identity w(z(yz)) ~ w((zy)z) repeatedly to transform each ¢; to the form x;s, where
z; is the leftmost variable of ¢;, and then apply the same procedure to s to eventually transform ¢; into tit. A
similar argument shows that each ¢; can be transformed into ¢

(ii) By (i), (G, =) satisfies t ~ [to,t},...,t8]. We may arbitrarily permute the variables in each t}, i e
{1,...,m}, thanks to the identities

w(z(zy)) ~ w(z(yz)) ~ w((zy)z) ~ w(z(zy)) ~ w(z(yr)) ~ w((yr)z) ~ wy(rz)) ~ wiy(zz)).

Thus (G, ) satisfies t ~ [to, t}=,...,t8<]. A similar argument shows that (G, ) satisfies t ~ [to, tL<,... tL<].

(iii) We can use the identity (zy)z ~ (22)y to swap the subterms t; and ¢;1 in [to,t1,...,tn], for
any ¢ € {1,...,m — 1}. Since the adjacent transpositions generate &,,, it follows that (G,#) satisfies ¢t ~
[to, to(1)s--- ,tg(m)] for every o € G,,.

(iv) By (iii), we can permute the subterms t1,...,%,,, so it suffices to prove that (G, #) satisfies x5 ~ z(s*<)
for any linear term s with x ¢ var(s). We prove this by induction on |s|. This is trivial when |s| = 1, and
this holds for |s| = 2 by the identity z(yz) ~ x(zy). Let now k > 3, assume that the claim holds whenever
|s| < k, and consider the case when |s| = k. We have the leftmost decomposition s = [sg, s1,...,S¢]. By
the inductive hypothesis and (iii), we may assume that s; = s;‘ for all j € {1,...,¢}. Consequently, (G, *)

satisfies #s ~ z(sk=u), where u := [sg,s%<,...,s5</], and by the inductive hypothesis, this is equivalent to

z(sf=ut<). By the identity z(yz) ~ z(zy), we may swap sy~ and ul< if necessary to obtain a term of the
form x([xi,, ..., %, ][, ., 24, ]), where iy < -+ <'ig, igp1 < -+ < i and 43 < ipy1. Using the identities

z(yz) ~ x(zy) and (xy)z ~ (x2)y, we obtain

8 ~ (X, [Tiy s T ) [Tiy s - Ti 1) = 8 ([ ys - oo Ty Ti, ) [T - -5 Ty ])

~ @, ([igyrs o Tiy [Ty @i @iy ) & {8 @i, ([T s o iy [Ty -5 @i ]))

=, i [Tig oy T @iy - T ) A i ([Tiggr s - @i o) [Tigs oo T )Ty )

AT T Ty o [Tig g oo s T o) [Tigs ooy @i ) A s AT, @y @iy ey Ty Ty g [Ty oo o5 T ))

A X Ty Ty s Ty [Tigs oo s Tig | Tig 1) = Ty Ty Ty oo s Ty [Tigs oo o5 Tigys Tig sy )

R X T Ty s Ty [Tins oo o s Ty Tigy 1> Tigyo]) X oo AT [Ty ooy T Ty s - T )
Since 4 is the smallest of the indices i1, ..., ,,, we can then apply the identity (zy)z ~ (xz)y and part (iii) to
sort the variables in the subterm [z;,..., %4, , % ,,--.,%;, ] in the increasing order of indices, and we obtain
x(s<), as desired. O

3. Polynomial upper bounds

In this section, we establish some polynomial upper bounds for the ac-spectra of groupoids belonging to certain
varieties of groupoids; in contrast, their associative spectra all have constant upper bounds.
For our first variety of groupoids, we can actually determine their associative spectrum and ac-spectrum.

Proposition 3.1. A groupoid (G, =) with at least two elements satisfying the identity xy ~ x must have
s2(x) = 1 and s2°(x) = n for n = 1. In particular, the above two equalities hold for the 2-element groupoid

({0,1}, %) defined by x =y := x for all x,y € {0,1} and the 3-element groupoids SC275 and SC2029.

+[0 0 0 x|0 1 2
0/0 00 0[0 1 2
11 1 1 1/0 1 2
202 2 2 2/0 1 2
SC275 $C2029

Proof. If (G, *) is a groupoid with at least two elements satisfying the identity xy ~ z, then s2(x) = 1 and
$2°(x) = n for all n > 1 since the n-ary operation t* induced by every term t € F,, is determined by the leftmost
variable of ¢ and distinct variables induce distinct operations.

In earlier work [6, Example 4.1.2], we showed that the 2-element groupoid ({0,1}, *) with x = y := x for all
x,y € {0,1} has s2(x) = 1 and s2°(%) = n for n = 1. One can check that SC275 satisfies the identity zy ~ x
and that SC2029 is anti-isomorphic to SC275. Thus their associative spectrum and ac-spectrum are also given

as above. O

The upper bounds in the next result are achieved by the 3-element groupoids SC7 and SC28, which are
anti-isomorphic to SC4 (by swapping 1 and 2) and SC5, respectively.

ECA 4:4 (2024) Article #S2R29 5
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N O O
o O O
N = O %
0n o o oo
w0 oo o
— = O N

SC4 SC5 c7 C2

Proposition 3.2. A groupoid (G, *) satisfying the identities below must have s2(x) < 2 and s2°(x) < n+1 for
n = 3,4,..., where the first inequality holds as an equality if so does the second and both equalities hold for SC7
and SC28.

(i) (zy)z = (zz)y, (i) 2(yz) » x(zy) ~ y(zz), (i) wlz(yz)) = w((zy)z)
Proof. Let t be an arbitrary term in F,, with leftmost decomposition ¢t = [to,t1,...,tn], where g = z, for some

a€{1,2,...,n}. By Lemma 2.1, we may assume that ¢; = t}< for all i € {1,...,m} and [t;| < -+ < [t;n]. We
then distinguish the two cases below.

o If |t,,| > 1, then t,, = {wp,,..., 2, and we can apply (ii) to swap the leftmost variable of ¢,, and
[Za,t1,- .. tm—1]. The resulting term xp,{[Xa,t1,. .., tm-1], Tby,--.,Zp,» can be transformed to
(Thyy @1y ey oy —1y Thytlye -y Ly

by Lemma 2.1. Then we can apply (ii) to swap xp, with z7, and finally we can turn the term into
(T, ey T )

o If |t,,| = 1, then t = [zq,Tp,, ..., T, , |, and we can apply (i) to make sure by < -+ < by_1.

It follows that s2°(x) < n + 1 since there are n possibilities for a in the second case. If the variables z1, ..., 2,
are ordered increasingly in ¢, then we must have a = 1 in the second case. Thus s2 () < 2. If s2°(x) = n + 1,
then the two cases above cannot yield identical n-ary operations on (G, ), and thus s2 (%) = 2.

Now we determine s2(x) and s2°(x) for SC7. It is routine to check that SC7 satisfies the identities (i), (ii),

and (iii). Let ¢ be an arbitrary term in F,,. We may assume that ¢t = {x1,...,2,) Or t = [T, Tby, .-, T, _, ]
with by < .-+ < b,—1 by the above argument. For the former, we have h(t) = 0 for all h: X,, — {0,1,2}. For
the latter, we have h(t) = 2 if h(z,) = 2 and h(xp,) = -+ = h(ap,_,) = 1 or h(t) = 0 otherwise. Therefore

$2°(x) = n + 1, which implies s?(x) = 2.

In a similar way, we can determine s?(x) and s2°(x) for SC28, which also satisfies the identities (i), (ii), and

(iii). If t = {x1,...,2p), then h(t) = 0 for all h : X, — {0,1,2}. If ¢t = [xa,Xpy,...,0n_1], then h(¢) = 1 if
h(z,) € {1,2} and h(xzp,) = 2 for ¢ = 1,...,n — 1, or h(t) = 0 otherwise. It follows that s2°(x) = n + 1, which
implies s2 () = 2. O

The upper bounds in the next result are very close to but not the same as those in Proposition 3.2.

Proposition 3.3. A groupoid (G,*) satisfying the identities below must have upper bounds s2(*) < 2 and
$2(x) <3 forn =3 and s2(*) <3 and s2°(x) < n+1 forn=4,5,....

() zy ~ yz, (1) w(z(yz)) ~ w((zy)z), (i) (v(wz))(yz) =~ (vw)(z(yz))

If s2¢(x) reaches its upper bound, so does s (x), and both upper bounds are reached by SC405 (see Table 1).

Proof. Let t be an arbitrary term in F,, with leftmost decomposition ¢ = [to,t1,...,tm], where |tg] = 1.
By (i), (ii), and Lemma 2.1, we can assume that t; = t8< for all i € {1,...,m}. We can use (i) to swap
u = [to,t1,...,tm—1] and t,,. By Lemma 2.1, the resulting term t,,u is equivalent to t,,u®<. Because

tm = t2<, we can apply (i) again to transform this into

’U/R<t51< = <J}i1 yee ey xik><mik+1’ . ,xin>,
where {x;,,...,x;,} = var([to,t1,.. ., tm—1]) and {4, ,,...,2;, } = var(t,,) withi; <--- <ip and ig4q <--- <

in. Note that i; = j for j =1,...,nif t € B,. If k = 2, then we can show that

(<{Ei1,1'2'2><$7;3, ce 7x74n>)* = (<£U1,.’£2><.’E3, s ,ZL’n>)*

We have either i1 = 1 or i3 = 1. If i3 = 1, then we can do the following transformations to make the leftmost
index 1.

GityinXi, - yin) o Giy gy i3) i, - in) > (ia, - . i i1, i, i3

Lemma 21, i inXis, i1, i2) 2> i, i1, i9)id, - - - i) o> (ig, i1 X iz, ids - - -y in
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Here we drop x for ease of notation and represent an application of an identity by an arrow with the label of
the identity above it. Similarly, we can make the second leftmost index 2 and then make the rest 3,...,n. If
3 < k <n-—2, then we have

. . . . (i) . . . . . . L 2.1 ,. . . .
ity eyt )itty e vy iny RSN Gity o) (g, vy i) Thg 1y - v vy liny) =20 iy i )iy i )
Here the application of (iii) uses v = z;,, w = ®j,, * = (Xiy, ..., Tiy ), Y = Tiy,,, and 2 = (x4, ,,...,x;, ). Thus

t induces the same n-ary operation on (G, *) as one of the following “standard” terms

Tiq <$1‘2, NN ,xin>, <JZ¢1, ‘e ,Jiin71>xin, <$17 I2><JJ3, .o ,.Tn>.

The first standard term is determined by 4, since i3 < --- < i,, and the second is determined by i, since
i1 < -+ <ip—1. Moreover, z; {Tiy,...,x;, » and {x;,...,x;,_, yx; induce the same n-ary operation on (G, *)
if 44 = i, by (i). Thus there are n possibilities in total for the first two standard terms. On the other hand,
the last standard term {(z1,x2){(zs,...,2,y does not occur when n = 3. Thus s2°(%) < 3 when n = 3 and
s2(x) <n+1forn =>4

If t € B, is a bracketing of z1,...,z,, then by the above argument, it induces the same n-ary operation
on (G, *) as one of x1{xa,...,xn), {T1,...,Tp—1)Tn, O {L1,22XT3,...,Zyy. Thus s2(x) < 2 for n = 3 and

s2(x) < 3 for n = 4. Tt is easy to see that the equality holds in the upper bound for s2 () when the equality
holds in the upper bound for s2°(x).

Now we consider SC405. Write an arbitrary term ¢ € F,, as ¢ = (t1)(tr), where t;, and tp are linear terms.
Also view t as a bracketing of z;,,...,z;, . We distinguish the following cases on |ty | and [tg|.

(i) If |tz] = 1 < |tg| then ¢ evaluates to 0 or 1, so t*(a1,...,a,) = |a;, /2].
(ii) If |t| > 1 = [tg| then t*(aq,...,a,) = |a;, /2| for the same reason as above.
(iii) If |t | > 2 and [tg| = 2 then ¢} and ¢} both evaluate to 0 or 1, so t* is always zero.

For n = 3 we must have (i) or (ii), so t*(a1, as,as) = |a;/2|, where ¢ varies in {1,2,3}. Thus s2°(x) = 3 for
n = 3. For n > 4, we have t*(aq,...,a,) = |a;/2], where i varies in {1,2,...,n}, or t* = 0. Thus s2°(¥) =n+1
for n > 4. O

The next result involves the 3-element groupoid SC189, which is anti-isomorphic to SC170.

*1o 1 2 *1o 1 2
0/0 00 0/0 0 0
10 2 1 10 2 2
2/0 2 1 2|0 1 1
SC170 SC189

Proposition 3.4. A groupoid (G, *) satisfying the identities below must have s&(*) < 2 and s2°(x) < 2n for
n = 3,4,..., where the first inequality holds as an equality whenever the second does and both hold for the
2-element groupoid ({0,1}, ) defined by x +y:=x + 1 (mod 2) for all z,y € {0,1} and the 3-element groupoids
SC170 and SC189.

(i) z(yz) ~ 2(zy), (i) (zy)z ~ (z2)y, (i) w(z(yz)) ~ w((zy)2),

(iv) (wz)(yz) ~ (w(zy))z, (v) w(z(yz)) ~ (wz)y)z
Proof. Let t be an arbitrary term in F,, with leftmost decomposition t = [tg,t1,...,tmn], where |tg| = 1. By

(i), (iii), and Lemma 2.1, we may assume that ¢; = &= for all i € {1,...,m}. By (v), we may assume m < 2.
If m = 1 then t* = (x;,,...,x;, )" with is < -+ < i,. If m = 2 then we can further use (iv) to obtain
t* = (24, Tiy, Lig, - - -y L1, ]* and make sure iz < -+ <4, by (ii) and Lemma 2.1. Thus s2°(x) < 2n.

If ¢ is a bracketing of 1, . . ., &y, then t* = (x1, ...,z )* or t* = [z1,29,{x3,...,Zny|* by a similar argument.

Thus s2 (%) < 2, and the equality must hold if s2°(x) = 2n.

It is routine to check that the 2-element groupoid ({0,1},#) defined by = * y := = + 1 (mod 2) for all
x,y € {0, 1} satisfies the identities (i)—(v). It has s2 () = 2 for n = 2 by Csdkdny and Waldhauser [3, §4.1] and
s2°(x) = 2n for n > 3 by our earlier work [6, Example 4.1.2]. It is easy to see that SC189 is obtained from this
2-element groupoid by adding an absorbing element; hence the term operations behave in essentially the same
ways in both groupoids. O

Our next result is similar to Proposition 3.4, and we will use leaf depths to generalize them in Section 6.
The result here involves two anti-isomorphic groupoids:
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[0 1 2 «|0 1 2
0T 1 1 01 2 0
12 2 2 1|1 2 0
2/0 00 21 2 0
SC3242 SC3302

Proposition 3.5. A groupoid (G, *) satisfying the identities below must have

1 n=1,2 n n=12
s2(¥) <42 n=3 and s2(¥)<<42n n=3
3 n=4)5,... 3n n=4,5,...

where the first inequality holds as an equality if so does the second and both hold for SC3242 and the anti-
isomorphic SC3302.

(i) z(y2) ~ x(zy), (i) w(z(yz)) ~ w((zy)z), (i) (zy)z ~ (22)y,
(iv) (wz)(yz) ~ (wy)(z2), (v) (((vw)z)y)z ~ v(w(z(yz)))

Proof. The result is trivial when n = 1,2; assume n > 3 below. Let ¢ be an arbitrary term in F,, with leftmost
decomposition t = [tg,t1,...,ty], where [to| = 1. By (i), (ii), and Lemma 2.1, we may assume that ¢; = ¢t}<
for all i € {1,...,m}. By (iii) and Lemma 2.1, we may assume that [t;| < -+ < |tm]. If |t;] > 1 for some
i€ {l,...,m — 1}, then we apply (iv) to make sure |¢;| = 1. Thus we may assume that |t1| = -+ = |t;m—1]| = 1.
Therefore, ¢ induces the same n-ary operation on (G, *) as [@i,, ..., %, {Ti,,,---,Zi, )], where we may further
assume that x;, <--- <z, by (iii) and (iv) and that k € {1,2,3} by (v). It follows that s2°(x) < 2n for n = 3
(in this case k € {1,2}) and s2°(x) < 3n for n =4,5,....

If t € B,, is a bracketing of x1xs - - - x,, then we must have i; = 1 since the above argument does not alter
the leftmost variable. Thus s2(x) < 2 for n = 3 and s%(x) < 3 for n = 4,5,.... It is clear that if the upper
bound of s2°(x) is reached, so is the upper bound of s (x).

For SC3242, we have t*(aq,...,a,) = (a;, + d) mod 3 whenever the binary tree corresponding to ¢t € F,, has
leftmost leaf ¢ of left depth d. The number of possibilities for 7; is n, and the number of possibilities for d
(mod 3) is 1 when n € {1,2}, 2 when n = 3, and 3 when n = 4,5,.... The proof is now complete. O

We next present a family of groupoids whose associative spectrum and ac-spectrum are bounded above by
1,1,2,4,4,4,4,... and 1,2,9,32,50,72,98, ... and show that both upper bounds are reached by the 3-element
groupoid SC3162, which is anti-isomorphic to SC2467.

* [0 1 2 * [0 1 2
0f1T 00 01 1 1
1/1.0 0 1[0 0 0
210 1 20 0 1
SC2467 SC3162

Theorem 3.1. A groupoid (G, *) satisfying the identities below must have s2(*) < 2 and s2°(x) < n? forn =3
and s2(x) < 4 and s2°(x) < 2n? forn = 4,5, ..., where the upper bound for s (x) is reached if the upper bound
for s2°(x) is reached and both upper bounds are reached by SC3162 and the anti-isomorphic SC2467.

(i) 2(yz) ~ z(zy), (i) w(z(yz)) ~ w((zy)z), (i) (wr)y)z ~ (wr)2)y,
(iv) (w(zy))z ~ (w(zz))y, (v) v(w(z(yz))) =~ ((v(wz))y)z, (V) (vw)(z(yz)) ~ ((vw)z)y)2

Proof. Let t be an arbitrary term in F,, with leftmost decomposition t = [z, t1,t2,...,tm]. By (i), (ii), and
Lemma 2.1, we may assume that ¢; = t-< for all i € {1,...,m}. By (vi), we may assume that m < 3.
Consequently, ¢ induces the same n-ary operation on (G, ) as one of the following four types of standard terms.

Type 1: m = 1. Then t* = (x4[xp,,...,Tp,_,])*, where by < -+ < by_1.
Type 2: m = 2 and |t1] = 1. Then t* = ([zq, Zp, [Teys - - -, Te,_,]])*, Where ¢; < -+ < ¢p_a.
Type 3: m = 2 and |t1] = 2. Then t* = ([xq, [Tby,- -+, Tb, 5], Tb,_,])*, where by < -+ < b,,_1, thanks to (iv).

Type 4: m = 3. We may assume that |t1] = 1 by the identity (v) and that |ta| = |t3| by the identity (iii). If
[ta| = |ts| > 1, then we can write to = tha for any variable x € var(t2) and switch x with ¢35 by (iv). Thus we
may also assume |t3| = 1. It follows that t* = ([zq, Tb, [Tey, - -+ Ten_s], Ten_o])*, Where ¢1 < -+ < ¢pa.

ECA 4:4 (2024) Article #S2R29 8



Jia Huang and Erkko Lehtonen

Summing up the possibilities for the above four types of standard terms, we obtain that

a(4) < n+n(n—1)=n? ifn=3
* ~
n+nn—1)+n+nn—1)=2n> ifn=45....

If t € B, is a bracketing of x125 - - x,, then there is only one possibility in each of the above four (two when
n = 3) cases. This shows that s2(x) < 2 for n = 3 and s2(x) < 4 for n = 4,5,.... If s2°(x) = 2n? then the
above four cases must induce distinct terms on (G, ), and thus s2 (x) = 4.

It is routine to check that SC3162 satisfies the identities (i)—(vi). It remains to show that any two distinct
standard terms ¢t and ¢’ in F,, must induce distinct n-ary operations on SC3162. Assume that ¢ is one of the
following, where b; < -+ <b,_1 and ¢y < --- < ¢p_o.

Zq [mbu s axbnq]a [.Ta, Ty, [x(/'l? . .- 7xcn72]]’ [xaa [xbw .- 7xbn72]7 xbn—l]’ [$av Ty, [‘rcl’ s v'r%f?,]a anfQ]
Similarly, assume that ¢’ is one of the following, where b} < --- <b,_;and ¢} <--- < ¢, _,.
xa/[xb’la s 7xb’n

]

It is clear that [0, s1,...,s¢] gives 0 if £ is even or 1 if £ is odd, no matter what si,..., s, are. Therefore, we
only need to consider the following cases.

]7$c’

n—2

,1]7 [xa’axb/a[xc’lw--axc’ 2]]a I:xa’7[xb’17~--7$b’ z]axb;71]7 [xa/axb/v[xc’lvuwxc’

n— n— n—3

Case 1: t = wo[2py, ... 20, ,] and t' = zy[zy,, ..., 2 |, where a # a’. We have h(t) = 0 # 1 = h(t'), where
h(z,) ;=1 and h(z) := 0 for all = # z,.
Case 2: t = xo[Tpy,. .-y Tp,_,] and ' = [xq, Tp, [xca,...,mc;_s],m%_2]. We have h(t) = 0 # 1 = h(t'), where
h(z,) = h(ze) = h(zy) :=2 and h(z) := 0 for all = ¢ {z,, 2., 2y }. Here a may coincide with o’ or b'.
Case 3: t = [za, ¥, [Teys -, Te, ]| and ¥ = [0, 20, [T, T ]], Where (a,b) # (a',0).

If a # @ then h(t) =0 # 1 = h(t'), where h(z,) := 0 and h(z) := 1 for all x # z,.

If a =a then b # b and h(t) =0 # 1 = h(t’), where h(x,) = h(xp) := 2 and h(x) := 0 for all x ¢ {x4,xp}.
Case 4: t = [wa, T, [Teys ooy Te, ] and ' = [war, [0, 20 ].

If a # o' then h(t) =0 # 1 = h(t'), where h(z,) := 0 and h(z) :=1 for all  # z,.

If a = a’ then h(t) = 0 # 1 = h(t'), where h(z,) = h(zp) := 2 and h(z) := 0 for all = ¢ {x4, Tp}.

]vrbl

n—1

Case 5: t = [wa, [Toys- -+ Tb, ], ¥, ] and ' = [za, [vy, ..., 2y | 21y ], where a # a’. We have h(t) = 0 #
1 = h(t'), where h(z,) := 0 and h(z) :=1 for all z # z,.

Case 6: t = [za, T, [Teys -y Tep )y Te, o] and U = [0, 20, [T, ..o 20 | 20 ], where (a,b) # (a/,1).
If a # o/ then h(t) =1 # 0 = h(t'), where h(z,) := 0 and h(z) :=1 for all z # z,.
If a = @ then b # b and h(t) =1 # 0 = h(t'), where h(z,) = h(xp) := 2 and h(x) := 0 for all z ¢ {z,,xp}.

The proof is now complete. O

4. Exponential upper bounds

In this section, we establish some exponential upper bounds for the ac-spectra for a few varieties of groupoids;
the respective associative spectra may have linear or exponential upper bounds.

Proposition 4.1. Every groupoid (G, ) satisfying the identities below must have s2(x) < n — 1 and s2°(%) <
271 — 1 forn = 2,3,..., where the first inequality holds as an equality whenever the second does and both
equalities hold for SC1066 (see Table 1).

(i) zy ~ ya, (i) w(z(yz)) ~ w((zy)2)

Proof. Let t be an arbitrary term in F,, with leftmost decomposition t = [z4,t1,%2,...,t,]. By Lemma 2.1, we
may assume that t; = t=< for all i € {1,...,m}. Next, we use (i) to swap [Z4,t1,...,tm_1] and t,,. Then we
transform [x4,t1,...,tn_1] to a leftmost bracketing again by Lemma 2.1. It follows that ¢ induces the same
n-ary operation on (G, *) as [xj,,..., 2 |[Zj,.,---, %), ], where {z;,,...,x;, } = var(t,,) and {zj,,,,..., 2.} =
X,,\ var(t,,). The order of the elements of either set of variables does not affect t* by the above, nor does the
order of the two sets by (i). Thus s2¢(x) is bounded above by (2" — 2)/2 = 2"~1 — 1, the number of partitions

of {1,...,n} into two unordered nonempty blocks.
Restricting the above argument to bracketings of x1x5 - - -, in B, instead of full linear terms in F,,, we have
the variables in var(t,,) indexed by larger numbers than the other variables. Thus the partitions of {1,...,n}
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associated with these bracketings have two blocks {1,...,k} and {k+ 1,...,n} for some ke {1,...,n —1}. It
follows that s2(#) < n —1.

If s2¢(x) = 2"~ — 1, then distinct partitions of {1,...,n} into two unordered nonempty blocks correspond
to distinet n-ary operations on (G, ), and we can restrict this to partitions with two blocks {1,...,k} and
{k+1,...,n} to conclude that s? (%) =n — 1.

It remains to consider SC1066. Every full linear term t € F,, can be written ast = ttg. Let h : X,, — {0,1,2}
be an assignment. We have that h(t) = 1 if and only if h(tr) = h(tg) = 2 and that h(t) = 0 if and only if
h(tr) # 2 and h(tgr) # 2. As observed by Csdkdny and Waldhauser [3], one can show by induction that
h(t) = 2 if and only if h assigns 2 to an odd number of variables. Thus h(t) is completely determined by
how many variables in ¢ and tp take the value 2. In particular, if s = [z;,,...,2,][®i,,,,...,2,] and
t= [z, - xj )[@j, s sxy, ) with Te {ig, ... igb n {1, .., gkt and i € {iy, ..., ig}\{j1, ..., jr}, then s* # t*
since h(s) = 0 # 1 = h(t), where h(z1) = h(z;) := 2 and h(x) := 0 for all ¢ {z1,2;}. This implies that
53 (%) = 2"~ — 1, which in turn implies s2 (¥) = n — 1. O

We study another variety of groupoids, for which the associative spectra have the same upper bound n — 1
as in Proposition 4.1 but the ac-spectra have a different upper bound 1,2,7,29, 146, ... [13, A185109]. We show
that both upper bounds are reached by SC367, which is anti-isomorphic to SC10.

«[0 0 0 * [0 1 2
0/0 0 0 0[]0 0 1
110 0 0 110 0 0
2|1 0 0 210 0 0

SC10 SC367

Proposition 4.2. A groupoid (G, *) must have s2(x) <n —1 forn=2,3,... and

n—3 n—3
n
a(x) < n! —1)---(n—k+1)=n! k!
k=0 k=0
form = 1,2,... if it satisfies the identities below, where the first inequality holds as an equality whenever the

second does and both equalities hold for SC367 and the anti-isomorphic SC10.

(1) z(y2) ~ 2(zy) ~ y(zz), (i) w(z(yz)) ~ w((zy)2)

Proof. We show that we can transform an arbitrary term t € F,, whose leftmost decomposition is t =

[to,t1,. .., tm] With |tg| = 1, to a “standard” term of the form [(x;,, ..., %, ), i, ..., %, ], where £ € {0,3,4,...,n}

and i1 < - -+ < iyp.

If |t;] =1foralli=1,...,m, then t = [x;,,...,2;, ] is already a standard term with ¢ = 0. Here i1,..., i,
form a permutation of 1,...,n, and we have n! possibilities in this case.

Suppose [t;| > 1 for some j, where j is as large as possible. Then [tj;1| = --- = |t,,| = 1. We can transform
t; to the rightmost bracketing of its variables in any prescribed order by (i), (ii), and Lemma 2.1, then switch
its leftmost variable x;, with [to,t1,...,¢;_1] by (i), and use (i), (ii), and Lemma 2.1 again to transform ¢ to the
standard form [{z;,,...,2,), @i, ., .., %, |, Where i1,...,4, can be in any prescribed order, say the increasing
one. There are n(n —1)--- (¢ + 1) possibilities for ig41,...,,, and we must have 3 < ¢ < n since [t;| > 1.

Summing the numbers of possibilities in the above two cases with k& = n — £ in the second case gives the
desired upper bound for s2¢(x). Restricting the above argument to bracketings of x1z5 - - x,, in B,,, we obtain
standard terms of the form [{x1,...,2Z¢), Tes1,...,2,] with £ € {0,3,4,...,n}. Thus s2(x) < n —1. It is easy
to see that if the upper bound for s2°(x) is reached, so is the upper bound for s2 ().

It is clear that SC10 is anti-isomorphic to SC367. The latter satisfies the identities (i) and (ii). It re-
mains to show that s* # t* whenever s and ¢ are distinct standard terms in F,,. We may assume that
s = [(Tiyyo s @ig)s Tipyyso -y xi, ] and t =[xy, ... 25,0, %), 15, %j,] for some £,m € {0,3,4,...,n}, where
i <0 <ig, J1 < <jm,and £ < m.

First, assume that i # ji for some k € {m + 1,...,n}. Let k be as large as possible. We have h(s) = 0 #

1="h(t)ifn—kisodd or h(s) =1 0= h(t) if n — k is even, where h(z;, ) = -+ = h(z;,) := 2 and h(z) :=0
for all x ¢ {x;,,..., 2, }.

Next, assume that i = ji for all k = m + 1,...,n. This implies that £ < m (otherwise s = t). We have
h(s) =0%#1=h(t) if n—misoddor h(s) =1 % 0= h(t) if n —m is even, where h(z; )=---= h(z;, ) :=2
and h(z):=0for all x ¢ {z; ,...,x;, }. O

The upper bounds in the next result are reached by the 3-element groupoid SC2302, which can be viewed as
subtraction on a finite field of three elements, or more generally, reached by the subtraction on any commutative
group (G, +) of exponent greater than 2 (cf. [6, Example 7.1.4]). It is clear SC2302 is anti-isomorphic to SC2155.
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[0 1 2 «|0 1 2
00 1 2 0[0 2 1
1/2 01 11 0 2
2/1 2 0 22 1 0
SC2155 SC2302

Proposition 4.3. A groupoid (G, ) satisfying the identities below must have s (%) < 2"72 and s2°(x) < 2" —2
forn =2.3,..., where the second inequality holds as an equality whenever the second does and both equalities
hold for the subtraction operation — on any commutative group (G, +) of exponent greater than 2, in particular,
for SC2302 (hence the anti-isomorphic SC2155).

(i) (zy)z ~ (z2)y, (i) 2(yz) ~ 2(yx), (i) w(z(yz)) = (w(zy))z.

Proof. Let t be an arbitrary term in JF,,. We show by induction on |¢| that ¢ can be transformed to a “standard”

term [, ..., 2, [Tiy,,,- .., %, ]| for some k € {1,...,n—1}, where the sets {i1,%k42,...,%,} and {iz, ..., ix11}
respectively contain the indices of the leftmost two variables of ¢ and either set of indices can be permuted
arbitrarily. We first write ¢ = [to, 1, ..., tm] With |tg] = 1. We may assume that |t1| = |t2| = -+ = |tm]|, thanks

to the identity (i) and Lemma 2.1. We distinguish some cases below.

Case 1: m > 1 and |t1] = 1. Then ¢t = [z;,,...,2;, ], which is in standard form with & = n — 1. The leftmost
two variables of ¢ are indexed by i1 € {i1} and iz € {ia,...,ix+1}, and we can permute g, ..., ix+1 by (i).

Case 22 m > 1 and |t;| > 1. We can first apply (iii) repeatedly to transform ¢ to x; t', where i, is the
index of the leftmost variable of ¢ and the leftmost variable of ¢’ is the second leftmost variable of t. By the

induction hypothesis, we may assume that ¢’ = [z;,,,,..., %, _,,[%i,..., %, ]], where igyq,i2,...,9 can be
permuted in all possible ways and so can be ix,2,...,4,_1,%1, and the leftmost variable of ¢’ is indexed by one
of ig41,%2,...,ix. We then apply (ii) to switch z;, with [x;,,...,z; ] and get [2;,,..., 25, [T 15 .- 2, ]]. By
(i), we can switch i,, and each of ix42,...,7,-1. Thus we are done for this case.

Case 3: m = 1. Similarly to the above case, we can apply the induction hypothesis to ¢; and then use (i) and
(ii) to finish the argument for this case.

It follows that s2¢(x) is bounded above by the number of nonempty proper subsets of {1,...,n}, which is
clearly 2"—2. Restricting the above argument to t € B,,, we must have 1 € {i1, 45 42,...,in} and 2 € {ia, ..., ix41}

Thus s2 (¥) < 2"2; see also earlier work [4]. It is easy to see that s2°(x) = 2" — 2 implies s? () = 272,

The usual subtraction — on R or C satisfies the identities (i), (ii), and (iii). We have s?(—) = 2”72 and
s2¢(—) = 2™ — 2 by previous work [6, Example 7.1.4]. The same argument there is also valid for subtraction on
any commutative group (G, +) of exponent greater than 2 and in particular, for SC2302. O

Remark 4.1. If (G, +) is a commutative group of exponent at most 2, then the subtraction coincides with
addition and s2°(—) =1 for alln € Ny.

We provide another variety of groupoids (G, *) with the same associative spectrum upper bound 272 as
Proposition 4.3 but a different ac-spectrum upper bound 1,2,9,28,75,186,... [13, A058877]. We show that
both upper bounds are reached by two 3-element groupoids SC271 and SC356, which are anti-isomorphic to
SC1610 (by 0 — 1, 1 — 2, 2 — 0) and SC2032 (by 0 — 2, 1 — 0, and 2 — 1), respectively.

+[0 1 2  «|0 1 2 %[0 1 2 |0 1 2
0/0 00 0/00O0 ©0/0 11 00 1 2
1110 1,211 1/0 1 2 1|0 1 2
202 2 2 21 2 2 2{0 1 2 2|1 0 2
SCat1 SC356 SC1610 SC2032

Theorem 4.1. A groupoid (G, ) satisfying the identities below must have s (*) < 2"72 and s2°(x) < n(2"1-1)
forn =2,3,..., where the first upper bound is reached whenever the second one is.

(i) (zy)z ~ (z2)y (1) wlz(yz)) ~ wl(zy)z) (i) (we)(yz) ~ (wy)(zz)

Moreover, both upper bounds are reached for the 3-element groupoids SC271 and SC356 (hence the anti-isomorphic
SC1610 and SC2032).

Proof. We transform an arbitrary term ¢ € F,, whose leftmost decomposition is t = [z4,t1,...,tm], to a
“standard term” using (i), (ii), (iii), and Lemma 2.1. We may assume that [t;| < |t2| < -+ < |tm], thanks to the
identity (i). Let x4, be the leftmost variable of ¢; for ¢ = 1,...,m. If there exists a positive integer j < m such
that [t;]| > 1, we can use the identity (ii) to transform ;.1 to x4, ,,t; 1 and then use the identity (iii) to switch
tj and x4, ,. Repeating this, we obtain [z4,2p,,...,2p,,_,, (2, t;,)] from t, where {b1,... by} = {a1,...,am}.
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We can assume that by < bs < -+ < by, thanks to the identities (i) and (iii). Applying the identity (ii)
repeatedly to xp, tr. gives (Tp, T,y Teny v Le,_,. 4. We may assume that ¢; < ¢a < -+ < ¢p_m—1 by the
identities w(x(yz)) ~ w((zy)z) ~ w((z2)y) =~ w(z(zy)).

It follows that every t € F,, induces the same n-ary operation as a standard term

[mav Lbyy- - ’{L‘b'm.fl]<$b'm,’xcl7 s ’:L'Cnf'rn71>’

where by < -+ < by, and ¢; < -+ < ¢p_m—1. This implies that s2°(x) < n(2”_1 —1) since there are n possibilities
for a and 2"~! — 1 possibilities for (by,...,by,).

Restricting the above argument to ¢ € B,,, we must have a = 1 and by = 2 since a1 = 2 € {b1,...,b,}. Thus
s2(x) <2772, and it is easy to see that the equality must hold when s2¢(x) = n(2"~! —1).

One can check that SC271 and SC356 both satisfy the identities (i), (ii), and (iii). It remains to show that
h(s) # h(t) for some assignment h : X,, — {0,1,2}, where s and ¢ are terms in F,, corresponding to distinct
standard terms

[Tas Tors s Ty [T s Ters ooy Ty ) # [Tars Tt Ty, @ Tt ooy T ).
1 £—1 14 1 n—~F—1

Assume m < ¢, without loss of generality.
First suppose that a # a’. Define h(z,) := 0 and h(xz) = 2 for all © # x,. For both SC271 and SC356, one
can check that h(s) = 0 # h(?).

Next, suppose a = a’. Then {ci,...,cp—m-1} and {c},...,¢,_,_,} must be different sets. Suppose some i
belongs to the latter but not the former, without loss of generality. We must have i € {by,...,bn}.

For SC271, we have h(s) =0 # 1 = h(t), where h(z;) := 2 and h(x) := 1 for all x # z;.

For SC356, we have h(s) =1 # 2 = h(t), where h(x;) := 0 and h(x) := 2 for all x # x;. O

5. Upper bounds related to set partitions

In this section, we present a few varieties of groupoids, whose ac-spectra are related to set partitions. Recall that
the restricted Bell number B, ,, counts partitions of the set {1,2,...,n} into unordered nonempty blocks of size
at most m [12]; it gives the well-known Bell number B,, when m > n. In particular, we have B, o = 1forn = 0,1
and By, 2 = By_12 + (n — 1)B,,_22 for n > 2; see the sequence A000085 in OEIS [13] for other interpretations
and closed formulas for B, 2. We also need the following definition by Csdkdny and Waldhauser [3].

Definition 5.1. Define a term t to be a nest if either |t| = 1 (a trivial nest) or there exists a term t' together
with a variable x such thatt = xt’ ort =t'z, |t'| = [t|—1, and t' is a nest. Each variable in t must be contained
in a unique maximal nest, which is simply called a nest of t. Fvery nontrivial nest must have a unique subterm
of the form x;x;, and the variables x; and x; are called the eggs of this nest.

Our first result is concerned with a variety of groupoids including the following two 3-element groupoids.

*1o 1 2 « [0 1 2
0/0 00 0]0 1 1
1jo 1.0 1|1 0 0
2/0 01 2|1 0 1
SC79 SC1701

Proposition 5.1. A groupoid (G, *) satisfying the identities below must have s (%) < F,11 — 1 and $2°(x) <
B, —1 forn=2,3,..., where the first inequality holds as an equality whenever the second does.

(i) zy ~ yz, (i) (wz)y)z ~ ((wz)2)y
Moreover, both upper bounds are reached by SC79 and SC1701.

Proof. Suppose s,t € F,, have the same eggs of nests. We show by induction on n that s* = ¢t*. Let x; and
z; be the eggs of a nest of s; they must be the eggs of a nest of t. The case n = 2 is trivial; assume n > 3
below. Thanks to the identity (i), we may assume s = [x;,%;, S1,...,S¢] and ¢ = [x;, ;,t1,...,tm]. We may
also assume that [s1| = -+ = |s¢| and [¢1| = - -+ = |tym| by (ii). Assume |s1| < |t1], without loss of generality.

Case 1: |t1| = |s1] > 1. Replacing z;x; with a new variable zy in both s and ¢ gives full linear terms s’ and ¢/
in n — 1 variables that share the same eggs of nests. It follows from the induction hypothesis that (s')* = (¢')*,
and this implies s* = t*.

Case 2: |s1] = 1. Then s3] = --- = |s¢|] = 1 and s has only two eggs x; and z;. We must have [t;| = 1
(otherwise ¢; contains eggs different from z; and z;) and thus |t3| = --- = |t,;,] = 1. We can use (ii) to make
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sure s1 = t; = x, for some k ¢ {7, j}. Replacing x;x; with a new variable z( in both s and ¢ gives s’ and ¢’ with
eggs xg and zy. By the induction hypothesis, we have (s')* = (¢')*. This implies that s* = ¢*.

Therefore, s2°(*) is bounded above by B, 2 — 1, which is the number of partitions of {1,...,n} into blocks
of size one or two with at least one block of size two (since there is at least one nest with two eggs).

Restricting the above argument to bracketings of z1,...,z,, we have s2(x) < Fj,;1 — 1 since the partitions
associated with bracketings of x1,...,z, must have two consecutive integers in each block of size two; see also
Csékdny and Waldhauser [3, §5.6]. It is easy to see that s2°(x) = By, 2 — 1 implies s2 (x) = F,,11 — 1.

It is routine to verify that groupoids SC79 and SC1701 satisfy identities (i) and (ii). It remains to verify that
if s,t € F,, are terms whose eggs of nests are not the same, then s and ¢ induce distinct operations on SC79 and
on SC1701. Suppose that z; and x; are eggs of a nest in s but not eggs of any nest in ¢. For SC79, Csdkany and
Waldhauser [3] observed that h(s) = 1 # 0 = h(t), where h(z;) = h(z;) := 2 and h(z) := 1 for all = ¢ {z;, x;}.
For SC1701, we have h(s) = 1 # 0 = h(t), where h(z;) = h(z;) := 2 and h(z) := 0 for all = ¢ {z;,2;}. Thus
$2°(%) = Bp o — 1 and s (%) = Fj,41 — 1 for SC79 and SC1701. O

A set partition is rooted if it has a distinguished singleton block called the root. The number of rooted
partitions of {1,2,...,n} is nB,—1 = 1,2,6,20,75,312,... [13, A052889]. We show below that this number is
the upper bound for the ac-spectra of a variety of groupoids and can be attained by the 3-element groupoids
SC41 and SC96. The Cayley tables of these two groupoids together with the anti-isomorphic groupoids SC398
and SC1069 are given below.

* [0 1 2 * [0 1 2 * [0 1 2 * [0 1 2
0/0 00O 0/0 0O 0[O0 01 0[0 0 2
110 0 1 1/o 1.0 1|0 0 1 110 1 0
2112 2/2 02 2012 20 0 2
SC41 SC96 SC398 SC1069

Theorem 5.1. A groupoid (G, *) satisfying the identities below must have s(x) < 2"72 forn = 2,3,... and
$2¢(x) < nBp_1 forn =1,2,..., where the second inequality holds as an equality whenever the second does.

(i) z(y2) ~ x(zy), (i) (2y)z ~ (z2)y.
Moreover, both upper bounds are reached by SC41 and SCI6 (hence the anti-isomorphic SC398 and SC1069).

Proof. Let t be an arbitrary term in F,, with leftmost decomposition ¢ = [z4,t1,...,ty]. Define a rooted set
partition of {1,2,...,n} associated with ¢: we have a block consisting of the indices of the variables in ¢; for all
Jj=1,2,...,m together with a singleton block {a} that is the root of this partition. By (i), (ii), and Lemma 2.1,
t induces on (G, *) the same term operation as [z, t{;(ﬁ), e ,t{;fm)] for any permutation o € &,,. It follows that
terms in JF,, associated with the same rooted partition must induce the same n-ary operation on (G, *). Thus
$2°(%) < nBp_1.

The rooted set partition associated with a bracketing of xq * - - - # x,, must have {1} as its root and the other
blocks are intervals. The number of such “interval partitions” can be found by counting the number of ways of
inserting bars into the n — 2 spaces between 2, ...,n. Thus s? () < 2772,

If s2°(%) = nB,_1 for n > 1, then s* # t* whenever s,t € F, are associated with distinct rooted set
partitions, and restricting this to bracketings of x1 * - - - % x,, gives s (x) = 272,

It is routine to check that SC41 and SC96 both satisfy the identities (i) and (ii). It remains to show that s* #
t* whenever s and ¢ are terms in JF,, associated with distinct rooted set partitions. Suppose s = [z, 51, . . ., S¢]
and ¢t = [zp,t1,...,tm], where s1,...,8, and t1,...,t,, are ordered according to the smallest index of the
variables they contain. If a # b then s* # t* since

o h(s)=0#1=nh(t)if ({0,1,2},*) = SC41, h(z,) = 0 and h(z;) = 2 for all i # a, and
e h(s) =0%#2=h(t)if ({0,1,2},*) = SCI6, h(xz,) = 0 and h(z;) = 2 for all i # a.

Assume a = b below. Let j be the smallest integer such that s; and ¢; do not contain the same set of variables.
The least index c of the variables of s; must agree with that of ¢;. There exists another variable x4 in exactly
one of s; and t;, say the former. Then x4 is in ¢ for some k > j. We have

o h(s)=1%0=nh(t)if ({0,1,2},*) = SC41, h(xz.) = h(zq) = 0, and h(z;) = 2 for all i ¢ {c,d}, and
o h(s)=2#0=nh(t)if ({0,1,2},*) = SCI6, h(xz,) = h(x.) =2, and h(z;) =1 for all i ¢ {a, c}.
Thus s* # t*. O
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Next, we provide an ordered version of Theorem 5.1 that has the same associative spectrum upper bound but
a different ac-spectrum upper bound. Recall that the ordered Bell number or Fubini number B, counts ordered
partitions of the set {1,2,...,n} [13, A000670]. The number of rooted ordered set partitions of {1,...,n} is
nBl_, =1,2,9,52,375,... [13, A052882]. We show that nB/,_; is also the upper bound for the ac-spectra of
a variety of groupoids and can be reached by the 3-element groupoids SC262, SC1812, and SC2446, which are
anti-isomorphic to SC1441 (by 0 — 2, 1 +— 0, and 2 — 1), SC1793 and SC2430, respectively.

* [0 1 2 * [0 1 2 * [0 1 2 « [0 1 2 * [0 1 2 * [0 1 2
0[0 0 0 00 0 2 0[0 1 1 0[0 1 1 0[1 0 0 01 0 0
11 10 112 1 2 11 2 1 11 2 2 110 2 1 110 2 2
2|1 1 2 210 0 2 2|1 2 1 201 1 1 210 2 1 210 1 1
SC262 SC1441 SC1793 SC1812 $C2430 SC2446

Theorem 5.2. A groupoid (G, *) satisfying the identities below must have s(x) < 2"72 forn = 2,3,... and
$2°(x) < nBl,_q forn =1,2,..., where the first inequality holds as an equality whenever the second does.

(i) 2(yz) ~ 2(zy), (i) w(z(yz)) ~ w((zy)z)

Moreover, both equalities hold for SC262, SC1812, and SC2446 (hence the anti-isomorphic SC1441, SC1793, and
5C2430).

Proof. By (i), (ii), and Lemma 2.1, we can transform an arbitrary term ¢ € F,, with leftmost decomposition
t = [to,t1,.- - tm], where [to| = 1, to [to,t=,...,t2<]. Thus terms in JF, induce the same n-ary operation if
they are associated with the same rooted ordered set partitions. It follows that s2°(x) < nB!,_;. Restricting
the above argument to B,, gives s?(x) < 2”72, where the equality holds if s2°(x) = nB/,_;.

It is routine to check that SC262, SC1812, and SC2446 all satisfy the identities (i) and (ii). It remains to
show that s* # t* whenever s,t € F,, are associated with distinct rooted ordered set partitions of {1,2,...,n}.

We can write s = [xq4, $1,...,8¢] and ¢ = [zp,t1,...,tm]. If a # b then s* # ¢* by the following:
e For SC262, we have h(s) =1 # 0 = h(t), where h(z,) := 1 and h(z) := 0 for all = # z,.

e For SC1812 and SC2446, one of h(s) and h(t) is 1 and the other is 2, where h(z) := 1 for all z if £ and m
have different parities or h(z,) := 1 and h(z) := 2 for all z # z, otherwise.

Assume a = b below. Let j be the smallest integer such that var(s;) # var(t;).
For SC262, we distinguish two cases.

Case 1: var(t;) & var(s;) for all i. Define h(x) := 2 for all z € {z,} U var(s;) and h(z) := 0 for all = ¢ var(s;).
Then h(z,) = 2, h(s;) = 2, h(s;) = 0 for all ¢ # j, and h(t;) € {0,1} for all i. One can check that h(s) =1 #
0 =h(t) when j =1 and h(s) =0 # 1 = h(t) when j > 1.

Case 2: var(ty) € var(s;) for some k. If var(ty) & var(s;), then we are back to Case 1 by switching s and ¢
and using ¢, instead of s;, since var(s;) & var(ty) for all i. Thus we may assume that var(s;) = var(tx), which
implies j < k since var(s;) = var(t;) for all ¢ < j. Define

W) = 2, iftxe{z,}uvar(si)u---uvar(s;) =var(t;) u--- U var(tj—1) U var(ty);
S0, ifxzé¢{z.}uvar(si) U U var(s;) = var(ty) U --- U var(tj_1) U var(tg).

We have h(s1) = --- = h(s;) =2, h(s;) =0forall i = j+1,...,¢, and thus h(s) = 1. On the other hand, we
have h(t1) = -+ = h(tj—1) = h(tx) = 2, h(t;) = 0 for all ¢ € {j,...,m}\{k}, and thus h(t) = 0 # h(s).

For SC1812, we may assume that ¢ and m have the same parity by the all-1 substitution as discussed earlier.
We distinguish some cases below.

Case 1: var(t;) ¢ var(s;) for all ¢. We further distinguish two subcases below.

e Suppose that j is odd. Define h(z) := 0 for all € var(s;) and h(z) := 1 for all = ¢ var(s;). Then
hMza) =1, h(s;) =0, h(s;) € {1,2} for all ¢ # j, and h(t;) € {1,2} for all i. One can check that h(s) =1 if
¢ is odd or h(s) = 2 if £ is even. On the other hand, we have h(t) = 1 if m is even or h(t) = 2 otherwise.
Since £ and m have the same parity, it follows that h(s) # h(t).

e Suppose that j is even. Defined by h(z) := 0 for all € var(s;) and h(z) := 2 for all z ¢ var(s;). Then
h(zq) =1, h(s;) =0, h(s;) € {1,2} for all ¢ # j, and h(t;) € {1,2} for all i. One can check that h(s) =1 if
¢ is even or h(s) = 2 if £ is odd. On the other hand, we have h(t) = 1 if m is odd or h(t) = 2 if m is even.
Since ¢ and m have the same parity, we must have h(s) # h(t).
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Case 2: var(ty) < var(s;) for some k. If var(ty) & var(s;), then we are back to Case 1 by switching s and ¢
and using ¢, instead of s;, since var(s;) & var(ty) for all 2. Thus we may assume that var(s;) = var(t), which
implies 7 < k. We further distinguish two subcases below.

e Suppose that j and k have different parities. Define h(x) := 0 for all = € var(s;) and h(z) := 2 for all
x ¢ var(s;). Then h(z,) = 2, h(s;) = h(tx) =0, h(s;) € {1,2} for all i # j, and h(t;) € {1,2} for all i # k.
One can check that h(s) = 1 if j has the same parity as £ or h(s) = 2 otherwise. Similarly, h(t) = 1 if
k has the same parity as m or h(t) = 2 otherwise. Since £ and m have the same parity, we must have
h(s) # h(t).

e Suppose that j and k have the same parity. Define

W) = {0, if x € {x,} Uvar(sy) u---Uvar(s;) = var(ty) U --- U var(tj_1) U var(tg);

1, ifz¢{x,} uvar(sy) u---uvar(s;) = var(ty) U --- U var(tj—1) U var(ty).

Then h(z,) = h(s;) = h(ty) = 0, h(s;) = h(t;) = 0 for all ¢ = 1,...,5 — 1, h(s;) € {1,2} for all
i=j4+1,...,¢ and h(t;) € {1,2} for all i € {j,...,m}\{k}. One can check that h(s) = 1 if j and ¢ have
different parities or h(s) = 2 otherwise (note that j < ¢). Similarly, h(t) = 1 if k and m have the same
parity or h(t) = 2 otherwise. Since ¢ and m have the same parity, we must have h(s) # h(t).

For SC2446, we may again assume that £ and m have the same parity by the all-1 substitution. There exists
a variable x. in exactly one of s; and t;, say the former. Then z. is in ¢, for some k£ > j. We distinguish two
cases below.

Case 1: j and k have different parities. Define h(x,) = h(z.) := 0 and h(z) := 1 for all = ¢ {x,,x.}. We have
h(s;) = 0 and h(s;) € {1,2} for all ¢ # j. Thus h(s) = 1 if j has the same parity as ¢ or h(s) = 2 otherwise.
Similarly, we have h(ty) = 0 and h(t;) € {1,2} for all ¢ # k. Thus h(t) = 1 if k has the same parity as m or
h(t) = 2 otherwise. Then h(s) # h(t) since £ and m have the same parity.

Case 2: j and k have the same parity. Pick any variable x4 in ¢5_1, which must be in s; for some j’ > j. The
argument in the above paragraph is valid for j/ and k—1 if they have different parities. Otherwise j' and k must
have different parities, and it follows that j' > j. Define h(z.) = h(zq) := 0 and h(z) := 1 for all = ¢ {x., x4}
We have h(s;) = h(sj) = 0 and h(s;) € {1,2} for all i ¢ {j,7'}. Thus h(s) = 1 if j/ has the same parity as ¢,
or h(s) = 2 otherwise. Similarly, we have h(tx_1) = h(tx) = 0 and h(s;) € {1,2} for all i ¢ {k — 1,k}. Thus
h(t) = 1 if k has the same parity as m, or h(t) = 2 otherwise. Then h(s) # h(t) since £ and m have the same
parity but 7/ and k have different parities. O

6. Congruence on depths

In this section we discuss the natural occurrence of leaf depths in the study of associative and ac-spectra of
groupoids and how it can help us generalize some of our results.

Using both identities and the left/right depth, Hein and the first author [4] determined the associative
spectrum of a generalization of addition and subtraction to be the modular Catalan number

—1)7 2n — jk
o B, 2OCH)
0<j<(n—-1)/k " J n

and we determined its ac-spectrum in our previous work [6]. These results are rephrased below to include
Proposition 4.3 as a special case (using right depth instead of identities).

Theorem 6.1 ([4,6]). Let (G, *) be a groupoid such that for all s,t € F,, we have s* = t* whenever p;(s) = p;(t)
(mod k) fori=1,...,n. Then s3(x) < Cypn_1 and

$2() <KIS(n,k)+n Y dilS(n—1,i)
0<i<k—2

forn =1,2 ... where the first equality holds as an equality if the second one does. Moreover, both upper bounds
are reached if “whenever” can be replaced with “if and only if” in the above condition. In particular, both upper
bounds are attained by (C,*), where a * b := a + €>™/*b for all a,be C.

Now we use the left depth to generalize Proposition 3.4 and Proposition 3.5 as follows.

Theorem 6.2. Let (G, *) be a groupoid such that for all s,t € F,, we have s* = t* whenever s and t have the
same leftmost variable z;, whose left depths in s and t are congruent modulo k. Then s2(x) < k and s2°(%) < kn
forn=Fk+1,..., where the first inequality holds as an equality if the second does. Moreover, both upper bounds
are reached if “whenever” can be replaced with “if and only if” in the above condition.
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Proof. First, suppose that s* = t* whenever s and ¢ have the same leftmost variable x; and the left depths of
x; in s and t are congruent modulo k. Then every term in F,, induces the same n-ary operation on (G, *) as
a standard term [z;, 2, ,...,%;,,, @i, 1+ Ti,_, ], Where iy < --- <i,_1 and m € {0,...,k — 1}. The above
standard term is determined by z; and m, for which there are n and k possibilities, respectively (the latter
requires n = k + 1). Thus s2°(%) < kn. Similarly, the standard term of each bracketing in B,, must begin with
x1. Thus s2 () < k. It is easy to see that s2°(x) = kn implies s2 () = k.

Now suppose that s* = t* if and only if s and ¢ have the same leftmost variable x; and the left depths of x;
in s and t are congruent modulo k. The “only if” part implies that s* # t* if s and ¢ correspond to different
standard terms. Thus s2 (%) = k and s2°(%) = kn. O

Remark 6.1. Hein and the first author [4] observed that the congruence relation modulo k on the left depths of
the bracketings in B,, is characterized by the identity so[s1, ..., Sk+1] ~ [S0,51,-- ., Sk+1] and showed that C n—1
is the number of terms in B, avoiding subterms of the form sg[s1,...,Sk+1]. We also have s () < Ck -1 for
a groupoid (G, *) satisfying a different identity

so[s1s -5 Sk41] ~ so(s1[s2,- -+, Sk41]) (1)

since we can still use this identity to transform every bracketing in B, to some bracketing in B, that avoids
subterms of the form so[s1,...,Sk+1]. Although not needed for the proof of the upper bound s () < Ckp—1,
we can even show that distinct bracketings t,t' € B,, both avoiding so[s1, ..., Sk+1] cannot be obtained from each
other by the identity (1), using the technique due to Hein and the first author [4]. In fact, we know that t and
t' correspond to two binary trees with n leaves labeled 1,...,n from left to right, which in turn correspond to
two rooted plane trees T and T with n vertices labeled 1,...,n in the preorder by contracting each northeast
southwest “long edge” in the drawings of t and t'. Ift can be obtained from t' by the identity (1), then a non-root
vertex in T must have its degree (the number of children) less than k and congruent to the degree of the vertex
with the same label in T" modulo k — 1, and the leaves (degree-zero vertices) in T must correspond to the leaves
in T'. Thus the degrees of the vertices of T must agree with those of T', and this forces T = T"'.
For k = 3, we suspect that s2(x) = Cj n—1 holds for SC64, which is anti-isomorphic to SC399.

« [0 1 2 « [0 1 2
0/0 00 0]0 0 1
110 0 2 10 0 1
211 1.0 2]0 2 0
SC64 SC399

In fact, our computations show that the initial terms of the associative spectrum and ac-spectrum of SC64 are
1,1,2,5,13,35,96,267 and 1,2,12,84,710, respectively; the former sequence coincides with Cs,_1 while the
latter differs from the upper bound of s2°(x) for k = 3 in Theorem 6.1, whose initial terms are 1, 2, 9, 40, 155,
546, 1813, 5804, 18159. One can check that SC64 satisfies at least the four identities below.

w(z(yz)) = w(y(zz)), w((zy)z) ~ w((zy)z), ((wr)y)z ~ (w2)y)z, v(w((zy)2)) ~ o((wz)y)z)
But these identities seem unrelated to the left/right depth modulo k = 3.

The first author, Mickey, and Xu [7] used the depth to find the associative spectrum of the double minus
operation a * b := —a — b, and we determined the ac-spectrum of this operation in previous work [6]. Both
proofs are valid for any field with at least three elements, giving the following result.

Theorem 6.3 ([7]). Suppose that two terms s,t € F,, induce the same n-ary operation on a groupoid (G, *)
whenever d;(s) = d;(t) (mod 2) for i = 1,...,n. Then s2(x) < [2"/3] and s2°(x) < (2" — (=1)™)/3 for
n =1,2,..., where the first equality holds as an equality if the second one does. Moreover, both upper bounds
are reached if “whenever” can be replaced with “if and only if” in the above condition. In particular, both upper
bounds are achieved by the double minus operation on any field with at least three elements.

The two upper bounds in the above theorem are both well studied [13, A000975, A001045] from many other
perspectives; the latter is known as the Jacobsthal sequence. The double minus operation on a field of three
elements is actually the 3-element groupoid SC2346.

0
0
2
1
C

SC2346
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To generalize the above theorem, one could use a primitive root of unity w := e2™/* to define an operation

a b := wa + wb on the field of complex numbers, which reduces to the double minus operation when k = 2; for
k = 3, the n-th term of the associative spectrum was shown in [10] to coincide with the number of equivalence
classes of the equivalence relation on n-leaf binary trees that relates two trees if the depths of corresponding
leaves are congruent modulo k. Closed formulas for the associative spectrum and the ac-spectrum of this
operation are yet to be determined.

7. Questions and remarks

We have some more questions other than those in the last section. Our computations suggest that a majority
of the 3330 non-isomorphic 3-element groupoids have their ac-spectrum reaching the upper bound n!C,,_; and
thus have their associative spectrum reaching the upper bound C,,_;. Some other 3-element groupoids have
smaller spectra, including those given earlier in this paper as examples for various upper bounds to be sharp.
We also have computational data on the spectra of several other 3-element groupoids but do not have any
general result on them.

For instance, our computations show that the first several terms of the associative spectrum and ac-spectrum
of each of the following groupoids are 1,1,2,5,12,28,65,151,351 and 1,2,12,96, 880, respectively; the former
agrees with the initial terms of a trisection of the Padovan sequence [13, A034943].

+[0 1 2 |0 1 2 %[0 1 2 |0 1 2
0/00 0 0 0(0 01 ©0/0 11 00 1 1
1/1 10 1/1 10 1/0 10 1,010
2/1 01 2/1 00 2001 210 0
SC258 SC685 SC1594 SC1600

It is clear that SC258 and SC685 are anti-isomorphic to SC1594, SC1600, respectively. One can check that
SC258 and SC685 both satisfy at least the following identities.

(wz)(yz) ~ (wz)(2y),  ((wr)y)z ~ (wr)2)y, (vw)(z(yz)) ~ (vw)((zy)2), v((we)(yz)) ~ (v(wz))(y2)

Next, consider the following 3-element groupoids.

* [0 1 2 * [0 1 2 * [0 1 2 * [0 1 2
0/0 02 0/0 0 2 0[0 1L 1 0[0 1 1
112 0 2 1/2 2 0 1|1 00 1|1 0 1
22 2 0 2|2 00 2{0 0 1 2/0 10
SC1414 SC1477 SC1693 SC1717

There is an anti-isomorphism between SC1414 and SC1717 and between SC1477 and SC1693 by swapping 1
and 2. It is routine to check that SC1414 and SC1693 both satisfy the identities (wz)(yz) ~ (yz)(wz) and
((wz)y)z ~ ((wx)z)y. Computations show that the first several terms of its associative spectrum and ac-
spectrum are 1,1,2,5,13,35,97,275,794, 2327 and 1, 2,12, 96, 980; the former matches with the initial terms of
a generalized Catalan number [13, A025242], which counts Dyck paths of length 2n avoiding UUDD.

Computations also show that the first several terms of the associative spectrum and ac-spectrum of the fol-
lowing two anti-isomorphic groupoids are 1,1,2,5,14,42,132,429,1430 and 1,2, 12,108, 1340; the former agrees
with C,,_1 while the latter is less than n!C,,_1.

* [0 1 2 * [0 1 2
0/0 00 0]0 1 1
11 0 1 110 0 1
21 11 20 1 1
SC229 SC1553

One can check that SC229 satisfies the identity ((wz)y)z ~ ((wz)z)y.

It would be nice if the associative spectra and ac-spectra of the above 3-element groupoids (or even better,
groupoids satisfying the same identities as the above groupoids) could be determined.

Another question is about the arithmetic mean on R. Csdkany and Waldhauser [3] showed that its associative
spectrum is C,,—1. In previous work [6], we showed that its ac-spectrum is the number of ways to write 1 as
an ordered sum of n powers of 2 [13, A007178]. It would be interesting to find the identities that could be
used to characterize all the groupoids whose associative spectra and ac-spectra are bounded by the above and
if possible, find a 3-element groupoid to achieve the upper bounds.

Lastly, we provide a generalization of a result in our earlier work [6], which asserts that an associative
groupoid (G, *) must have s2°(x) < n! and this upper bound holds as an equality if (G, #) is noncommutative
and has an identity element.
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Theorem 7.1. For any groupoid (G, *), we have s2°(x) < nl- s2(x). Moreover, this inequality holds as an
equality if (G, *) is noncommutative and has an identity element.

Proof. For a bracketing t € B,, and a permutation o € &,,, let ¢t denote the full linear term obtained by replacing
the variable z; with x,; for all i € {1,...,n}. Consider two full linear terms in F,; they can be written as s,
and t,, where s,t € B, and 0,7 € &,,. It is clear that if ¢ = 7, then (s,)* = (¢,)* if and only if s* = t*. The
inequality s2°(x) < n!- s2(*) follows immediately from this fact.

Assume now that (G, *) is noncommutative and has a neutral element 0. Then there are elements a,b € G
such that a b # b * a. Assume that o # 7. Then there exist i,j € {1,...,n} such that 0=1(i) < 07%(j) and
771(i) > 771(4). Let h: X,, —> G be the assignment z; — a, z; — b and z — 0 for all z € X,,\{z;,x;}. It is
easy to see that h(sy) = a#b and h(t;) = b * a; hence (s,)* # (t.)*. We conclude that (s,)* = (¢;)* if and
only if s* =t* and o = 7, and the equality s2°(x) = n!- s2(x) follows. O

It would be nice to find a sufficient and necessary condition for the upper bound in Theorem 7.1 to hold as
an equality.
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