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Abstract: Instead of k-Dyck paths we consider the equivalent concept of k-non-crossing trees. This is our
preferred approach relative to down-step statistics modulo k (first studied by Heuberger, Selkirk, and Wagner
by different methods). One symmetry argument about subtrees is needed and the rest goes along the lines of a
paper by Flajolet and Noy.
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1. Non-crossing trees revisited

Assume that the nodes 1, . . . , n are arranged in a circle, call node 1 the root, and draw a tree using line segments
such that no crossings occur. These objects are called non-crossing trees. We only cite [3] and our own [8],
but there is much more literature that is not difficult to find. Every node except for the root has two types of
successors: left ones and right ones. See [3, 8]. Sometimes this is drawn as two trees that share a root node
(‘butterfly’); corresponding drawings are found in many papers on the subject.
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Figure 1: A non-crossing tree with 10 nodes and separators indicating where the non-root nodes split into the
left part and the right part.

It is interesting to note that even trees as in [1] are a similar concept to non-crossing trees.
We enumerate non-crossing trees with n nodes and j left and n−1−j right edges. Clearly, the total number

of edges is n− 1. As one can see, the distribution isn’t fair, as the root has all these right edges as successors.
We will use several variables: z for the number of nodes and ` and r for the two types of edges. We will use
the butterfly decomposition due to Flajolet and Noy [3].



Helmut Prodinger

1

5 9

103

42

6 7 8

Figure 2: Left resp. right edges are depicted in different colors; by design, the edges emanating from the root
are all right edges.

T =
z

1−B
, B =

T 2

z
;

T stands for tree and B, which is only an auxiliary quantity, for butterfly. We prefer to use the letter F instead
of T . However, because of the anomaly of the root, we temporarily make B the center of interest:

B =
F 2

z
=

z

(1−B)2
.

Using the substitution z = v(1 − v)2, this can be solved, and the relevant solution is just B = v, and further
F
z = 1

1−v . This can be extended with our extra variables ` and r:

B =
z

(1− `B)(1− rB)
,

then z = v(1− `v)(1− rv) and B = v and F
z = 1

1−rB = 1
1−rv . Now we read off coefficients:

[zn]F = [zn−1]
F

z
= [zn−1]

1

1− rv
=

1

n− 1
[zn−2]

d

dz

1

1− rv

=
1

n− 1
[zn−2]

dv

dz

d

dv

1

1− rv

=
1

n− 1
[zn−2]

1

1− 2`v − 2rv + 3`rv2
r

(1− rv)2

=
1

n− 1

1

2πi

∮
dz

zn−1
1

1− 2`v − 2rv + 3`rv2
r

(1− rv)2

=
1

n− 1

1

2πi

∮
dv

vn−1(1− `v)n−1(1− rv)n−1
r

(1− rv)2

=
r

n− 1
[vn−2]

1

(1− `v)n−1(1− rv)n+1
.

As we can see, it is unnecessary to explicitly compute dv
dz as it cancels out anyway. This will be very beneficial

in the following sections. Furthermore,

[zn`jrn−1−j ]F = [vn−2`jrn−2−j ]
1

n− 1

1

(1− `v)n−1(1− rv)n+1

=
1

n− 1

(
n− 2− j

j

)(
2n− 2− j
n− 2− j

)
.

This is the number of non-crossing trees with n nodes, j left edges, and n− 1− j right edges.
Recently, I detected a paper [7] with a similar title to ours; otherwise, there were not too many similarities.
Another paper of interest was pointed out by a referee: [6], which has a functional equation for a trivariate

generating function related to descents in non-crossing trees, as well as some bijections.
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2. An application

Lattice paths and certain types of trees are intimately related, and sometimes it is easier to analyze the trees
instead of the paths, an example being [2, 9]. This will also happen here, as we will use the analysis of non-
crossing trees from the introductory section to lattice paths.

We transform non-crossing trees into so-called 2-Dyck paths: Up-steps (1, 1) are as usual, but there are
down-steps (1,−2) of two units. Otherwise, the path must be non-negative and eventually return to the x-
axis. For this transformation, we walk around the tree and translate down-steps into up-steps and vice versa.
However, we need extra up-steps to keep the balance. For that, we use the separators, and also draw them for
end-nodes, so that there are n− 1 such separator markers present. Then, whenever we meet one, we also make
an up-step.

In the example, we get the path in Figure 3.
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Figure 3: A non-crossing tree and the corresponding 2-Dyck path.

Note that n nodes of the tree correspond to n − 1 down-steps. More such considerations can be found
in [4, 10,11].

The goal is to match the brown down-steps to the left edges, say. In particular, the interest is, on which
level modulo k they land (or, equivalently, start). First, the tree needs to be modified. The reason is this
decomposition in Figure 5. Indeed, T1 “sits” on level 1 (odd) but a subtree of T1 “sits” on level 2 (even). So we
need to swap subtrees in such a case. The next section will provide more details. Physically, it is not necessary
to swap subtrees, all that needs to be controlled is how the formal variables `,m, r are attached to the subtrees.

3. Generalization

Instead of down-steps of two units and one separator, this works as well for down-steps (1,−k) and k − 1
separators. Here (Figure 6) is a 3-Dyck path: 6 down-steps land on level 0 (mod 3), 1 on level 1 (mod 3), and
3 on level 2 (mod 3). The butterfly equation is

B =
F k

z
=

z

(1− r1B) . . . (1− rkB)
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Figure 4: Transforming the tree. The number of green edges corresponds to the brown down-steps.

· · ·
· · ·

· · ·

T1 T2

Figure 5: The decomposition of a 2-Dyck path.

with variables r1, . . . , rk to count the down-steps ending (or beginning) on a level ≡ i (mod k). Eventually
F = z

1−rkB . For the solution, the substitution z = v(1 − r1v) . . . (1 − rkv) works, and B = v, and thus
F
z = 1

1−rkv .
Reading off coefficients is similar to the previous case k = 2:

[zn]F = [zn−1]
F

z
=

1

n− 1
[zn−2]

d

dz

F

z

=
1

n− 1
[zn−2]

dv

dz

d

dv

F

z
=

1

n− 1
[zn−2]

dv

dz

rk
(1− rkv)2

=
1

n− 1

1

2πi

∮
dz

zn−1
dv

dz

rk
(1− rkv)2

=
1

n− 1

1

2πi

∮
dv

vn−1(1− r1v)n−1 . . . (1− rkv)n−1
rk

(1− rkv)2

=
1

n− 1
[vn−2]

rk
(1− r1v)n−1 . . . (1− rk−1v)n−1(1− rkv)n+1

.

Furthermore (with a1 + · · ·+ ak = n− 1)

[znra1
1 . . . rak

k ]F =
1

n− 1
[vn−2ra1

1 . . . rak

k ]
rk

(1− r1v)n−1 . . . (1− rk−1v)n−1(1− rkv)n+1

=
1

n− 1
[vn−2ra1

1 . . . rak−1
k ]

1

(1− r1v)n−1 . . . (1− rk−1v)n−1(1− rkv)n+1

=
1

n− 1

(
n− 2 + a1

a1

)
. . .

(
n− 2 + ak−1

ak−1

)(
n− 1 + ak
ak − 1

)
.

This is the formula in Theorem 6 in [5], for t = 0, and n → n + 1. For more general −k < −t ≤ 0 (⇔ 0 ≤
t < k), we will work this out in the next section.
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Figure 6: A 3-Dyck path. 6 down-steps land on level 0 ( mod 3), 1 on level 1 ( mod 3), and 3 on level 2 ( mod 3)

The modification of the tree (rotation of the subtrees, from top to bottom, so that the down-step enumeration
matches the edge enumeration) is as follows (for k = 3)

⇒ ⇒ ⇒

It is easy to figure out how this works more generally for k successors instead of 3. It is always a cyclic shift,
by k − 1, k − 2, . . . , 0 positions, depending on the edge we are considering.

The following differentiation will be used in the sequel. It is just the differentiation of a product, as usual.

d

dv

k∏
j=k−t

1

1− rjv
=

k∏
j=k−t

1

1− rjv
·

k∑
i=k−t

ri
1− riv

.

Our strategy is to bijectively map k-Dyck paths bounded below by y = −t into t + 1 k-non-crossing trees of
altogether n− t− 1 edges and the special symbol attached to the root varies from rk, rk−1 . . . to rk−t. Figure 7
shows a small example and more examples are in [10]. Then

[zn]F = [zn−t−1]
F

zt+1
= [zn−t−1]

k∏
j=k−t

1

1− rjv
=

1

n− t− 1
[zn−t−2]

d

dz

k∏
j=k−t

1

1− rjv

=
1

n− t− 1
[zn−t−2]

dv

dz

k∏
j=k−t

1

1− rjv
·

k∑
i=k−t

ri
1− riv

=
1

n− t− 1

1

2πi

∮
dz

zn−t−1
dv

dz

k∏
j=k−t

1

1− rjv
·

k∑
i=k−t

ri
1− riv

=
1

n− t− 1

1

2πi

∮
dv

vn−t−1(1− r1v)n−t−1 . . . (1− rkv)n−t−1

k∏
j=k−t

1

1− rjv
·

k∑
i=k−t

ri
1− riv

=
1

n− t− 1

1

2πi

∮
dv

vn−t−1
∏k−t−1

h=1 (1− rhv)n−t−1
∏k

`=k−t(1− r`v)n−t

k∑
i=k−t

ri
1− riv

=
1

n− t− 1
[vn−t−2]

1∏k−t−1
h=1 (1− rhv)n−t−1

∏k
`=k−t(1− r`v)n−t

k∑
i=k−t

ri
1− riv

.

Furthermore (a1 + · · ·+ ak = n− t− 1)

[znra1
1 . . . rak

k ]F

=
1

n− t− 1
[vn−t−2ra1

1 . . . rak

k ]

k∑
i=k−t

ri∏k−t−1
h=1 (1− rhv)n−t−1

∏k
`=k−t(1− r`v)n+[i=`]−t

=
1

n− t− 1

k∑
i=k−t

k−t−1∏
h=1

(
n− t− 2 + ah

ah

) k∏
`=k−t

(
n+ [i = `]− t− 1 + a` − [i = `]

a` − [i = `]

)

=
1

n− t− 1

k∑
i=k−t

k−t−1∏
h=1

(
n− t− 2 + ah

ah

) k∏
`=k−t

(
n− t− 1 + a`
a` − [i = `]

)

=
1

n− t− 1

k∑
i=k−t

ai
n− t

k−t−1∏
h=1

(
n− t− 2 + ah

ah

) k∏
`=k−t

(
n− t− 1 + a`

a`

)
.
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The formula looks better when n− t− 1 = N ; then it compares and matches with the formula from [5]

ak−t + · · ·+ ak
N(N + 1)

k−t−1∏
h=1

(
N − 1 + ah

ah

) k∏
`=k−t

(
N + a`
a`

)
.

Figure 7: Decomposition of paths bounded by the line y = −1 into two paths.
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