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Abstract: The associative spectrum of a groupoid (i.e., a set with a binary operation) measures its nonas-
sociativity while the associative-commutative spectrum measures both nonassociativity and noncommutativity
of the groupoid. The two spectra are also the coefficients of the Hilbert series of certain operads. We establish
upper bounds for the two spectra of various varieties of groupoids defined by different sets of identities and
provide examples (often groupoids with three elements) for which the upper bounds are achieved. Our results
have connections to many interesting combinatorial objects and integer sequences and naturally lead to some
questions for future studies.

Keywords: Associative-commutative spectrum; Associative spectrum; Binary operation; Tree; 3-element
groupoid
2020 Mathematics Subject Classification: 05A15; 20N02; 08B05

1. Introduction

A groupoid pG, ˚q is a basic algebraic structure that consists of a set G together with a binary operation ˚
defined on G. Associativity and commutativity are common properties that could be satisfied by a groupoid.
Csákány and Waldhauser [3] defined the associative spectrum (also called the subassociativity type by Braitt
and Silberger [2]) to measure the failure of a groupoid to be associative, and we introduced the associative-
commutative spectrum, or simply ac-spectrum, to measure both nonassociativity and noncommutativity of a
groupoid in earlier work [6]; see the definition below.

Definition 1.1. Fix a countable list of distinct variables x1, x2, . . .. Let Bn denote the set of all bracketings of
x1, . . . , xn, which are terms in the language of groupoids obtained by inserting pairs of parentheses into the word
x1x2 ¨ ¨ ¨xn in all valid ways. Let Fn denote the set of full linear terms over x1, . . . , xn, which are obtained by
permuting the variables in the bracketings of x1, . . . , xn. We can view Bn as a subset of Fn. Every term t P Fn
induces an n-ary operation t˚ on a groupoid pG, ˚q. It is often convenient to think about the terms in Fn or
the n-ary operations induced by them in terms of the corresponding (ordered, full) binary trees with n labeled
leaves; see the example below for B4, which can give F4 if the variables are permuted in all possible ways.
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4 1

2 3 4
1

2 3 4

ppx1˚x2q˚x3q˚x4 px1˚x2q˚px3˚x4q px1˚px2˚x3qq˚x4 x1˚ppx2˚x3q˚x4q x1˚px2˚px3˚x4qq

The associative spectrum (resp., ac-spectrum) of a groupoid pG, ˚q, or of its binary operation ˚, is a sequence
whose nth term is sanp˚q :“ |Pnp˚q| (resp., sacn p˚q :“ |Pnp˚q|), where Pnp˚q :“ tt˚ : t P Bnu (resp., Pnp˚q :“ tt˚ :
t P Fnu), for n “ 1, 2, . . .. It turns out that tPnp˚quně1 (resp., tPnp˚quně1) together with a composition function
becomes a nonsymmetric operad (resp., symmetric operad) that satisfies certain coherence axioms [11], and the
Hilbert series of this operad is the generating function (resp., exponential generating function) of the associative
spectrum (resp., ac-spectrum) of pG, ˚q.

By the above definition, we have (1) sanp˚q “ 1 for n “ 1, 2, (2) sac1 p˚q “ 1, and (3) sac2 p˚q is either 1 or 2,
depending on whether ˚ is commutative. Thus we may assume n ě 3 when necessary. It is easy to see that
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isomorphic or anti-isomorphic groupoids have the same associative spectrum and the same ac-spectrum, where
two groupoids pG, ˚q and pH,bq are said to be anti-isomorphic, denoted by G » Hop, if there is a bijection
f : GÑ H such that fpa ˚ bq “ fpbq b fpaq for all a, b P G.

It is clear that sanp˚q “ 1 for all n P N if and only if ˚ associative and that sacn p˚q “ 1 for all n P N if and only
if ˚ is associative and commutative, where N :“ t1, 2, . . .u. On the other hand, we have sanp˚q ď Cn´1, where
Cn :“ 1

n`1

`

2n
n

˘

is the ubiquitous Catalan number, and thus sacn p˚q ď n!Cn´1. We showed in previous work [6]
that a commutative groupoid pG, ˚q must have sacn p˚q ď Dn´1, where Dn :“ p2n!q{p2nn!q is the solution to
Schröder’s third problem [13, A001147], and that an associative groupoid pG, ˚q must have sacn p˚q ď n!, which
holds as an equality if the groupoid is noncommutative and has an identity element (see Theorem 7.1 for a
generalization).

In addition, the precise values of the associative spectrum and ac-spectrum have been determined for various
groupoids [3–6,8,9], including 2-element groupoids, generalizations of addition and subtraction, exponentiation,
arithmetic/geometric/harmonic mean, cross product, Lie algebras with an sl2-triple, graph algebras, and so on.
The results show connections with interesting combinatorial objects, avoided patterns, and integer sequences.
However, the ac-spectra of 3-element groupoids are largely undetermined.

˚ 0 1 2
0 0 0 0
1 1 1 0
2 2 2 2

˚ 0 1 2
0 0 0 0
1 2 1 1
2 1 2 2

˚ 0 1 2
0 0 0 0
1 0 0 0
2 1 0 0

˚ 0 1 2
0 1 1 1
1 2 2 2
2 0 0 0

SC271 SC356 SC10 SC3242
» SC1610op » SC2032op “ SC367op “ SC3302op

˚ 0 1 2
0 0 1 1
1 0 1 2
2 0 1 2

˚ 0 1 2
0 0 1 2
1 0 1 2
2 1 0 2

˚ 0 1 2
0 0 0 1
1 0 0 0
2 0 0 0

˚ 0 1 2
0 1 2 0
1 1 2 0
2 1 2 0

SC1610 SC2032 SC367 SC3302

˚ 0 1 2
0 0 0 2
1 0 0 2
2 2 2 1

˚ 0 1 2
0 0 0 1
1 0 0 1
2 1 1 0

˚ 0 1 2
0 0 0 0
1 0 1 0
2 0 0 1

SC1066 SC405 SC79
“ SC1066op “ SC405op “ SC79op

Table 1: Some 3-element groupoids

According to the Siena Catalog [1], there are 3330 non-isomorphic 3-element groupoids, which are indexed
from 1 to 3330. Each of these groupoids is determined by a binary operation ˚ defined on the set t0, 1, 2u. We
write them as SC1,SC2, . . . ,SC3330. There are 729 idempotent 3-element groupoids, which can be labeled in a
different way: ID0, ID1, . . . , ID728. Csákány and Waldhauser [3] showed the following (see Table 1).

• Both ID35 “ SC271p» SC1610opq and ID68 “ SC356p» SC2032opq have associative spectrum sanp˚q “ 2n´2

for n ě 2.

• Both SC1066 and SC10p» SC367opq have associative spectrum sanp˚q “ n´ 1 for n ě 1.

• Both SC405 and SC3242p» SC3302opq have associative spectrum sanp˚q “ 3 for n ą 3 (it is easy to check
that sanp˚q “ 1 for n “ 1, 2 and sanp˚q “ 2 for n “ 3).

• The groupoid SC79 has associative spectrum sanp˚q “ Fn`1 ´ 1 for n ě 2, where Fn`1 is the Fibonacci
number defined by Fn`1 :“ Fn ` Fn´1 for n ě 1 and Fi “ i for i “ 0, 1,

Our original motivation for this work was to determine the ac-spectra of the above 3-element groupoids,
whose Cayley tables are given in Table 1. However, we are able to establish more general results on various
varieties of groupoids, where a variety of groupoids axiomatized by a set Σ of identities is the family of all
groupoids satisfying the identities in Σ. For each variety of groupoids considered in this paper, we establish an
upper bound for the associative spectra and an upper bound for the ac-spectra of the groupoids belonging to
this variety; if the latter upper bound is reached by a member of the variety, so is the former. Moreover, we
show that both upper bounds are attained by at least one 3-element groupoid.

For example, we showed in earlier work [6] that a commutative groupoid must have sacn p˚q ď Dn´1 and if
the equality in this upper bound holds, so does the equality in the upper bound sanp˚q ď Cn´1. In the same
paper, we showed that sacn p˚q “ Dn´1 for a 3-element groupoid called the rock-paper-scissors groupoid, which
turns out to be isomorphic to SC1108, and the proof is also valid for SC2407 and SC3093.
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˚ 0 1 2
0 0 0 2
1 0 1 1
2 2 1 2

˚ 0 1 2
0 1 0 0
1 0 2 0
2 0 0 0

˚ 0 1 2
0 1 1 0
1 1 2 0
2 0 0 1

SC1108 SC2407 SC3093

Therefore, we have the following result.

Theorem 1.1 ([6]). A groupoid pG, ˚q satisfying the identity xy « yx must have sanp˚q ď Cn´1 and sacn p˚q ď
Dn´1 for n “ 1, 2, . . ., where the first inequality holds as an equality whenever the second does and both equalities
hold for the 3-element groupoids SC1108, SC2407, and SC3093.

In this paper, we provide a series of results that are similar to the above one. A summary of our results is
given by Table 2, where we use the well-known Bell number Bn counting partitions of the set t1, 2, . . . , nu into
unordered nonempty blocks, the restricted Bell number Bn,m counting partitions of t1, 2, . . . , nu into unordered
nonempty blocks of size at most m [12], and the ordered Bell number or Fubini number B1n counting partitions
of t1, 2, . . . , nu into ordered nonempty blocks [13, A000670]. The “n ě” column in Table 2 gives the smallest
values of n for which the upper bounds of sanp˚q and sacn p˚q are valid and sharp. Note that different varieties of
groupoids in the table may have the same associative spectrum upper bound but different ac-spectrum upper
bounds (the upper bounds for sacn p˚q in Prop. 3.2 and Prop. 3.3 are different when n “ 3). Therefore, the
ac-spectrum may offer a finer distinction between groupoids than the associative spectrum.

Identities satisfied by pG, ˚q n ě sanp˚q ď sacn p˚q ď Examples for “ reference

(1) 1, 1 1 n SC275p» SC2029opq Prop. 3.1

(3), (4), (5), (7) 3, 3 2 n` 1 SC7p»SC4opq
SC28p»SC5opq Prop. 3.2

(2), (7), (15) 4, 4 3 n` 1 SC405 Prop. 3.3

(3), (5), (7), (8), (9) 3, 3 2 2n SC189p» SC170opq Prop. 3.4

(5), (7), (10), (11), (12), (16) 4, 4 3 3n SC3242p» SC3302opq Prop. 3.5

(5), (7), (11), (13), (17), (18) 4, 4 4 2n2 SC3162p» SC2467opq Thm. 3.1

(2), (7) 2, 2 n´ 1 2n´1 ´ 1 SC1066 Prop. 4.1

(4), (5), (7) 2, 1 n´ 1 n!`
n´3
ÿ

k“0

k!

ˆ

n

k

˙

SC367p» SC10opq Prop. 4.2

(3), (6), (14) 2, 2 2n´2 2n ´ 2 SC2302p» SC2155opq Prop. 4.3

(3), (7), (12) 2, 2 2n´2 np2n´1 ´ 1q SC271p»SC1610opq
SC356p»SC2032opq Thm. 4.1

(2), (11) 2, 2 Fn`1 ´ 1 Bn,2 ´ 1 SC79, SC1701 Prop. 5.1

(3), (5) 2, 1 2n´2 nBn´1
SC41p»SC398opq
SC96p»SC1069opq Thm. 5.1

(5), (7) 2, 1 2n´2 nB1n´1

SC262p»SC1441opq
SC1812p»SC1793opq
SC2446p»SC2430opq

Thm. 5.2

(1) xy « x (2) xy « yx (3) pxyqz « pxzqy (4) xpyzq « ypxzq (5) xpyzq « xpzyq (6) xpyzq « zpyxq

(7) wpxpyzqq « wppxyqzq (8) pwxqpyzq « pwpxyqqz (9) wpxpyzqq « ppwxqyqz

(10) ppwxqyqz « ppwyqxqz (11) ppwxqyqz « ppwxqzqy (12) pwxqpyzq « pwyqpxzq

(13) pwpxyqqz « pwpxzqqy (14) wpxpyzqq « pwpxyqqz (15) pvpwxqqpyzq « pvwqpxpyzqq

(16) ppvwqxqyqz « vpwpxpyzqqq (17) vpwpxpyzqqq « ppvpwxqqyqz (18) ppvwqpxpyzqq « pppvwqxqyqz

Table 2: Summary of results

It is sometimes convenient to use not only identities but other conditions to describe a family of groupoids
satisfying certain upper bounds for their spectra. Recall that every term t P Fn corresponds to a binary tree
with n leaves labeled by 1, . . . , n. Each leaf i has its depth diptq (resp. left depth δiptq or right depth ρiptq) defined
as the number of edges (resp., left/right edges) in the unique path to the root of t. By abuse of notation, we also
speak of these three kinds of depths for the variables in t. Previous work [4, 6] used the congruence modulo m
relation on depths to study the associative spectra and ac-spectra of certain groupoids, and some of the results
there can be rephrased to include Proposition 4.3 as a special case. We can also generalize Proposition 3.4 and
Proposition 3.5 in a similar way.

The paper is structured as follows. We give some basic definitions and properties on the associative spectrum
and ac-spectrum in Section 2. We establish some polynomial upper bounds and exponential upper bounds in
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Section 3 and Section 4, respectively. We provide more upper bounds related to set partitions in Section 5.
We use congruence on leaf depths in binary trees to provide generalizations of some of our results in Section 6.
Finally, we make some remarks and pose some questions for future research in Section 7.

2. Preliminaries

We first give some notation and terminology. A term∗ t over a set of variables X (we often use Xn :“
tx1, . . . , xnu) is a bracketing of a word xi1 ¨ ¨ ¨xik , where xi1 , . . . , xik P X; let varptq denote the set of all variables
in t. If i1, . . . , ik are distinct, then t is called a linear term with |t| :“ k. Define the leftmost bracketing rt1, . . . , tks
of terms t1, . . . , tk recursively by rt1s :“ t1 and rt1, . . . , tn`1s :“ prt1, . . . , tnstn`1sq for n ě 1. Similarly, define
the rightmost bracketing xt1, . . . , tky recursively by xt1y :“ t1 and xt1, . . . , tn`1y :“ pt1xt2, . . . , tn`1yq for n ě 1.
We can write every term as t “ rt0, t1, . . . , tms with |t0| “ 1 for some m P N; this is known as the leftmost
decomposition [6, Definition 6.1.2], which can also be obtained by writing t “ ptLtRq if t is not a variable, then
further writing tL “ pt

1
Lt
1
Rq if the left subterm tL is not a variable, and continuing in this way to decompose left

subterms until we reach one that is a single variable.
Terms can be evaluated in a groupoid pG, ˚q as follows. Given an assignment h : X Ñ G of values from G

for the variables in X, we can extend h to a map h defined on the set of all terms over X with the following
recursive definition. We have hpxq :“ hpxq for every variable x P X (because h extends h), and if t “ pt1t2q
for subterms t1 and t2, then we define hptq :“ hpt1q ˚ hpt2q. In this way, every term t over Xn induces an
n-ary operation t˚ on pG, ˚q (called a term function): t˚pa1, . . . , anq :“ haptq, where ha is the extension of the
assignment ha : Xn Ñ G that maps xi to ai for all i P t1, . . . , nu. For notational simplicity, we will denote the
extension h of an assignment h also by h.

An identity is a pair of terms, usually written as s « t. A groupoid pG, ˚q satisfies an identity s « t if
s˚ “ t˚. (Here we have assumed that s and t are terms over Xn for some n P N – this can always be done.)

In the subsequent sections, we will prove several results, each of which provides upper bounds for the ac-
spectrum and the associative spectrum of a variety of groupoids axiomatized by a set Σ of identities, i.e., the
family of all groupoids satisfying the identities in Σ. We will employ the following proof technique. We assume
that a groupoid pG, ˚q satisfies certain identities. Using these identities, we transform each full linear term t
into an equivalent term t1 that is in “standard form” (terms t and t1 are equivalent if pG, ˚q satisfies t « t1, i.e.,
t˚ “ pt1q˚). It thus follows that sacn p˚q, i.e., the number of term functions induced by full linear terms with
n variables on pG, ˚q, is bounded above by the number of terms in standard form, so it is then a matter of
counting the possible standard forms. Similarly, finding sanp˚q amounts to counting the standard forms that can
be obtained from bracketings.

Let t be a linear term. Assume that varptq “ txi1 , . . . , ximu and that xik occurs to the left from xi` in t if
and only if k ă `. Assume further that tj1, . . . , jmu “ ti1, . . . , imu and j1 ă j2 ă ¨ ¨ ¨ ă jm. Let

tL :“ rxi1 , . . . , xims, tLă :“ rxj1 , . . . , xjms,

tR :“ xxi1 , . . . , ximy, tRă :“ xxj1 , . . . , xjmy,

i.e., tL and tLă (tR and tRă, resp.) are leftmost (rightmost, resp.) bracketings of the variables of t; in the
former, the variables occur in the same order as in t, while in the latter, the variables occur in the increasing
order of the indices.

The next lemma will be frequently used to establish our main results.

Lemma 2.1. Let pG, ˚q be a groupoid, and write an arbitrary term in Fn as t “ rt0, t1, . . . , tms with |t0| “ 1
(leftmost decomposition).

(i) If pG, ˚q satisfies the identity wpxpyzqq « wppxyqzq, then pG, ˚q also satisfies the identities t « rt0, t
L
1 , . . . , t

L
ms

and t « rt0, t
R
1 , . . . , t

R
ms.

(ii) If pG, ˚q satisfies the identities wpxpyzqq « wppxyqzq and either xpyzq « xpzyq or xy « yx, then pG, ˚q
also satisfies the identities t « rt0, t

Lă
1 , . . . , tLăm s and t « rt0, t

Ră
1 , . . . , tRăm s.

(iii) If pG, ˚q satisfies the identity pxyqz « pxzqy, then pG, ˚q also satisfies the identity t « rt0, tσp1q, . . . , tσpmqs
for every permutation σ P Sm.

(iv) If pG, ˚q satisfies the identities xpyzq « xpzyq and pxyqz « pxzqy, then pG, ˚q also satisfies the identity
t « rt0, t

Lă
1 , . . . , tLăm s.

∗More specifically, we are speaking about terms in the language of groupoids, i.e., terms of type p2q. Since our language contains
only one operation symbol, which is binary, we may simply omit it from terms. Variables and brackets are sufficient for writing
down terms unambiguously in this language.

ECA 4:4 (2024) Article #S2R29 4



Jia Huang and Erkko Lehtonen

Proof. (i) We can use the identity wpxpyzqq « wppxyqzq repeatedly to transform each ti to the form xjs, where
xj is the leftmost variable of ti, and then apply the same procedure to s to eventually transform ti into tRi . A
similar argument shows that each ti can be transformed into tLi .

(ii) By (i), pG, ˚q satisfies t « rt0, t
R
1 , . . . , t

R
ms. We may arbitrarily permute the variables in each tRi , i P

t1, . . . ,mu, thanks to the identities

wpxpzyqq « wpxpyzqq « wppxyqzq « wpzpxyqq « wpzpyxqq « wppyxqzq « wpypxzqq « wpypzxqq.

Thus pG, ˚q satisfies t « rt0, t
Ră
1 , . . . , tRăm s. A similar argument shows that pG, ˚q satisfies t « rt0, t

Lă
1 , . . . , tLăm s.

(iii) We can use the identity pxyqz « pxzqy to swap the subterms ti and ti`1 in rt0, t1, . . . , tms, for
any i P t1, . . . ,m ´ 1u. Since the adjacent transpositions generate Sm, it follows that pG, ˚q satisfies t «
rt0, tσp1q, . . . , tσpmqs for every σ P Sm.

(iv) By (iii), we can permute the subterms t1, . . . , tm, so it suffices to prove that pG, ˚q satisfies xs « xpsLăq
for any linear term s with x R varpsq. We prove this by induction on |s|. This is trivial when |s| “ 1, and
this holds for |s| “ 2 by the identity xpyzq « xpzyq. Let now k ě 3, assume that the claim holds whenever
|s| ă k, and consider the case when |s| “ k. We have the leftmost decomposition s “ rs0, s1, . . . , s`s. By
the inductive hypothesis and (iii), we may assume that sj “ sLăj for all j P t1, . . . , `u. Consequently, pG, ˚q

satisfies xs « xpsLă` uq, where u :“ rs0, s
Lă
1 , . . . , sLă`´1s, and by the inductive hypothesis, this is equivalent to

xpsLă` uLăq. By the identity xpyzq « xpzyq, we may swap sLă` and uLă if necessary to obtain a term of the
form xprxik`1

, . . . , ximsrxi1 , . . . , xik sq, where i1 ă ¨ ¨ ¨ ă ik, ik`1 ă ¨ ¨ ¨ ă im and i1 ă ik`1. Using the identities
xpyzq « xpzyq and pxyqz « pxzqy, we obtain

xs « xx, rxik`1
, . . . , ximsrxi1 , . . . , xik sy “ xx, prxik`1

, . . . , xim´1
sximqrxi1 , . . . , xik sy

« xx, prxik`1
, . . . , xim´1

srxi1 , . . . , xik sqximy « xx, ximprxik`1
, . . . , xim´1

srxi1 , . . . , xik sqy

“ xx, xim , rxik`1
, . . . , xim´1

srxi1 , . . . , xik sy « xx, xim , prxik`1
, . . . , xim´2

srxi1 , . . . , xik sqxim´1
y

« xx, xim , xim´1
, rxik`1

, . . . , xim´2
srxi1 , . . . , xik sy « ¨ ¨ ¨ « xx, xim , xim´1

, . . . , xik`2
, xik`1

, rxi1 , . . . , xik sy

« xx, xim , xim´1
, . . . , xik`2

, rxi1 , . . . , xik sxik`1
y “ xx, xim , xim´1

, . . . , xik`2
, rxi1 , . . . , xik , xik`1

sy

« xx, xim , xim´1
, . . . , xik`3

, rxi1 , . . . , xik , xik`1
, xik`2

sy « ¨ ¨ ¨ « xx, rxi1 , . . . , xik , xik`1
, . . . , ximsy.

Since i1 is the smallest of the indices i1, . . . , im, we can then apply the identity pxyqz « pxzqy and part (iii) to
sort the variables in the subterm rxi1 , . . . , xik , xik`1

, . . . , xims in the increasing order of indices, and we obtain
xpsLăq, as desired.

3. Polynomial upper bounds

In this section, we establish some polynomial upper bounds for the ac-spectra of groupoids belonging to certain
varieties of groupoids; in contrast, their associative spectra all have constant upper bounds.

For our first variety of groupoids, we can actually determine their associative spectrum and ac-spectrum.

Proposition 3.1. A groupoid pG, ˚q with at least two elements satisfying the identity xy « x must have
sanp˚q “ 1 and sacn p˚q “ n for n ě 1. In particular, the above two equalities hold for the 2-element groupoid
pt0, 1u, ˚q defined by x ˚ y :“ x for all x, y P t0, 1u and the 3-element groupoids SC275 and SC2029.

˚ 0 0 0
0 0 0 0
1 1 1 1
2 2 2 2

˚ 0 1 2
0 0 1 2
1 0 1 2
2 0 1 2

SC275 SC2029

Proof. If pG, ˚q is a groupoid with at least two elements satisfying the identity xy « x, then sanp˚q “ 1 and
sacn p˚q “ n for all n ě 1 since the n-ary operation t˚ induced by every term t P Fn is determined by the leftmost
variable of t and distinct variables induce distinct operations.

In earlier work [6, Example 4.1.2], we showed that the 2-element groupoid pt0, 1u, ˚q with x ˚ y :“ x for all
x, y P t0, 1u has sanp˚q “ 1 and sacn p˚q “ n for n ě 1. One can check that SC275 satisfies the identity xy « x
and that SC2029 is anti-isomorphic to SC275. Thus their associative spectrum and ac-spectrum are also given
as above.

The upper bounds in the next result are achieved by the 3-element groupoids SC7 and SC28, which are
anti-isomorphic to SC4 (by swapping 1 and 2) and SC5, respectively.
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˚ 0 1 2
0 0 0 0
1 0 0 0
2 0 1 0

˚ 0 1 2
0 0 0 0
1 0 0 0
2 0 1 1

˚ 0 1 2
0 0 0 0
1 0 0 0
2 0 2 0

˚ 0 1 2
0 0 0 0
1 0 0 1
2 0 0 1

SC4 SC5 SC7 SC28

Proposition 3.2. A groupoid pG, ˚q satisfying the identities below must have sanp˚q ď 2 and sacn p˚q ď n` 1 for
n “ 3, 4, . . ., where the first inequality holds as an equality if so does the second and both equalities hold for SC7
and SC28.

piq pxyqz « pxzqy, piiq xpyzq « xpzyq « ypxzq, piiiq wpxpyzqq « wppxyqzq

Proof. Let t be an arbitrary term in Fn with leftmost decomposition t “ rt0, t1, . . . , tms, where t0 “ xa for some
a P t1, 2, . . . , nu. By Lemma 2.1, we may assume that ti “ tRăi for all i P t1, . . . ,mu and |t1| ď ¨ ¨ ¨ ď |tm|. We
then distinguish the two cases below.

• If |tm| ą 1, then tm “ xxb1 , . . . , xb`y and we can apply (ii) to swap the leftmost variable of tm and
rxa, t1, . . . , tm´1s. The resulting term xb1xrxa, t1, . . . , tm´1s, xb2 , . . . , xb`y can be transformed to

xxb1 , x1, . . . , xb1´1, xb1`1, . . . , xny

by Lemma 2.1. Then we can apply (ii) to swap xb1 with x1, and finally we can turn the term into
xx1, . . . , xny.

• If |tm| “ 1, then t “ rxa, xb1 , . . . , xbn´1s, and we can apply (i) to make sure b1 ă ¨ ¨ ¨ ă bn´1.

It follows that sacn p˚q ď n` 1 since there are n possibilities for a in the second case. If the variables x1, . . . , xn
are ordered increasingly in t, then we must have a “ 1 in the second case. Thus sanp˚q ď 2. If sacn p˚q “ n ` 1,
then the two cases above cannot yield identical n-ary operations on pG, ˚q, and thus sanp˚q “ 2.

Now we determine sanp˚q and sacn p˚q for SC7. It is routine to check that SC7 satisfies the identities (i), (ii),
and (iii). Let t be an arbitrary term in Fn. We may assume that t “ xx1, . . . , xny or t “ rxa, xb1 , . . . , xbn´1s

with b1 ă ¨ ¨ ¨ ă bn´1 by the above argument. For the former, we have hptq “ 0 for all h : Xn Ñ t0, 1, 2u. For
the latter, we have hptq “ 2 if hpxaq “ 2 and hpxb1q “ ¨ ¨ ¨ “ hpxbn´1

q “ 1 or hptq “ 0 otherwise. Therefore
sacn p˚q “ n` 1, which implies sanp˚q “ 2.

In a similar way, we can determine sanp˚q and sacn p˚q for SC28, which also satisfies the identities (i), (ii), and
(iii). If t “ xx1, . . . , xny, then hptq “ 0 for all h : Xn Ñ t0, 1, 2u. If t “ rxa, xb1 , . . . , bn´1s, then hptq “ 1 if
hpxaq P t1, 2u and hpxbiq “ 2 for i “ 1, . . . , n ´ 1, or hptq “ 0 otherwise. It follows that sacn p˚q “ n ` 1, which
implies sanp˚q “ 2.

The upper bounds in the next result are very close to but not the same as those in Proposition 3.2.

Proposition 3.3. A groupoid pG, ˚q satisfying the identities below must have upper bounds sanp˚q ď 2 and
sacn p˚q ď 3 for n “ 3 and sanp˚q ď 3 and sacn p˚q ď n` 1 for n “ 4, 5, . . ..

piq xy « yx, piiq wpxpyzqq « wppxyqzq, piiiq pvpwxqqpyzq « pvwqpxpyzqq

If sacn p˚q reaches its upper bound, so does sanp˚q, and both upper bounds are reached by SC405 (see Table 1).

Proof. Let t be an arbitrary term in Fn with leftmost decomposition t “ rt0, t1, . . . , tms, where |t0| “ 1.
By (i), (ii), and Lemma 2.1, we can assume that ti “ tRăi for all i P t1, . . . ,mu. We can use (i) to swap
u :“ rt0, t1, . . . , tm´1s and tm. By Lemma 2.1, the resulting term tmu is equivalent to tmu

Ră. Because
tm “ tRăm , we can apply (i) again to transform this into

uRătRăm “ xxi1 , . . . , xikyxxik`1
, . . . , xiny,

where txi1 , . . . , xiku “ varprt0, t1, . . . , tm´1sq and txik`1
, . . . , xinu “ varptmq with i1 ă ¨ ¨ ¨ ă ik and ik`1 ă ¨ ¨ ¨ ă

in. Note that ij “ j for j “ 1, . . . , n if t P Bn. If k “ 2, then we can show that

pxxi1 , xi2yxxi3 , . . . , xinyq
˚ “ pxx1, x2yxx3, . . . , xnyq

˚.

We have either i1 “ 1 or i3 “ 1. If i3 “ 1, then we can do the following transformations to make the leftmost
index 1.

xi1, i2yxi3, . . . , iny
(iii)
ÝÝÑ xi1, i2, i3yxi4, . . . , iny

(i)
ÝÑ xi4, . . . , inyxi1, i2, i3y

Lemma 2.1
ÝÝÝÝÝÝÝÑ xi4, . . . , inyxi3, i1, i2y

(i)
ÝÑ xi3, i1, i2yxi4, . . . , iny

(iii)
ÝÝÑ xi3, i1yxi2, i4, . . . , iny
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Here we drop x for ease of notation and represent an application of an identity by an arrow with the label of
the identity above it. Similarly, we can make the second leftmost index 2 and then make the rest 3, . . . , n. If
3 ď k ď n´ 2, then we have

xi1, . . . , ikyxik`1, . . . , iny
piiiq
ÝÝÑ xi1, i2ypxi3, . . . , ikyxik`1, . . . , inyq

Lemma 2.1
ÝÝÝÝÝÝÝÑ xi1, i2yxi3, . . . , iny.

Here the application of (iii) uses v “ xi1 , w “ xi2 , x “ xxi3 , . . . , xiky, y “ xik`1
, and z “ xxik`2

, . . . , xiny. Thus
t induces the same n-ary operation on pG, ˚q as one of the following “standard” terms

xi1xxi2 , . . . , xiny, xxi1 , . . . , xin´1yxin , xx1, x2yxx3, . . . , xny.

The first standard term is determined by i1 since i2 ă ¨ ¨ ¨ ă in, and the second is determined by in since
i1 ă ¨ ¨ ¨ ă in´1. Moreover, xi1xxi2 , . . . , xiny and xxi1 , . . . , xin´1yxin induce the same n-ary operation on pG, ˚q
if i1 “ in by (i). Thus there are n possibilities in total for the first two standard terms. On the other hand,
the last standard term xx1, x2yxx3, . . . , xny does not occur when n “ 3. Thus sacn p˚q ď 3 when n “ 3 and
sacn p˚q ď n` 1 for n ě 4.

If t P Bn is a bracketing of x1, . . . , xn, then by the above argument, it induces the same n-ary operation
on pG, ˚q as one of x1xx2, . . . , xny, xx1, . . . , xn´1yxn, or xx1, x2yxx3, . . . , xny. Thus sanp˚q ď 2 for n “ 3 and
sanp˚q ď 3 for n ě 4. It is easy to see that the equality holds in the upper bound for sanp˚q when the equality
holds in the upper bound for sacn p˚q.

Now we consider SC405. Write an arbitrary term t P Fn as t “ ptLqptRq, where tL and tR are linear terms.
Also view t as a bracketing of xi1 , . . . , xin . We distinguish the following cases on |tL| and |tR|.

(i) If |tL| “ 1 ă |tR| then t˚R evaluates to 0 or 1, so t˚pa1, . . . , anq “ tai1{2u.

(ii) If |tL| ą 1 “ |tR| then t˚pa1, . . . , anq “ tain{2u for the same reason as above.

(iii) If |tL| ě 2 and |tR| ě 2 then t˚L and t˚R both evaluate to 0 or 1, so t˚ is always zero.

For n “ 3 we must have (i) or (ii), so t˚pa1, a2, a3q “ tai{2u, where i varies in t1, 2, 3u. Thus sacn p˚q “ 3 for
n “ 3. For n ě 4, we have t˚pa1, . . . , anq “ tai{2u, where i varies in t1, 2, . . . , nu, or t˚ “ 0. Thus sacn p˚q “ n` 1
for n ě 4.

The next result involves the 3-element groupoid SC189, which is anti-isomorphic to SC170.

* 0 1 2
0 0 0 0
1 0 2 1
2 0 2 1

* 0 1 2
0 0 0 0
1 0 2 2
2 0 1 1

SC170 SC189

Proposition 3.4. A groupoid pG, ˚q satisfying the identities below must have sanp˚q ď 2 and sacn p˚q ď 2n for
n “ 3, 4, . . ., where the first inequality holds as an equality whenever the second does and both hold for the
2-element groupoid pt0, 1u, ˚q defined by x ˚ y :“ x` 1 pmod 2q for all x, y P t0, 1u and the 3-element groupoids
SC170 and SC189.

piq xpyzq « xpzyq, piiq pxyqz « pxzqy, piiiq wpxpyzqq « wppxyqzq,

pivq pwxqpyzq « pwpxyqqz, pvq wpxpyzqq « ppwxqyqz

Proof. Let t be an arbitrary term in Fn with leftmost decomposition t “ rt0, t1, . . . , tms, where |t0| “ 1. By
(i), (iii), and Lemma 2.1, we may assume that ti “ tRăi for all i P t1, . . . ,mu. By (v), we may assume m ď 2.
If m “ 1 then t˚ “ xxi1 , . . . , xiny

˚ with i2 ă ¨ ¨ ¨ ă in. If m “ 2 then we can further use (iv) to obtain
t˚ “ rxi1 , xi2 , xxi3 , . . . , xinys

˚ and make sure i2 ă ¨ ¨ ¨ ă in by (ii) and Lemma 2.1. Thus sacn p˚q ď 2n.
If t is a bracketing of x1, . . . , xn, then t˚ “ xx1, . . . , xny

˚ or t˚ “ rx1, x2, xx3, . . . , xnys
˚ by a similar argument.

Thus sanp˚q ď 2, and the equality must hold if sacn p˚q “ 2n.
It is routine to check that the 2-element groupoid pt0, 1u, ˚q defined by x ˚ y :“ x ` 1 pmod 2q for all

x, y P t0, 1u satisfies the identities (i)–(v). It has sanp˚q “ 2 for n ě 2 by Csákány and Waldhauser [3, §4.1] and
sacn p˚q “ 2n for n ě 3 by our earlier work [6, Example 4.1.2]. It is easy to see that SC189 is obtained from this
2-element groupoid by adding an absorbing element; hence the term operations behave in essentially the same
ways in both groupoids.

Our next result is similar to Proposition 3.4, and we will use leaf depths to generalize them in Section 6.
The result here involves two anti-isomorphic groupoids:
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˚ 0 1 2
0 1 1 1
1 2 2 2
2 0 0 0

˚ 0 1 2
0 1 2 0
1 1 2 0
2 1 2 0

SC3242 SC3302

Proposition 3.5. A groupoid pG, ˚q satisfying the identities below must have

sanp˚q ď

$

’

&

’

%

1 n “ 1, 2

2 n “ 3

3 n “ 4, 5, . . .

and sacn p˚q ď

$

’

&

’

%

n n “ 1, 2

2n n “ 3

3n n “ 4, 5, . . .

where the first inequality holds as an equality if so does the second and both hold for SC3242 and the anti-
isomorphic SC3302.

piq xpyzq « xpzyq, piiq wpxpyzqq « wppxyqzq, piiiq pxyqz « pxzqy,

pivq pwxqpyzq « pwyqpxzq, pvq pppvwqxqyqz « vpwpxpyzqqq

Proof. The result is trivial when n “ 1, 2; assume n ě 3 below. Let t be an arbitrary term in Fn with leftmost
decomposition t “ rt0, t1, . . . , tms, where |t0| “ 1. By (i), (ii), and Lemma 2.1, we may assume that ti “ tRăi
for all i P t1, . . . ,mu. By (iii) and Lemma 2.1, we may assume that |t1| ď ¨ ¨ ¨ ď |tm|. If |ti| ą 1 for some
i P t1, . . . ,m´ 1u, then we apply (iv) to make sure |ti| “ 1. Thus we may assume that |t1| “ ¨ ¨ ¨ “ |tm´1| “ 1.
Therefore, t induces the same n-ary operation on pG, ˚q as rxi1 , . . . , xik , xxik`1

, . . . , xinys, where we may further
assume that xi2 ă ¨ ¨ ¨ ă xin by (iii) and (iv) and that k P t1, 2, 3u by (v). It follows that sacn p˚q ď 2n for n “ 3
(in this case k P t1, 2u) and sacn p˚q ď 3n for n “ 4, 5, . . ..

If t P Bn is a bracketing of x1x2 ¨ ¨ ¨xn, then we must have i1 “ 1 since the above argument does not alter
the leftmost variable. Thus sanp˚q ď 2 for n “ 3 and sanp˚q ď 3 for n “ 4, 5, . . .. It is clear that if the upper
bound of sacn p˚q is reached, so is the upper bound of sanp˚q.

For SC3242, we have t˚pa1, . . . , anq “ pai1 ` dq mod 3 whenever the binary tree corresponding to t P Fn has
leftmost leaf i1 of left depth d. The number of possibilities for i1 is n, and the number of possibilities for d
pmod 3q is 1 when n P t1, 2u, 2 when n “ 3, and 3 when n “ 4, 5, . . .. The proof is now complete.

We next present a family of groupoids whose associative spectrum and ac-spectrum are bounded above by
1, 1, 2, 4, 4, 4, 4, . . . and 1, 2, 9, 32, 50, 72, 98, . . . and show that both upper bounds are reached by the 3-element
groupoid SC3162, which is anti-isomorphic to SC2467.

˚ 0 1 2
0 1 0 0
1 1 0 0
2 1 0 1

˚ 0 1 2
0 1 1 1
1 0 0 0
2 0 0 1

SC2467 SC3162

Theorem 3.1. A groupoid pG, ˚q satisfying the identities below must have sanp˚q ď 2 and sacn p˚q ď n2 for n “ 3
and sanp˚q ď 4 and sacn p˚q ď 2n2 for n “ 4, 5, . . ., where the upper bound for sanp˚q is reached if the upper bound
for sacn p˚q is reached and both upper bounds are reached by SC3162 and the anti-isomorphic SC2467.

piq xpyzq « xpzyq, piiq wpxpyzqq « wppxyqzq, piiiq ppwxqyqz « ppwxqzqy,

pivq pwpxyqqz « pwpxzqqy, pvq vpwpxpyzqqq « ppvpwxqqyqz, pviq pvwqpxpyzqq « pppvwqxqyqz

Proof. Let t be an arbitrary term in Fn with leftmost decomposition t “ rxa, t1, t2, . . . , tms. By (i), (ii), and
Lemma 2.1, we may assume that ti “ tLăi for all i P t1, . . . ,mu. By (vi), we may assume that m ď 3.
Consequently, t induces the same n-ary operation on pG, ˚q as one of the following four types of standard terms.

Type 1: m “ 1. Then t˚ “ pxarxb1 , . . . , xbn´1
sq˚, where b1 ă ¨ ¨ ¨ ă bn´1.

Type 2: m “ 2 and |t1| “ 1. Then t˚ “ prxa, xb, rxc1 , . . . , xcn´2
ssq˚, where c1 ă ¨ ¨ ¨ ă cn´2.

Type 3: m “ 2 and |t1| ě 2. Then t˚ “ prxa, rxb1 , . . . , xbn´2
s, xbn´1

sq˚, where b1 ă ¨ ¨ ¨ ă bn´1, thanks to (iv).

Type 4: m “ 3. We may assume that |t1| “ 1 by the identity (v) and that |t2| ě |t3| by the identity (iii). If
|t2| ě |t3| ą 1, then we can write t2 “ t12x for any variable x P varpt2q and switch x with t3 by (iv). Thus we
may also assume |t3| “ 1. It follows that t˚ “ prxa, xb, rxc1 , . . . , xcn´3s, xcn´2sq

˚, where c1 ă ¨ ¨ ¨ ă cn´2.
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Summing up the possibilities for the above four types of standard terms, we obtain that

sacn p˚q ď

#

n` npn´ 1q “ n2 if n “ 3

n` npn´ 1q ` n` npn´ 1q “ 2n2 if n “ 4, 5, . . . .

If t P Bn is a bracketing of x1x2 ¨ ¨ ¨xn, then there is only one possibility in each of the above four (two when
n “ 3) cases. This shows that sanp˚q ď 2 for n “ 3 and sanp˚q ď 4 for n “ 4, 5, . . .. If sacn p˚q “ 2n2 then the
above four cases must induce distinct terms on pG, ˚q, and thus sanp˚q “ 4.

It is routine to check that SC3162 satisfies the identities (i)–(vi). It remains to show that any two distinct
standard terms t and t1 in Fn must induce distinct n-ary operations on SC3162. Assume that t is one of the
following, where b1 ă ¨ ¨ ¨ ă bn´1 and c1 ă ¨ ¨ ¨ ă cn´2.

xarxb1 , . . . , xbn´1s, rxa, xb, rxc1 , . . . , xcn´2ss, rxa, rxb1 , . . . , xbn´2s, xbn´1s, rxa, xb, rxc1 , . . . , xcn´3s, xcn´2s

Similarly, assume that t1 is one of the following, where b11 ă ¨ ¨ ¨ ă b1n´1 and c11 ă ¨ ¨ ¨ ă c1n´2.

xa1rxb11 , . . . , xb1n´1
s, rxa1 , xb1 , rxc11 , . . . , xc1n´2

ss, rxa1 , rxb11 , . . . , xb1n´2
s, xb1n´1

s, rxa1 , xb1 , rxc11 , . . . , xc1n´3
s, xc1n´2

s

It is clear that r0, s1, . . . , s`s gives 0 if ` is even or 1 if ` is odd, no matter what s1, . . . , s` are. Therefore, we
only need to consider the following cases.

Case 1: t “ xarxb1 , . . . , xbn´1
s and t1 “ xa1rxb11 , . . . , xb1n´1

s, where a ‰ a1. We have hptq “ 0 ‰ 1 “ hpt1q, where

hpxaq :“ 1 and hpxq :“ 0 for all x ‰ xa.

Case 2: t “ xarxb1 , . . . , xbn´1
s and t1 “ rxa1 , xb1 , rxc11 , . . . , xc1n´3

s, xc1n´2
s. We have hptq “ 0 ‰ 1 “ hpt1q, where

hpxaq “ hpxa1q “ hpxb1q :“ 2 and hpxq :“ 0 for all x R txa, xa1 , xb1u. Here a may coincide with a1 or b1.

Case 3: t “ rxa, xb, rxc1 , . . . , xcn´2
ss and t1 “ rxa1 , xb1 , rxc11 , . . . , xc1n´2

ss, where pa, bq ‰ pa1, b1q.

If a ‰ a1 then hptq “ 0 ‰ 1 “ hpt1q, where hpxaq :“ 0 and hpxq :“ 1 for all x ‰ xa.
If a “ a1 then b ‰ b1 and hptq “ 0 ‰ 1 “ hpt1q, where hpxaq “ hpxbq :“ 2 and hpxq :“ 0 for all x R txa, xbu.

Case 4: t “ rxa, xb, rxc1 , . . . , xcn´2ss and t1 “ rxa1 , rxb11 , . . . , xb1n´2
s, xb1n´1

s.

If a ‰ a1 then hptq “ 0 ‰ 1 “ hpt1q, where hpxaq :“ 0 and hpxq :“ 1 for all x ‰ xa.
If a “ a1 then hptq “ 0 ‰ 1 “ hpt1q, where hpxaq “ hpxbq :“ 2 and hpxq :“ 0 for all x R txa, xbu.

Case 5: t “ rxa, rxb1 , . . . , xbn´2
s, xbn´1

s and t1 “ rxa1 , rxb11 , . . . , xb1n´2
s, xb1n´1

s, where a ‰ a1. We have hptq “ 0 ‰

1 “ hpt1q, where hpxaq :“ 0 and hpxq :“ 1 for all x ‰ xa.

Case 6: t “ rxa, xb, rxc1 , . . . , xcn´3
s, xcn´2

s and t1 “ rxa1 , xb1 , rxc11 , . . . , xc1n´3
s, xc1n´2

s, where pa, bq ‰ pa1, b1q.

If a ‰ a1 then hptq “ 1 ‰ 0 “ hpt1q, where hpxaq :“ 0 and hpxq :“ 1 for all x ‰ xa.
If a “ a1 then b ‰ b1 and hptq “ 1 ‰ 0 “ hpt1q, where hpxaq “ hpxbq :“ 2 and hpxq :“ 0 for all x R txa, xbu.

The proof is now complete.

4. Exponential upper bounds

In this section, we establish some exponential upper bounds for the ac-spectra for a few varieties of groupoids;
the respective associative spectra may have linear or exponential upper bounds.

Proposition 4.1. Every groupoid pG, ˚q satisfying the identities below must have sanp˚q ď n ´ 1 and sacn p˚q ď
2n´1 ´ 1 for n “ 2, 3, . . ., where the first inequality holds as an equality whenever the second does and both
equalities hold for SC1066 (see Table 1).

piq xy « yx, piiq wpxpyzqq « wppxyqzq

Proof. Let t be an arbitrary term in Fn with leftmost decomposition t “ rxa, t1, t2, . . . , tms. By Lemma 2.1, we
may assume that ti “ tLăi for all i P t1, . . . ,mu. Next, we use (i) to swap rxa, t1, . . . , tm´1s and tm. Then we
transform rxa, t1, . . . , tm´1s to a leftmost bracketing again by Lemma 2.1. It follows that t induces the same
n-ary operation on pG, ˚q as rxj1 , . . . , xjk srxjk`1

, . . . , xjns, where txj1 , . . . , xjku “ varptmq and txjk`1
, . . . , xjnu “

Xnz varptmq. The order of the elements of either set of variables does not affect t˚ by the above, nor does the
order of the two sets by (i). Thus sacn p˚q is bounded above by p2n ´ 2q{2 “ 2n´1 ´ 1, the number of partitions
of t1, . . . , nu into two unordered nonempty blocks.

Restricting the above argument to bracketings of x1x2 ¨ ¨ ¨xn in Bn instead of full linear terms in Fn, we have
the variables in varptmq indexed by larger numbers than the other variables. Thus the partitions of t1, . . . , nu
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associated with these bracketings have two blocks t1, . . . , ku and tk ` 1, . . . , nu for some k P t1, . . . , n ´ 1u. It
follows that sanp˚q ď n´ 1.

If sacn p˚q “ 2n´1 ´ 1, then distinct partitions of t1, . . . , nu into two unordered nonempty blocks correspond
to distinct n-ary operations on pG, ˚q, and we can restrict this to partitions with two blocks t1, . . . , ku and
tk ` 1, . . . , nu to conclude that sanp˚q “ n´ 1.

It remains to consider SC1066. Every full linear term t P Fn can be written as t “ tLtR. Let h : Xn Ñ t0, 1, 2u
be an assignment. We have that hptq “ 1 if and only if hptLq “ hptRq “ 2 and that hptq “ 0 if and only if
hptLq ‰ 2 and hptRq ‰ 2. As observed by Csákány and Waldhauser [3], one can show by induction that
hptq “ 2 if and only if h assigns 2 to an odd number of variables. Thus hptq is completely determined by
how many variables in tL and tR take the value 2. In particular, if s “ rxi1 , . . . , xi`srxi``1

, . . . , xins and
t “ rxj1 , . . . , xjk srxjk`1

, . . . , xjns with 1 P ti1, . . . , i`uX tj1, . . . , jku and i P ti1, . . . , i`uztj1, . . . , jku, then s˚ ‰ t˚

since hpsq “ 0 ‰ 1 “ hptq, where hpx1q “ hpxiq :“ 2 and hpxq :“ 0 for all x R tx1, xiu. This implies that
sacn p˚q “ 2n´1 ´ 1, which in turn implies sanp˚q “ n´ 1.

We study another variety of groupoids, for which the associative spectra have the same upper bound n´ 1
as in Proposition 4.1 but the ac-spectra have a different upper bound 1, 2, 7, 29, 146, . . . [13, A185109]. We show
that both upper bounds are reached by SC367, which is anti-isomorphic to SC10.

˚ 0 0 0
0 0 0 0
1 0 0 0
2 1 0 0

˚ 0 1 2
0 0 0 1
1 0 0 0
2 0 0 0

SC10 SC367

Proposition 4.2. A groupoid pG, ˚q must have sanp˚q ď n´ 1 for n “ 2, 3, . . . and

sacn p˚q ď n!`
n´3
ÿ

k“0

npn´ 1q ¨ ¨ ¨ pn´ k ` 1q “ n!`
n´3
ÿ

k“0

k!

ˆ

n

k

˙

for n “ 1, 2, . . . if it satisfies the identities below, where the first inequality holds as an equality whenever the
second does and both equalities hold for SC367 and the anti-isomorphic SC10.

piq xpyzq « xpzyq « ypxzq, piiq wpxpyzqq « wppxyqzq

Proof. We show that we can transform an arbitrary term t P Fn, whose leftmost decomposition is t “
rt0, t1, . . . , tms with |t0| “ 1, to a “standard” term of the form rxxi1 , . . . , xi`y, xi``1

, . . . , xins, where ` P t0, 3, 4, . . . , nu
and i1 ă ¨ ¨ ¨ ă i`.

If |ti| “ 1 for all i “ 1, . . . ,m, then t “ rxi1 , . . . , xins is already a standard term with ` “ 0. Here i1, . . . , in
form a permutation of 1, . . . , n, and we have n! possibilities in this case.

Suppose |tj | ą 1 for some j, where j is as large as possible. Then |tj`1| “ ¨ ¨ ¨ “ |tm| “ 1. We can transform
tj to the rightmost bracketing of its variables in any prescribed order by (i), (ii), and Lemma 2.1, then switch
its leftmost variable xi1 with rt0, t1, . . . , tj´1s by (i), and use (i), (ii), and Lemma 2.1 again to transform t to the
standard form rxxi1 , . . . , xi`y, xi``1

, . . . , xins, where i1, . . . , i` can be in any prescribed order, say the increasing
one. There are npn´ 1q ¨ ¨ ¨ p`` 1q possibilities for i``1, . . . , in, and we must have 3 ď ` ď n since |tj | ą 1.

Summing the numbers of possibilities in the above two cases with k “ n ´ ` in the second case gives the
desired upper bound for sacn p˚q. Restricting the above argument to bracketings of x1x2 ¨ ¨ ¨xn in Bn, we obtain
standard terms of the form rxx1, . . . , x`y, x``1, . . . , xns with ` P t0, 3, 4, . . . , nu. Thus sanp˚q ď n ´ 1. It is easy
to see that if the upper bound for sacn p˚q is reached, so is the upper bound for sanp˚q.

It is clear that SC10 is anti-isomorphic to SC367. The latter satisfies the identities (i) and (ii). It re-
mains to show that s˚ ‰ t˚ whenever s and t are distinct standard terms in Fn. We may assume that
s “ rxxi1 , . . . , xi`y, xi``1

, . . . , xins and t “ rxxj1 , . . . , xjmy, xjm`1
, . . . , xjns for some `,m P t0, 3, 4, . . . , nu, where

i1 ă ¨ ¨ ¨ ă i`, j1 ă ¨ ¨ ¨ ă jm, and ` ď m.
First, assume that ik ‰ jk for some k P tm ` 1, . . . , nu. Let k be as large as possible. We have hpsq “ 0 ‰

1 “ hptq if n´ k is odd or hpsq “ 1 ‰ 0 “ hptq if n´ k is even, where hpxikq “ ¨ ¨ ¨ “ hpxinq :“ 2 and hpxq :“ 0
for all x R txik , . . . , xinu.

Next, assume that ik “ jk for all k “ m ` 1, . . . , n. This implies that ` ă m (otherwise s “ t). We have
hpsq “ 0 ‰ 1 “ hptq if n´m is odd or hpsq “ 1 ‰ 0 “ hptq if n´m is even, where hpximq “ ¨ ¨ ¨ “ hpxinq :“ 2
and hpxq :“ 0 for all x R txim , . . . , xinu.

The upper bounds in the next result are reached by the 3-element groupoid SC2302, which can be viewed as
subtraction on a finite field of three elements, or more generally, reached by the subtraction on any commutative
group pG,`q of exponent greater than 2 (cf. [6, Example 7.1.4]). It is clear SC2302 is anti-isomorphic to SC2155.
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˚ 0 1 2
0 0 1 2
1 2 0 1
2 1 2 0

˚ 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

SC2155 SC2302

Proposition 4.3. A groupoid pG, ˚q satisfying the identities below must have sanp˚q ď 2n´2 and sacn p˚q ď 2n´2
for n “ 2, 3, . . ., where the second inequality holds as an equality whenever the second does and both equalities
hold for the subtraction operation ´ on any commutative group pG,`q of exponent greater than 2, in particular,
for SC2302 (hence the anti-isomorphic SC2155).

piq pxyqz « pxzqy, piiq xpyzq « zpyxq, piiiq wpxpyzqq « pwpxyqqz.

Proof. Let t be an arbitrary term in Fn. We show by induction on |t| that t can be transformed to a “standard”
term rxi1 , . . . , xik , rxik`1

, . . . , xinss for some k P t1, . . . , n´1u, where the sets ti1, ik`2, . . . , inu and ti2, . . . , ik`1u

respectively contain the indices of the leftmost two variables of t and either set of indices can be permuted
arbitrarily. We first write t “ rt0, t1, . . . , tms with |t0| “ 1. We may assume that |t1| ě |t2| ě ¨ ¨ ¨ ě |tm|, thanks
to the identity (i) and Lemma 2.1. We distinguish some cases below.

Case 1: m ą 1 and |t1| “ 1. Then t “ rxi1 , . . . , xins, which is in standard form with k “ n ´ 1. The leftmost
two variables of t are indexed by i1 P ti1u and i2 P ti2, . . . , ik`1u, and we can permute i2, . . . , ik`1 by (i).

Case 2: m ą 1 and |t1| ą 1. We can first apply (iii) repeatedly to transform t to xint
1, where in is the

index of the leftmost variable of t and the leftmost variable of t1 is the second leftmost variable of t. By the
induction hypothesis, we may assume that t1 “ rxik`1

, . . . , xin´1 , rxi1 , . . . , xik ss, where ik`1, i2, . . . , ik can be
permuted in all possible ways and so can be ik`2, . . . , in´1, i1, and the leftmost variable of t1 is indexed by one
of ik`1, i2, . . . , ik. We then apply (ii) to switch xin with rxi1 , . . . , xik s and get rxi1 , . . . , xik , rxik`1

, . . . , xinss. By
(i), we can switch in and each of ik`2, . . . , in´1. Thus we are done for this case.

Case 3: m “ 1. Similarly to the above case, we can apply the induction hypothesis to t1 and then use (i) and
(ii) to finish the argument for this case.

It follows that sacn p˚q is bounded above by the number of nonempty proper subsets of t1, . . . , nu, which is
clearly 2n´2. Restricting the above argument to t P Bn, we must have 1 P ti1, ik`2, . . . , inu and 2 P ti2, . . . , ik`1u.
Thus sanp˚q ď 2n´2; see also earlier work [4]. It is easy to see that sacn p˚q “ 2n ´ 2 implies sanp˚q “ 2n´2.

The usual subtraction ´ on R or C satisfies the identities (i), (ii), and (iii). We have sanp´q “ 2n´2 and
sacn p´q “ 2n ´ 2 by previous work [6, Example 7.1.4]. The same argument there is also valid for subtraction on
any commutative group pG,`q of exponent greater than 2 and in particular, for SC2302.

Remark 4.1. If pG,`q is a commutative group of exponent at most 2, then the subtraction coincides with
addition and sacn p´q “ 1 for all n P N`.

We provide another variety of groupoids pG, ˚q with the same associative spectrum upper bound 2n´2 as
Proposition 4.3 but a different ac-spectrum upper bound 1, 2, 9, 28, 75, 186, . . . [13, A058877]. We show that
both upper bounds are reached by two 3-element groupoids SC271 and SC356, which are anti-isomorphic to
SC1610 (by 0 ÞÑ 1, 1 ÞÑ 2, 2 ÞÑ 0) and SC2032 (by 0 ÞÑ 2, 1 ÞÑ 0, and 2 ÞÑ 1), respectively.

˚ 0 1 2
0 0 0 0
1 1 1 0
2 2 2 2

˚ 0 1 2
0 0 0 0
1 2 1 1
2 1 2 2

˚ 0 1 2
0 0 1 1
1 0 1 2
2 0 1 2

˚ 0 1 2
0 0 1 2
1 0 1 2
2 1 0 2

SC271 SC356 SC1610 SC2032

Theorem 4.1. A groupoid pG, ˚q satisfying the identities below must have sanp˚q ď 2n´2 and sacn p˚q ď np2n´1´1q
for n “ 2, 3, . . ., where the first upper bound is reached whenever the second one is.

piq pxyqz « pxzqy piiq wpxpyzqq « wppxyqzq piiiq pwxqpyzq « pwyqpxzq

Moreover, both upper bounds are reached for the 3-element groupoids SC271 and SC356 (hence the anti-isomorphic
SC1610 and SC2032).

Proof. We transform an arbitrary term t P Fn, whose leftmost decomposition is t “ rxa, t1, . . . , tms, to a
“standard term” using (i), (ii), (iii), and Lemma 2.1. We may assume that |t1| ď |t2| ď ¨ ¨ ¨ ď |tm|, thanks to the
identity (i). Let xai be the leftmost variable of ti for i “ 1, . . . ,m. If there exists a positive integer j ă m such
that |tj | ą 1, we can use the identity (ii) to transform tj`1 to xaj`1

t1j`1 and then use the identity (iii) to switch
tj and xaj`1

. Repeating this, we obtain rxa, xb1 , . . . , xbm´1
, pxbmt

1
mqs from t, where tb1, . . . , bmu “ ta1, . . . , amu.
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We can assume that b1 ă b2 ă ¨ ¨ ¨ ă bm, thanks to the identities (i) and (iii). Applying the identity (ii)
repeatedly to xbmt

1
m gives xxbm , xc1 , xc2 , . . . , xcn´m´1

y. We may assume that c1 ă c2 ă ¨ ¨ ¨ ă cn´m´1 by the
identities wpxpyzqq « wppxyqzq « wppxzqyq « wpxpzyqq.

It follows that every t P Fn induces the same n-ary operation as a standard term

rxa, xb1 , . . . , xbm´1
sxxbm , xc1 , . . . , xcn´m´1

y,

where b1 ă ¨ ¨ ¨ ă bm and c1 ă ¨ ¨ ¨ ă cn´m´1. This implies that sacn p˚q ď np2n´1´1q since there are n possibilities
for a and 2n´1 ´ 1 possibilities for pb1, . . . , bmq.

Restricting the above argument to t P Bn, we must have a “ 1 and b1 “ 2 since a1 “ 2 P tb1, . . . , bmu. Thus
sanp˚q ď 2n´2, and it is easy to see that the equality must hold when sacn p˚q “ np2n´1 ´ 1q.

One can check that SC271 and SC356 both satisfy the identities (i), (ii), and (iii). It remains to show that
hpsq ‰ hptq for some assignment h : Xn Ñ t0, 1, 2u, where s and t are terms in Fn corresponding to distinct
standard terms

rxa, xb1 , . . . , xbm´1
sxxbm , xc1 , . . . , xcn´m´1

y ‰ rxa1 , xb11 , . . . , xb1`´1
sxxb1` , xc11 , . . . , xc1n´`´1

y.

Assume m ď `, without loss of generality.
First suppose that a ‰ a1. Define hpxaq :“ 0 and hpxq “ 2 for all x ‰ xa. For both SC271 and SC356, one

can check that hpsq “ 0 ‰ hptq.
Next, suppose a “ a1. Then tc1, . . . , cn´m´1u and tc11, . . . , c

1
n´`´1u must be different sets. Suppose some i

belongs to the latter but not the former, without loss of generality. We must have i P tb1, . . . , bmu.
For SC271, we have hpsq “ 0 ‰ 1 “ hptq, where hpxiq :“ 2 and hpxq :“ 1 for all x ‰ xi.
For SC356, we have hpsq “ 1 ‰ 2 “ hptq, where hpxiq :“ 0 and hpxq :“ 2 for all x ‰ xi.

5. Upper bounds related to set partitions

In this section, we present a few varieties of groupoids, whose ac-spectra are related to set partitions. Recall that
the restricted Bell number Bn,m counts partitions of the set t1, 2, . . . , nu into unordered nonempty blocks of size
at most m [12]; it gives the well-known Bell number Bn when m ě n. In particular, we have Bn,2 “ 1 for n “ 0, 1
and Bn,2 “ Bn´1,2 ` pn´ 1qBn´2,2 for n ě 2; see the sequence A000085 in OEIS [13] for other interpretations
and closed formulas for Bn,2. We also need the following definition by Csákány and Waldhauser [3].

Definition 5.1. Define a term t to be a nest if either |t| “ 1 (a trivial nest) or there exists a term t1 together
with a variable x such that t “ xt1 or t “ t1x, |t1| “ |t|´1, and t1 is a nest. Each variable in t must be contained
in a unique maximal nest, which is simply called a nest of t. Every nontrivial nest must have a unique subterm
of the form xixj, and the variables xi and xj are called the eggs of this nest.

Our first result is concerned with a variety of groupoids including the following two 3-element groupoids.

* 0 1 2
0 0 0 0
1 0 1 0
2 0 0 1

˚ 0 1 2
0 0 1 1
1 1 0 0
2 1 0 1

SC79 SC1701

Proposition 5.1. A groupoid pG, ˚q satisfying the identities below must have sanp˚q ď Fn`1 ´ 1 and sacn p˚q ď
Bn,2 ´ 1 for n “ 2, 3, . . ., where the first inequality holds as an equality whenever the second does.

piq xy « yx, piiq ppwxqyqz « ppwxqzqy

Moreover, both upper bounds are reached by SC79 and SC1701.

Proof. Suppose s, t P Fn have the same eggs of nests. We show by induction on n that s˚ “ t˚. Let xi and
xj be the eggs of a nest of s; they must be the eggs of a nest of t. The case n “ 2 is trivial; assume n ě 3
below. Thanks to the identity (i), we may assume s “ rxi, xj , s1, . . . , s`s and t “ rxi, xj , t1, . . . , tms. We may
also assume that |s1| ě ¨ ¨ ¨ ě |s`| and |t1| ě ¨ ¨ ¨ ě |tm| by (ii). Assume |s1| ď |t1|, without loss of generality.

Case 1: |t1| ě |s1| ą 1. Replacing xixj with a new variable x0 in both s and t gives full linear terms s1 and t1

in n´ 1 variables that share the same eggs of nests. It follows from the induction hypothesis that ps1q˚ “ pt1q˚,
and this implies s˚ “ t˚.

Case 2: |s1| “ 1. Then |s2| “ ¨ ¨ ¨ “ |s`| “ 1 and s has only two eggs xi and xj . We must have |t1| “ 1
(otherwise t1 contains eggs different from xi and xj) and thus |t2| “ ¨ ¨ ¨ “ |tm| “ 1. We can use (ii) to make
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sure s1 “ t1 “ xk for some k R ti, ju. Replacing xixj with a new variable x0 in both s and t gives s1 and t1 with
eggs x0 and xk. By the induction hypothesis, we have ps1q˚ “ pt1q˚. This implies that s˚ “ t˚.

Therefore, sacn p˚q is bounded above by Bn,2 ´ 1, which is the number of partitions of t1, . . . , nu into blocks
of size one or two with at least one block of size two (since there is at least one nest with two eggs).

Restricting the above argument to bracketings of x1, . . . , xn, we have sanp˚q ď Fn`1 ´ 1 since the partitions
associated with bracketings of x1, . . . , xn must have two consecutive integers in each block of size two; see also
Csákány and Waldhauser [3, §5.6]. It is easy to see that sacn p˚q “ Bn,2 ´ 1 implies sanp˚q “ Fn`1 ´ 1.

It is routine to verify that groupoids SC79 and SC1701 satisfy identities (i) and (ii). It remains to verify that
if s, t P Fn are terms whose eggs of nests are not the same, then s and t induce distinct operations on SC79 and
on SC1701. Suppose that xi and xj are eggs of a nest in s but not eggs of any nest in t. For SC79, Csákány and
Waldhauser [3] observed that hpsq “ 1 ‰ 0 “ hptq, where hpxiq “ hpxjq :“ 2 and hpxq :“ 1 for all x R txi, xju.
For SC1701, we have hpsq “ 1 ‰ 0 “ hptq, where hpxiq “ hpxjq :“ 2 and hpxq :“ 0 for all x R txi, xju. Thus
sacn p˚q “ Bn,2 ´ 1 and sanp˚q “ Fn`1 ´ 1 for SC79 and SC1701.

A set partition is rooted if it has a distinguished singleton block called the root. The number of rooted
partitions of t1, 2, . . . , nu is nBn´1 “ 1, 2, 6, 20, 75, 312, . . . [13, A052889]. We show below that this number is
the upper bound for the ac-spectra of a variety of groupoids and can be attained by the 3-element groupoids
SC41 and SC96. The Cayley tables of these two groupoids together with the anti-isomorphic groupoids SC398
and SC1069 are given below.

˚ 0 1 2
0 0 0 0
1 0 0 1
2 1 1 2

˚ 0 1 2
0 0 0 0
1 0 1 0
2 2 0 2

˚ 0 1 2
0 0 0 1
1 0 0 1
2 0 1 2

˚ 0 1 2
0 0 0 2
1 0 1 0
2 0 0 2

SC41 SC96 SC398 SC1069

Theorem 5.1. A groupoid pG, ˚q satisfying the identities below must have sanp˚q ď 2n´2 for n “ 2, 3, . . . and
sacn p˚q ď nBn´1 for n “ 1, 2, . . ., where the second inequality holds as an equality whenever the second does.

piq xpyzq « xpzyq, piiq pxyqz « pxzqy.

Moreover, both upper bounds are reached by SC41 and SC96 (hence the anti-isomorphic SC398 and SC1069).

Proof. Let t be an arbitrary term in Fn with leftmost decomposition t “ rxa, t1, . . . , tms. Define a rooted set
partition of t1, 2, . . . , nu associated with t: we have a block consisting of the indices of the variables in tj for all
j “ 1, 2, . . . ,m together with a singleton block tau that is the root of this partition. By (i), (ii), and Lemma 2.1,
t induces on pG, ˚q the same term operation as rxa, t

Lă
σp1q, . . . , t

Lă
σpmqs for any permutation σ P Sm. It follows that

terms in Fn associated with the same rooted partition must induce the same n-ary operation on pG, ˚q. Thus
sacn p˚q ď nBn´1.

The rooted set partition associated with a bracketing of x1 ˚ ¨ ¨ ¨ ˚xn must have t1u as its root and the other
blocks are intervals. The number of such “interval partitions” can be found by counting the number of ways of
inserting bars into the n´ 2 spaces between 2, . . . , n. Thus sanp˚q ď 2n´2.

If sacn p˚q “ nBn´1 for n ě 1, then s˚ ‰ t˚ whenever s, t P Fn are associated with distinct rooted set
partitions, and restricting this to bracketings of x1 ˚ ¨ ¨ ¨ ˚ xn gives sanp˚q “ 2n´2.

It is routine to check that SC41 and SC96 both satisfy the identities (i) and (ii). It remains to show that s˚ ‰
t˚ whenever s and t are terms in Fn associated with distinct rooted set partitions. Suppose s “ rxa, s1, . . . , s`s
and t “ rxb, t1, . . . , tms, where s1, . . . , s` and t1, . . . , tm are ordered according to the smallest index of the
variables they contain. If a ‰ b then s˚ ‰ t˚ since

• hpsq “ 0 ‰ 1 “ hptq if pt0, 1, 2u, ˚q “ SC41, hpxaq “ 0 and hpxiq “ 2 for all i ‰ a, and

• hpsq “ 0 ‰ 2 “ hptq if pt0, 1, 2u, ˚q “ SC96, hpxaq “ 0 and hpxiq “ 2 for all i ‰ a.

Assume a “ b below. Let j be the smallest integer such that sj and tj do not contain the same set of variables.
The least index c of the variables of sj must agree with that of tj . There exists another variable xd in exactly
one of sj and tj , say the former. Then xd is in tk for some k ą j. We have

• hpsq “ 1 ‰ 0 “ hptq if pt0, 1, 2u, ˚q “ SC41, hpxcq “ hpxdq “ 0, and hpxiq “ 2 for all i R tc, du, and

• hpsq “ 2 ‰ 0 “ hptq if pt0, 1, 2u, ˚q “ SC96, hpxaq “ hpxcq “ 2, and hpxiq “ 1 for all i R ta, cu.

Thus s˚ ‰ t˚.
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Next, we provide an ordered version of Theorem 5.1 that has the same associative spectrum upper bound but
a different ac-spectrum upper bound. Recall that the ordered Bell number or Fubini number B1n counts ordered
partitions of the set t1, 2, . . . , nu [13, A000670]. The number of rooted ordered set partitions of t1, . . . , nu is
nB1n´1 “ 1, 2, 9, 52, 375, . . . [13, A052882]. We show that nB1n´1 is also the upper bound for the ac-spectra of
a variety of groupoids and can be reached by the 3-element groupoids SC262, SC1812, and SC2446, which are
anti-isomorphic to SC1441 (by 0 ÞÑ 2, 1 ÞÑ 0, and 2 ÞÑ 1), SC1793 and SC2430, respectively.

˚ 0 1 2
0 0 0 0
1 1 1 0
2 1 1 2

˚ 0 1 2
0 0 0 2
1 2 1 2
2 0 0 2

˚ 0 1 2
0 0 1 1
1 1 2 1
2 1 2 1

˚ 0 1 2
0 0 1 1
1 1 2 2
2 1 1 1

˚ 0 1 2
0 1 0 0
1 0 2 1
2 0 2 1

˚ 0 1 2
0 1 0 0
1 0 2 2
2 0 1 1

SC262 SC1441 SC1793 SC1812 SC2430 SC2446

Theorem 5.2. A groupoid pG, ˚q satisfying the identities below must have sanp˚q ď 2n´2 for n “ 2, 3, . . . and
sacn p˚q ď nB1n´1 for n “ 1, 2, . . ., where the first inequality holds as an equality whenever the second does.

piq xpyzq « xpzyq, piiq wpxpyzqq « wppxyqzq

Moreover, both equalities hold for SC262, SC1812, and SC2446 (hence the anti-isomorphic SC1441, SC1793, and
SC2430).

Proof. By (i), (ii), and Lemma 2.1, we can transform an arbitrary term t P Fn with leftmost decomposition
t “ rt0, t1, . . . , tms, where |t0| “ 1, to rt0, t

Lă
1 , . . . , tLăm s. Thus terms in Fn induce the same n-ary operation if

they are associated with the same rooted ordered set partitions. It follows that sacn p˚q ď nB1n´1. Restricting
the above argument to Bn gives sanp˚q ď 2n´2, where the equality holds if sacn p˚q “ nB1n´1.

It is routine to check that SC262, SC1812, and SC2446 all satisfy the identities (i) and (ii). It remains to
show that s˚ ‰ t˚ whenever s, t P Fn are associated with distinct rooted ordered set partitions of t1, 2, . . . , nu.
We can write s “ rxa, s1, . . . , s`s and t “ rxb, t1, . . . , tms. If a ‰ b then s˚ ‰ t˚ by the following:

• For SC262, we have hpsq “ 1 ‰ 0 “ hptq, where hpxaq :“ 1 and hpxq :“ 0 for all x ‰ xa.

• For SC1812 and SC2446, one of hpsq and hptq is 1 and the other is 2, where hpxq :“ 1 for all x if ` and m
have different parities or hpxaq :“ 1 and hpxq :“ 2 for all x ‰ xa otherwise.

Assume a “ b below. Let j be the smallest integer such that varpsjq ‰ varptjq.
For SC262, we distinguish two cases.

Case 1: varptiq Ę varpsjq for all i. Define hpxq :“ 2 for all x P txau Y varpsjq and hpxq :“ 0 for all x R varpsjq.
Then hpxaq “ 2, hpsjq “ 2, hpsiq “ 0 for all i ‰ j, and hptiq P t0, 1u for all i. One can check that hpsq “ 1 ‰
0 “ hptq when j “ 1 and hpsq “ 0 ‰ 1 “ hptq when j ą 1.

Case 2: varptkq Ď varpsjq for some k. If varptkq Ĺ varpsjq, then we are back to Case 1 by switching s and t
and using tk instead of sj , since varpsiq Ę varptkq for all i. Thus we may assume that varpsjq “ varptkq, which
implies j ă k since varpsiq “ varptiq for all i ă j. Define

hpxq :“

#

2, if x P txau Y varps1q Y ¨ ¨ ¨ Y varpsjq “ varpt1q Y ¨ ¨ ¨ Y varptj´1q Y varptkq;

0, if x R txau Y varps1q Y ¨ ¨ ¨ Y varpsjq “ varpt1q Y ¨ ¨ ¨ Y varptj´1q Y varptkq.

We have hps1q “ ¨ ¨ ¨ “ hpsjq “ 2, hpsiq “ 0 for all i “ j ` 1, . . . , `, and thus hpsq “ 1. On the other hand, we
have hpt1q “ ¨ ¨ ¨ “ hptj´1q “ hptkq “ 2, hptiq “ 0 for all i P tj, . . . ,muztku, and thus hptq “ 0 ‰ hpsq.

For SC1812, we may assume that ` and m have the same parity by the all-1 substitution as discussed earlier.
We distinguish some cases below.

Case 1: varptiq Ę varpsjq for all i. We further distinguish two subcases below.

• Suppose that j is odd. Define hpxq :“ 0 for all x P varpsjq and hpxq :“ 1 for all x R varpsjq. Then
hpxaq “ 1, hpsjq “ 0, hpsiq P t1, 2u for all i ‰ j, and hptiq P t1, 2u for all i. One can check that hpsq “ 1 if
` is odd or hpsq “ 2 if ` is even. On the other hand, we have hptq “ 1 if m is even or hptq “ 2 otherwise.
Since ` and m have the same parity, it follows that hpsq ‰ hptq.

• Suppose that j is even. Defined by hpxq :“ 0 for all x P varpsjq and hpxq :“ 2 for all x R varpsjq. Then
hpxaq “ 1, hpsjq “ 0, hpsiq P t1, 2u for all i ‰ j, and hptiq P t1, 2u for all i. One can check that hpsq “ 1 if
` is even or hpsq “ 2 if ` is odd. On the other hand, we have hptq “ 1 if m is odd or hptq “ 2 if m is even.
Since ` and m have the same parity, we must have hpsq ‰ hptq.
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Case 2: varptkq Ď varpsjq for some k. If varptkq Ĺ varpsjq, then we are back to Case 1 by switching s and t
and using tk instead of sj , since varpsiq Ę varptkq for all i. Thus we may assume that varpsjq “ varptkq, which
implies j ă k. We further distinguish two subcases below.

• Suppose that j and k have different parities. Define hpxq :“ 0 for all x P varpsjq and hpxq :“ 2 for all
x R varpsjq. Then hpxaq “ 2, hpsjq “ hptkq “ 0, hpsiq P t1, 2u for all i ‰ j, and hptiq P t1, 2u for all i ‰ k.
One can check that hpsq “ 1 if j has the same parity as ` or hpsq “ 2 otherwise. Similarly, hptq “ 1 if
k has the same parity as m or hptq “ 2 otherwise. Since ` and m have the same parity, we must have
hpsq ‰ hptq.

• Suppose that j and k have the same parity. Define

hpxq :“

#

0, if x P txau Y varps1q Y ¨ ¨ ¨ Y varpsjq “ varpt1q Y ¨ ¨ ¨ Y varptj´1q Y varptkq;

1, if x R txau Y varps1q Y ¨ ¨ ¨ Y varpsjq “ varpt1q Y ¨ ¨ ¨ Y varptj´1q Y varptkq.

Then hpxaq “ hpsjq “ hptkq “ 0, hpsiq “ hptiq “ 0 for all i “ 1, . . . , j ´ 1, hpsiq P t1, 2u for all
i “ j ` 1, . . . , `, and hptiq P t1, 2u for all i P tj, . . . ,muztku. One can check that hpsq “ 1 if j and ` have
different parities or hpsq “ 2 otherwise (note that j ă `). Similarly, hptq “ 1 if k and m have the same
parity or hptq “ 2 otherwise. Since ` and m have the same parity, we must have hpsq ‰ hptq.

For SC2446, we may again assume that ` and m have the same parity by the all-1 substitution. There exists
a variable xc in exactly one of sj and tj , say the former. Then xc is in tk for some k ą j. We distinguish two
cases below.

Case 1: j and k have different parities. Define hpxaq “ hpxcq :“ 0 and hpxq :“ 1 for all x R txa, xcu. We have
hpsjq “ 0 and hpsiq P t1, 2u for all i ‰ j. Thus hpsq “ 1 if j has the same parity as ` or hpsq “ 2 otherwise.
Similarly, we have hptkq “ 0 and hptiq P t1, 2u for all i ‰ k. Thus hptq “ 1 if k has the same parity as m or
hptq “ 2 otherwise. Then hpsq ‰ hptq since ` and m have the same parity.

Case 2: j and k have the same parity. Pick any variable xd in tk´1, which must be in sj1 for some j1 ě j. The
argument in the above paragraph is valid for j1 and k´1 if they have different parities. Otherwise j1 and k must
have different parities, and it follows that j1 ą j. Define hpxcq “ hpxdq :“ 0 and hpxq :“ 1 for all x R txc, xdu.
We have hpsjq “ hpsj1q “ 0 and hpsiq P t1, 2u for all i R tj, j1u. Thus hpsq “ 1 if j1 has the same parity as `,
or hpsq “ 2 otherwise. Similarly, we have hptk´1q “ hptkq “ 0 and hpsiq P t1, 2u for all i R tk ´ 1, ku. Thus
hptq “ 1 if k has the same parity as m, or hptq “ 2 otherwise. Then hpsq ‰ hptq since ` and m have the same
parity but j1 and k have different parities.

6. Congruence on depths

In this section we discuss the natural occurrence of leaf depths in the study of associative and ac-spectra of
groupoids and how it can help us generalize some of our results.

Using both identities and the left/right depth, Hein and the first author [4] determined the associative
spectrum of a generalization of addition and subtraction to be the modular Catalan number

Ck,n :“
ÿ

0ďjďpn´1q{k

p´1qj

n

ˆ

n

j

˙ˆ

2n´ jk

n` 1

˙

,

and we determined its ac-spectrum in our previous work [6]. These results are rephrased below to include
Proposition 4.3 as a special case (using right depth instead of identities).

Theorem 6.1 ([4,6]). Let pG, ˚q be a groupoid such that for all s, t P Fn, we have s˚ “ t˚ whenever ρipsq ” ρiptq
pmod kq for i “ 1, . . . , n. Then sanp˚q ď Ck,n´1 and

sacn p˚q ď k!Spn, kq ` n
ÿ

0ďiďk´2

i!Spn´ 1, iq

for n “ 1, 2, . . ., where the first equality holds as an equality if the second one does. Moreover, both upper bounds
are reached if “whenever” can be replaced with “if and only if” in the above condition. In particular, both upper
bounds are attained by pC, ˚q, where a ˚ b :“ a` e2πi{kb for all a, b P C.

Now we use the left depth to generalize Proposition 3.4 and Proposition 3.5 as follows.

Theorem 6.2. Let pG, ˚q be a groupoid such that for all s, t P Fn, we have s˚ “ t˚ whenever s and t have the
same leftmost variable xi, whose left depths in s and t are congruent modulo k. Then sanp˚q ď k and sacn p˚q ď kn
for n “ k` 1, . . ., where the first inequality holds as an equality if the second does. Moreover, both upper bounds
are reached if “whenever” can be replaced with “if and only if” in the above condition.
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Proof. First, suppose that s˚ “ t˚ whenever s and t have the same leftmost variable xi and the left depths of
xi in s and t are congruent modulo k. Then every term in Fn induces the same n-ary operation on pG, ˚q as
a standard term rxi, xi1 , . . . , xim , xxim`1

, . . . , xin´1
ys, where i1 ă ¨ ¨ ¨ ă in´1 and m P t0, . . . , k ´ 1u. The above

standard term is determined by xi and m, for which there are n and k possibilities, respectively (the latter
requires n ě k ` 1). Thus sacn p˚q ď kn. Similarly, the standard term of each bracketing in Bn must begin with
x1. Thus sanp˚q ď k. It is easy to see that sacn p˚q “ kn implies sanp˚q “ k.

Now suppose that s˚ “ t˚ if and only if s and t have the same leftmost variable xi and the left depths of xi
in s and t are congruent modulo k. The “only if” part implies that s˚ ‰ t˚ if s and t correspond to different
standard terms. Thus sanp˚q “ k and sacn p˚q “ kn.

Remark 6.1. Hein and the first author [4] observed that the congruence relation modulo k on the left depths of
the bracketings in Bn is characterized by the identity s0rs1, . . . , sk`1s « rs0, s1, . . . , sk`1s and showed that Ck,n´1

is the number of terms in Bn avoiding subterms of the form s0rs1, . . . , sk`1s. We also have sanp˚q ď Ck,n´1 for
a groupoid pG, ˚q satisfying a different identity

s0rs1, . . . , sk`1s « s0ps1rs2, . . . , sk`1sq (1)

since we can still use this identity to transform every bracketing in Bn to some bracketing in Bn that avoids
subterms of the form s0rs1, . . . , sk`1s. Although not needed for the proof of the upper bound sanp˚q ď Ck,n´1,
we can even show that distinct bracketings t, t1 P Bn both avoiding s0rs1, . . . , sk`1s cannot be obtained from each
other by the identity (1), using the technique due to Hein and the first author [4]. In fact, we know that t and
t1 correspond to two binary trees with n leaves labeled 1, . . . , n from left to right, which in turn correspond to
two rooted plane trees T and T 1 with n vertices labeled 1, . . . , n in the preorder by contracting each northeast
southwest “long edge” in the drawings of t and t1. If t can be obtained from t1 by the identity (1), then a non-root
vertex in T must have its degree (the number of children) less than k and congruent to the degree of the vertex
with the same label in T 1 modulo k´ 1, and the leaves (degree-zero vertices) in T must correspond to the leaves
in T 1. Thus the degrees of the vertices of T must agree with those of T 1, and this forces T “ T 1.

For k “ 3, we suspect that sanp˚q “ Ck,n´1 holds for SC64, which is anti-isomorphic to SC399.

˚ 0 1 2
0 0 0 0
1 0 0 2
2 1 1 0

˚ 0 1 2
0 0 0 1
1 0 0 1
2 0 2 0

SC64 SC399

In fact, our computations show that the initial terms of the associative spectrum and ac-spectrum of SC64 are
1, 1, 2, 5, 13, 35, 96, 267 and 1, 2, 12, 84, 710, respectively; the former sequence coincides with C3,n´1 while the
latter differs from the upper bound of sacn p˚q for k “ 3 in Theorem 6.1, whose initial terms are 1, 2, 9, 40, 155,
546, 1813, 5804, 18159. One can check that SC64 satisfies at least the four identities below.

wpxpyzqq « wpypxzqq, wppxyqzq « wppzyqxq, ppwxqyqz « ppwzqyqx, vpwppxyqzqq « vpppwxqyqzq

But these identities seem unrelated to the left/right depth modulo k “ 3.

The first author, Mickey, and Xu [7] used the depth to find the associative spectrum of the double minus
operation a ˚ b :“ ´a ´ b, and we determined the ac-spectrum of this operation in previous work [6]. Both
proofs are valid for any field with at least three elements, giving the following result.

Theorem 6.3 ([7]). Suppose that two terms s, t P Fn induce the same n-ary operation on a groupoid pG, ˚q
whenever dipsq ” diptq pmod 2q for i “ 1, . . . , n. Then sanp˚q ď t2n{3u and sacn p˚q ď p2n ´ p´1qnq{3 for
n “ 1, 2, . . ., where the first equality holds as an equality if the second one does. Moreover, both upper bounds
are reached if “whenever” can be replaced with “if and only if” in the above condition. In particular, both upper
bounds are achieved by the double minus operation on any field with at least three elements.

The two upper bounds in the above theorem are both well studied [13, A000975, A001045] from many other
perspectives; the latter is known as the Jacobsthal sequence. The double minus operation on a field of three
elements is actually the 3-element groupoid SC2346.

˚ 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

SC2346
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To generalize the above theorem, one could use a primitive root of unity ω :“ e2πi{k to define an operation
a ˚ b :“ ωa` ωb on the field of complex numbers, which reduces to the double minus operation when k “ 2; for
k ě 3, the n-th term of the associative spectrum was shown in [10] to coincide with the number of equivalence
classes of the equivalence relation on n-leaf binary trees that relates two trees if the depths of corresponding
leaves are congruent modulo k. Closed formulas for the associative spectrum and the ac-spectrum of this
operation are yet to be determined.

7. Questions and remarks

We have some more questions other than those in the last section. Our computations suggest that a majority
of the 3330 non-isomorphic 3-element groupoids have their ac-spectrum reaching the upper bound n!Cn´1 and
thus have their associative spectrum reaching the upper bound Cn´1. Some other 3-element groupoids have
smaller spectra, including those given earlier in this paper as examples for various upper bounds to be sharp.
We also have computational data on the spectra of several other 3-element groupoids but do not have any
general result on them.

For instance, our computations show that the first several terms of the associative spectrum and ac-spectrum
of each of the following groupoids are 1, 1, 2, 5, 12, 28, 65, 151, 351 and 1, 2, 12, 96, 880, respectively; the former
agrees with the initial terms of a trisection of the Padovan sequence [13, A034943].

˚ 0 1 2
0 0 0 0
1 1 1 0
2 1 0 1

˚ 0 1 2
0 0 0 1
1 1 1 0
2 1 0 0

˚ 0 1 2
0 0 1 1
1 0 1 0
2 0 0 1

˚ 0 1 2
0 0 1 1
1 0 1 0
2 1 0 0

SC258 SC685 SC1594 SC1600

It is clear that SC258 and SC685 are anti-isomorphic to SC1594, SC1600, respectively. One can check that
SC258 and SC685 both satisfy at least the following identities.

pwxqpyzq « pwxqpzyq, ppwxqyqz « ppwxqzqy, pvwqpxpyzqq « pvwqppxyqzq, vppwxqpyzqq « pvpwxqqpyzq

Next, consider the following 3-element groupoids.

˚ 0 1 2
0 0 0 2
1 2 0 2
2 2 2 0

˚ 0 1 2
0 0 0 2
1 2 2 0
2 2 0 0

˚ 0 1 2
0 0 1 1
1 1 0 0
2 0 0 1

˚ 0 1 2
0 0 1 1
1 1 0 1
2 0 1 0

SC1414 SC1477 SC1693 SC1717

There is an anti-isomorphism between SC1414 and SC1717 and between SC1477 and SC1693 by swapping 1
and 2. It is routine to check that SC1414 and SC1693 both satisfy the identities pwxqpyzq « pyzqpwxq and
ppwxqyqz « ppwxqzqy. Computations show that the first several terms of its associative spectrum and ac-
spectrum are 1, 1, 2, 5, 13, 35, 97, 275, 794, 2327 and 1, 2, 12, 96, 980; the former matches with the initial terms of
a generalized Catalan number [13, A025242], which counts Dyck paths of length 2n avoiding UUDD.

Computations also show that the first several terms of the associative spectrum and ac-spectrum of the fol-
lowing two anti-isomorphic groupoids are 1, 1, 2, 5, 14, 42, 132, 429, 1430 and 1, 2, 12, 108, 1340; the former agrees
with Cn´1 while the latter is less than n!Cn´1.

˚ 0 1 2
0 0 0 0
1 1 0 1
2 1 1 1

˚ 0 1 2
0 0 1 1
1 0 0 1
2 0 1 1

SC229 SC1553

One can check that SC229 satisfies the identity ppwxqyqz « ppwxqzqy.
It would be nice if the associative spectra and ac-spectra of the above 3-element groupoids (or even better,

groupoids satisfying the same identities as the above groupoids) could be determined.
Another question is about the arithmetic mean on R. Csákány and Waldhauser [3] showed that its associative

spectrum is Cn´1. In previous work [6], we showed that its ac-spectrum is the number of ways to write 1 as
an ordered sum of n powers of 2 [13, A007178]. It would be interesting to find the identities that could be
used to characterize all the groupoids whose associative spectra and ac-spectra are bounded by the above and
if possible, find a 3-element groupoid to achieve the upper bounds.

Lastly, we provide a generalization of a result in our earlier work [6], which asserts that an associative
groupoid pG, ˚q must have sacn p˚q ď n! and this upper bound holds as an equality if pG, ˚q is noncommutative
and has an identity element.
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Theorem 7.1. For any groupoid pG, ˚q, we have sacn p˚q ď n! ¨ sanp˚q. Moreover, this inequality holds as an
equality if pG, ˚q is noncommutative and has an identity element.

Proof. For a bracketing t P Bn and a permutation σ P Sn, let t denote the full linear term obtained by replacing
the variable xi with xσpiq for all i P t1, . . . , nu. Consider two full linear terms in Fn; they can be written as sσ
and tτ , where s, t P Bn and σ, τ P Sn. It is clear that if σ “ τ , then psσq

˚ “ ptτ q
˚ if and only if s˚ “ t˚. The

inequality sacn p˚q ď n! ¨ sanp˚q follows immediately from this fact.
Assume now that pG, ˚q is noncommutative and has a neutral element 0. Then there are elements a, b P G

such that a ˚ b ‰ b ˚ a. Assume that σ ‰ τ . Then there exist i, j P t1, . . . , nu such that σ´1piq ă σ´1pjq and
τ´1piq ą τ´1pjq. Let h : Xn Ñ G be the assignment xi ÞÑ a, xj ÞÑ b and x ÞÑ 0 for all x P Xnztxi, xju. It is
easy to see that hpsσq “ a ˚ b and hptτ q “ b ˚ a; hence psσq

˚ ‰ ptτ q
˚. We conclude that psσq

˚ “ ptτ q
˚ if and

only if s˚ “ t˚ and σ “ τ , and the equality sacn p˚q “ n! ¨ sanp˚q follows.

It would be nice to find a sufficient and necessary condition for the upper bound in Theorem 7.1 to hold as
an equality.
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