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Abstract: We derive a path counting formula for two-dimensional lattice path model on a plane with filter
restrictions. A filter is a line that restricts the path passing it to one of possible directions. Moreover, each
path that touches this line is assigned a special weight. The periodic filter restrictions are motivated by the
problem of tensor power decomposition for representations of quantum sl2 at roots of unity. Our main result
is the explicit formula for the weighted number of paths from the origin to a fixed point between two filters in
this model.
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Introduction

Counting lattice paths is one of the central problems in combinatorics [10]. It provides a powerful tool for the
problems arising in representation theory of Lie algebras such as counting lattice paths in Weyl chambers [8,9,18].
In this paper, we count paths on Bratteli diagram [4] with restrictions of two types which we call filters. This
problem is motivated by the structures arising in representation theory of quantum groups at roots of unity [2,15].
The lattice path model explored in the present paper serves as a prototype for models, where weighted numbers
of paths reproduce recurrence relations for multiplicities in tensor product decomposition of representations for
different versions of quantized universal enveloping algebras of Lie algebra sl2 at roots of unity, mainly, Uq(sl2)
with divided powers and small quantum group uq(sl2). The full treatment of representation-theoretic part and
asymptotic analysis will be carried out in [11].
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Figure 1: Bratteli diagram and a lattice path.
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An example of a path on Bratteli diagram is shown in Figure 1. It is well known that if there is no constraint
for paths to go to negative M then the number of lattice paths arriving at point (M,N) from (0, 0) is(

N
N−M

2

)
for N ≥ M ≥ 0. Since in Bratteli diagram paths can not go into the region with M < 0 the number of paths
arriving to point (M,N) from the origin is given by the reflection principle (see Section 4.1):(

N
N−M

2

)
−
(

N
N−M

2 − 1

)
.

A similar method was introduced by André [1] in 19th century to solve the two-candidate ballot problem by
counting unfavorable records and subtracting them from the total number of records. The term ’reflection
principle’ was attributed to André in the books of M. Feller [6] and J. L. Doob [5]. For the detailed history
of the reflection principle, see [14]. The reflection principle has been one of the key elements in various lattice
path models providing explicit enumerative formulas. It was generalized by Gessel and Zeilberger [7] to lattice
walks on Weyl chambers, which are the regions preserved under the actions of Weyl reflection groups. The
above-mentioned case corresponds to counting paths in Weyl chamber of type A1.

In this paper, we will introduce a class of restrictions on paths on lattice L = {(n,m)|n+m = 0 mod 2} ⊂ Z2

motivated by tensor product rule of indecomposable modules of Uq(sl2) with divided powers and small quantum
group uq(sl2). Our main result is the explicit formula for the number of lattice paths with periodic filter
restrictions.

The paper is organized as follows. In Sections 1, 2, and 3 we give the description of the lattice path model
and formulate the main theorem. In Section 4 we define wall and filter restrictions and recall the reflection
principle. In Section 5 we will reduce the problem of counting paths between the wall and the filter to a problem
of counting paths between two lines. In Sections 6, 7 we will prove theorems for path counting in the presence
of two filters and two filters together with the wall. The proof of the main theorem is given in Section 8. In
Section 9 we hint at possible applications of considered lattice path models to representation theory of quantum
groups at roots of unity.

1. Notations

In this paper, we will use notations following [10]. Throughout this paper, we will be considering the lattice

L = {(n,m)|n+m = 0 mod 2} ⊂ Z2,

and the set of steps S = SL ∪ SR, where

SR = {(x, y)→ (x+ 1, y + 1)}, SL = {(x, y)→ (x− 1, y + 1)}.

A lattice path P in L is a sequence P = (P0, P1, . . . , Pm) of points Pi = (xi, yi) in L with starting point P0 and
the endpoint Pm. The pairs P0 → P1, P1 → P2 . . . Pm−1 → Pm are called steps of P.

Given starting point A and endpoint B, a set S of steps and a set of restrictions C we write

L(A→ B | C)

for the set of all lattice paths from A to B that have steps from S and obey the restrictions from C. Since we
only consider the set of steps S we will omit it from the notations. We will denote the number of paths in this
set as

|L(A→ B | C)|.
The set of restrictions C that are considered will be called ”filter restrictions” because they forbid steps in

certain directions and provide other steps with nonuniform weights. To each step from (x, y) to (x̃, ỹ) we will

assign the weight function ω : S −→ R>0 and use notation (x, y)
ω−→ (x̃, ỹ) to denote that the step from (x, y)

to (x̃, ỹ) has the weight ω. By default, all unrestricted steps from S will have weight 1 and will denoted by an
arrow with no number at the top. The weight of a path P is defined as the product

ω(P) =

m−1∏
i=0

ω(Pi → Pi+1).

For the set L(A→ B | C) we define the weighted number of paths as

Z(L(A→ B | C)) =
∑
P
ω(P),
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where the sum is taken over all paths P ∈ L(A → B | C). This is a partition function of a random walk
originating in A and ending at B with

Prob(P) =
ω(P)

Z(A→ B | C)
.

When ω(s) = 1 for all of the allowed steps,

Z(L(A→ B;S | C)) = |L(A→ B;S | C)|.

2. Main theorem

We will be interested in counting weighted number of paths in the set of paths on L with steps from S that
start at (0, 0) and end at (M,N) in the presence of the arrangement of restrictions which we will call the left
wall restriction WL

0 , the filter restriction F1
l−1 of type 1 and the filter restrictions F2

nl−1 of type 2, where l is
a fixed parameter l ∈ Z ≥ 2, and n = 2, 3, . . . (see Figure 2). The upper index denotes the type of restriction
and the lower index denotes its position on L. We will denote this set of paths by

LN ((0, 0)→ (M,N) | WL
0 ,F1

l−1, {F2
(n+1)l−1}, n ∈ Z+).

The left wall restriction WL
0 is located at x = 0 and implies that at points (0, y) only one step is allowed:

WL
0 = {(0, y)→ (1, y + 1)}.

The filter restriction F1
l−1 of type 1 is located at x = l−1 and implies that at x = l−1, l only the following

steps are allowed:

F1
l−1 = {(l − 1, y)→ (l, y + 1), (l, y + 1)→ (l + 1, y + 2), (l, y + 1)

2−→ (l − 1, y + 2)}.

The filter restriction F2
nl−1 of type 2 is located at x = nl− 1 and implies that at x = nl− 2, nl− 1, nl only

the following steps are allowed:

F2
nl−1 = {(nl − 2, y − 1)

2−→ (nl − 1, y), (nl − 2, y − 1)→ (nl − 3, y),

(nl − 1, y)→ (nl, y + 1), (nl, y + 1)→ (nl + 1, y + 2), (nl, y + 1)
2−→ (nl − 1, y + 2)}.

We will denote by multiplicity function in the j-th strip the weighted number of paths in this set with the
endpoint (M,N) that lies within (j − 1)l − 1 ≤M < jl − 2

M j
(M,N) = Z(LN ((0, 0)→ (M,N) | WL

0 ,F1
l−1, {F2

(n+1)l−1}, n ∈ Z+)),

where M ≥ 0, j ≥ 2 and j =
[
M+1

l + 1
]
.

The main result is the Theorem 8.1:

Theorem. The multiplicity function in the j-th strip is given by

M j
(M,N) = 2j−2

( [N−(j−1)l+1
4l

]∑
k=0

Pj(k)F
(N)
M+4kl +

[
N−jl

4l

]∑
k=0

Pj(k)F
(N)
M−4kl−2jl −

−

[
N−(j+1)l+1

4l

]∑
k=0

Qj(k)F
(N)
M+2l+4kl −

[
N−(j+2)l

4l

]∑
k=0

Qj(k)F
(N)
M−4kl−2(j+1)l

)
,

where

Pj(k) =

[
j
2

]∑
i=0

(
j − 2

2i

)(
k − i+ j − 2

j − 2

)
, Qj(k) =

[
j
2

]∑
i=0

(
j − 2

2i+ 1

)(
k − i+ j − 2

j − 2

)
,

F
(N)
M =

(
N

N−M
2

)
−
(

N
N−M

2 − 1

)
.
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. . .

(0, 0)

F1
l−1 F2

2l−1 F2
3l−1

Figure 2: The arrangement of restrictions on L: the wall WL
0 , the filters F1

l−1 and the filters F2
nl−1, where

n = 2, 3, . . . and l = 5. Red arrows correspond to steps with weight 2.

3. Unrestricted lattice paths

In this section, we will recall general formulas for unrestricted paths counting. For further details see [10].
Below we will use the notation

L(A→ B)

for the set of unrestricted paths from A to B on L with the set of steps S. An example of unrestricted path on
L is shown in Figure 3.

(x, y) = (0, 0)

(1, 1)(−1, 1)

(M,N)

Figure 3: Path in L((0, 0)→ (M,N)).

Lemma 3.1. The number of paths in the set L((0, 0)→ (M,N)) is given by

|L((0, 0)→ (M,N))| =
(

N
N−M

2

)
.

Proof. |L((0, 0)→ (M,N))| satisfies the same recurrence relations and initial conditions as
(

N
N−M

2

)
.

Due to the translation invariance, we can also count lattice paths originated at the point (i, j) because we
have a natural bijection:

L((0, 0)→ (M,N)) ' L((i, j)→ (M + i,N + j)).
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Therefore
|L((0, 0)→ (M,N))| = |L((i, j)→ (M + i,N + j))|.

4. Counting paths with one restriction

In this section, we will count the number of paths from A to B on L with the set of steps S with one restriction
C. Denote such set of paths as

L(A→ B| C).

4.1 Wall restriction

Definition 4.1. For lattice paths that start at (0, 0) we will say that WL
d with d ≤ 0 is a left wall restriction

(relative to x = 0) if at points (d, y) paths are allowed to take steps of type SR only:

WL
d = {(d, y)→ (d+ 1, y + 1)}.

Similarly, we will say that WR
d with d ≥ 0 is a right wall restriction (relative to x = 0) if in points (d, y)

paths are allowed to take steps from SL only:

WR
d = {(d, y)→ (d− 1, y + 1)}.

Lemma 4.1. The number of paths from (0, 0) to (M,N) with the set of steps S and one wall restriction WL
a

or WR
b can be expressed via the number of unrestricted paths as

|L((0, 0)→ (M,N) | WL
a )| =

(
N

N−M
2

)
−
(

N
N−M

2 + a− 1

)
, for M ≥ a, (1)

|L((0, 0)→ (M,N) | WR
b )| =

(
N

N−M
2

)
−
(

N
N−M

2 + b+ 1

)
, for M ≤ b. (2)

Proof. Let us give a brief proof of the first statement via the reflection principle [10]. The proof of the second
statement is completely similar.

In order to enumerate |L((0, 0)→ (M,N) | WL
a )| we embed it into the bigger set of unrestricted paths with

steps SR ∪ SR which originate at (0, 0) and (2(a− 1), 0) as is shown in Figure 4.

(x, y) = (0, 0)

(1, 1)(−1, 1)

(2(a− 1), 0)

x = ax = a− 1

WL
a

(M,N)

Figure 4: Counting paths with the wall restriction. The initial path P(red) and partially reflected path
φP(green).

Unrestricted path P originating at (0, 0) will either be reflected from WL
a or will cross the line x = a to the

left. If P crosses the wall, define by φP the path which coincides with P after the first wall crossing and its part
before the first crossing is reflected with respect to the line x = a− 1. The path φP originates at (2(a− 1), 0).

The set L((0, 0)→ (M,N)) of unrestricted paths is the disjoint union

L((0, 0)→ (M,N)) = S+ t S−, (3)

where S+ are the paths with wall restriction WL
a and S− are the paths crossing the wall. By the observation

above we can identify
φS− = L((2(a− 1), 0)→ (M,N)),
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and therefore

|S−| = |φS−| = |L((2(a− 1), 0)→ (M,N))| =
(

N
N−M

2 + a− 1

)
.

The formula (3) implies that
|S+| = |L((0, 0)→ (M,N))| − |S−|.

and thus we have proved (1). The proof of (2) is completely parallel.

4.2 Filter restriction of type 1

Definition 4.2. We will say that there is a filter F1
d of type 1, located at x = d if at x = d, d + 1 only the

following steps are allowed:

F1
d = {(d, y)→ (d+ 1, y + 1), (d+ 1, y + 1)→ (d+ 2, y + 2), (d+ 1, y + 1)

2−→ (d, y + 2)}.

The index above the arrow is the weight of the step. By default, an arrow with no number at the top means that
the corresponding step has weight 1.

. . .

F1
d

. . .

Figure 5: Filter F1
d . Red arrows correspond to step (d+ 1, y+ 1)

2−→ (d, y+ 2) that has a weight 2. Other steps
have weight 1.

Lemma 4.2. The number of lattice paths from (0, 0) to (M,N) with steps from S and filter restriction F1
d with

x = d > 0 is

|LN ((0, 0)→ (M,N) | F1
d )| =

(
N

N−M
2

)
−
(

N
N−M

2 + d

)
, for M < d.

In other words, the number of paths that start at point (0, 0) to the left of F1
d and end at point (M,N) to the

left of F1
d is equal to the number of paths from (0, 0) to (M,N) with right wall restriction WR

d−1.

Proof. We proceed by the reflection principle similarly to the proof of Lemma 4.1. The step that is forbidden
by the filter is (d, y) −→ (d − 1, y + 1). Hence, any path that crosses the axis x = d can not return back to the
region x < d. To count these paths we establish a bijection between them and paths starting at (2d, 0). We do
so by reflecting the portion of each path until its first arrival at x = d and leaving the other part unchanged.
These paths need to be excluded from the total number of unrestricted paths, therefore

|LN ((0, 0)→ (M,N) |F1
d )| = |LN ((0, 0)→ (M,N) | − |LN ((2d, 0)→ (M,N) | =

=

(
N

N−M
2

)
−
(

N
N−M

2 + d

)
.

Lemma 4.3. The weighted number of lattice paths from (0, 0) to (M,N) with steps from S and filter restriction
F1

d with d > 0 is

Z(LN ((0, 0)→ (M,N) | F1
d )) =

(
N

N−M
2

)
, for M ≥ d.

In other words, the weighted number of paths that start at point (0, 0) to the left of F1
d and end at point (M,N)

to the right of F1
d is equal to the number of unrestricted paths from (0, 0) to (M,N).
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Proof. For brevity denote X = LN ((0, 0)→ (M,N) | F1
d ), where M ≥ d. Define

ψ : X → LN ((0, 0)→ (M,N))

that acts on a path Pm ∈ X which has m steps (d + 1, y + 1)
2−→ (d, y + 2) and a weight 2m and produces 2m

paths in the set of unrestricted paths LN ((0, 0)→ (M,N);S) that have weight 1:

ψ(Pm) = {P1
1 , . . . ,P2m

1 }.

First, it reflects a portion of Pm between its two last visits to x = d and produces two paths with weight 2m−1.
Then we do the same to these two paths, where the next portions of such paths are reflected in a similar manner.
We repeat this procedure until all of the produced paths are of weight 1. An example of this procedure for
m = 1 is depicted in Figure 6.

(0, 0) (0, 0)

F1
d

Figure 6: Counting weighted paths that start on the left of F1
d and end on the right of F1

d via counting
unrestricted paths.

The paths P̃ that do not contain the step (d+ 1, y + 1)
2−→ (d, y + 2) will not be reflected:

ψ(P̃) = P̃.

From the result of this procedure we can see that the problem of finding the weighted number of paths Z(X) is
equal to counting the number of non-weighted paths in an unrestricted case (without the filter F1

d ), therefore

Z(X) = |LN ((0, 0)→ (M,N))| =
(

N
N−M

2

)
.

Lemma 4.4. The weighted number of lattice paths from (0, 0) to (M,N) with steps from S and filter restriction
F1
−d with d ≥ 0 is

Z(LN ((0, 0)→ (M,N) | F1
−d)) =

(
N

N−M
2

)
+

(
N

N−M
2 + d

)
, for M ≥ −d.

In other words, the weighted number of paths that start at point (0, 0) to the right of F1
−d and end at point

(M,N) to the right of F1
−d is equal to the number of unrestricted paths from (0, 0) to (M,N) and from (−2d, 0)

to (M,N).

Proof. Similar to Lemma 4.3.

4.3 Filter restriction of type 2

Definition 4.3. We will say that there is a filter F2
d of type 2, located at x = d if at x = d− 1, d, d+ 1 only

the following steps are allowed:

F2
d = {(d− 1, y − 1)

2−→ (d, y), (d− 1, y − 1)→ (d− 2, y),

(d, y)→ (d+ 1, y + 1), (d+ 1, y + 1)→ (d+ 2, y + 2), (d+ 1, y + 1)
2−→ (d, y + 2)}.

The index above the arrow is the weight of the step. By default, an arrow with no number at the top means that
the corresponding step has weight 1.

ECA 4:4 (2024) Article #S2R31 7
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. . .

. . .

F2
d

Figure 7: Filter F2
d . Red arrows correspond to steps that have a weight 2. Other steps have weight 1.

Lemma 4.5. The number of lattice paths from (0, 0) to (M,N) with steps from S and filter restriction F2
d is

|LN ((0, 0)→ (M,N) | F2
d )| =

(
N

N−M
2

)
−
(

N
N−M

2 + d

)
, for M < d.

In other words the number of paths that start at point (0, 0) to the left of F2
d and end at point (M,N) to the

left of F2
d is equal to the number of paths from (0, 0) to (M,N) with right wall restriction WR

d−1.

Proof. Similar to Lemma 4.2.

Lemma 4.6. The weighted number of lattice paths from (0, 0) to (M,N) with steps from S and filter restriction
F2

d is

Z(LN ((0, 0)→ (M,N) | F2
d )) = 2

(
N

N−M
2

)
, for M > d.

In other words, the weighted number of paths that start at point (0, 0) to the left of F2
d and end at point (M,N)

to the right of F2
d is equal to the double number of unrestricted paths from (0, 0) to (M,N).

Proof. Similar to Lemma 4.3.

Lemma 4.7. The weighted number of lattice paths from (0, 0) to (M,N) with steps from S and filter restriction
F2
−d is

Z(LN ((0, 0)→ (M,N) | F2
−d)) =

(
N

N−M
2

)
+

(
N

N−M
2 + d

)
, for M ≥ −d

In other words, the weighted number of paths that start at point (0, 0) to the right of F2
−d and end at point

(M,N) to the right of F2
−d is equal to the number of unrestricted paths from (0, 0) to (M,N) and from (−2d, 0)

to (M,N).

Proof. Similar to Lemma 4.4.

5. Counting paths with wall and one filter restriction

In this section we will give a formula for the number of weighted paths with the left wall restrictionWL
0 located

at x = 0 and the type 1 filter restriction F1
d located at d = l − 1. Theorem 5.1 gives the number of paths that

end to the left of the filter and Theorem 5.2 gives the number of paths that end to the right of the filter. The
resulting formula can be easily generalized to the arbitrary location of the wall and the filter.

Let us denote by
LN ((0, 0)→ (M,N) | WL

0 ,F1
l−1)

the set of paths on L that start at (0, 0) and end at (M,N) in the presence of the wall WL
0 and the filter F1

l−1.

We will denote by F
(N)
M the number of paths from (0, 0) to (M,N) with the wall restriction WL

0 located at
x = 0. Due to Lemma 4.1:

F
(N)
M =

(
N

N−M
2

)
−
(

N
N−M

2 − 1

)
.

ECA 4:4 (2024) Article #S2R31 8
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Theorem 5.1. The number of lattice paths from (0, 0) to (M,N) with steps from S and with the wall restriction
WL

0 and the filter restriction F1
l−1 when 0 ≤M ≤ l − 2 is given by

|LN ((0, 0)→ (M,N) | WL
0 ,F1

l−1)| = F
(N)
M +

[
N
2l+

1
2

]∑
k=1

F
(N)
M−2kl +

[
N
2l

]∑
k=1

F
(N)
M+2kl. (4)

Proof. The paths that we are going to count start to the left and end to the left of the filter F1
l−1. In this

case filter restriction at x = l − 1 is equivalent to the wall restriction at x = l − 2 according to Lemma 4.2,
so |LN ((0, 0) → (M,N) | WL

0 ,F1
l−1)| = |LN ((0, 0) → (M,N) | WL

0 ,WR
l−2|. Therefore we can use the Gessel-

Zeilberger reflection principle [7]. The proof of this result is presented in [10]. For reader’s convenience we will
repeat the proof of this fundamental result using slightly different notations below.

Let us denote by W the group W = {w1, w2 | w2
1 = w2

2 = id}, generated by w1 (the reflection w.r.t. x = −1)
and w2 (the reflection w.r.t. x = l−1)and byH = {x = −1, x = l−1} the set of reflection axes∗. The assignment
sgn(w1) = sgn(w2) = −1 defines a signature character on W , sgn(w) = sgn(w1)n1sgn(w2)n2 , where ni is the
number of occurrences of wi in W . It is easy to check that sgn(w) does not depend on the decomposition of w
in the product of generators and that sgn(w)(w′) = sgn(w)sgn(w′).

We will denote the set of paths from point A to point B that stay between axes H as the set of ”good”
paths:

Lg
N (A→ B).

We will denote the paths from point A to point B that visit any of the axes H as the set of ”bad” paths:

Lb
N (A→ B).

It is clear that to count the good paths from (0, 0) to (M,N) we can remove bad paths from the set of unrestricted
paths:

|Lg
N ((0, 0)→ (M,N))| = |LN ((0, 0)→ (M,N))| − |Lb

N ((0, 0)→ (M,N))|. (5)

To obtain expression for |Lb
N ((0, 0)→ (M,N))| we will firstly show that∑

w∈W
(sgn(w))|Lb

N (w(0, 0)→ (M,N))| = 0. (6)

Consider a typical ”bad” walk P from w(0, 0) to (M,N) that visits the axis h ∈ H. We can pair this walk to the
walk P̃ from whw(0, 0) to (M,N) obtained by reflecting the portion of P until its last visit of h (see Figure 8 for
an example, w = w2, wh = w1). It is clear that the pairing of walks is an involution and sgnwi = −sgn(whwi).
All the terms in (6) can be arranged in such pairs. They cancel each other, and therefore the sum is zero.

If w 6= id, every walk starting from w(0, 0) and ending at (M,N) is a ”bad” walk, so for w 6= id the set of
unrestricted paths from w(0, 0) to (M,N) is the set of bad paths from w(0, 0) to (M,N):

LN (w(0, 0)→ (M,N)) = Lb
N (w(0, 0)→ (M,N)), w 6= id. (7)

Now substituting (6), (7) to (5) and denoting LN (w) = LN (w(0, 0)→ (M,N)) we obtain

|Lg
N (w(0, 0)→ (M,N))| =

∑
w∈W

(sgn(w))|LN (w)|. (8)

Note that |LN (w)| =
( N

N−M+x(w)
2

)
, where x(w) is the x coordinate of w(0, 0), as in Figure 8.

To complete the proof we have to find the range of possible w that contribute to the sum (8). For convenience,
we will group elements w ∈ W by pairs {wL(k), wR(k)} with k ∈ Z and x(wR(k))− x(wL(k)) = 2. Note, that
sgnwR(k) = 1 and sgnwL(k) = −1. Precisely, we will have

for x > 0; k = 1, 2, . . .: wR(k) = (w2w1)k and wL(k) = w2(w1w2)k−1,

for x ≤ 0; k = 0,−1, . . .: wR(k) = (w1w2)−k and wL(k) = w1(w2w1)−k.

To find the possible range of k for any given (M,N) one can note that x coordinate of wR(k)(0, 0) is 2kl.
If we place endpoint (M,N) on the right border x = l − 2, the last path that could reach it must start at
point (N + l− 2, 0), which we set to be wL(kmax)(0, 0). This point belongs to the pair {wL(kmax), wR(kmax)}.
Consequently wR(kmax) = N + l and, therefore,

kmax =
[N + l

2l

]
=
[N

2l
+

1

2

]
.

∗W is the Weyl group of ŝl2, the affine Kac-Moody algebra corresponding to sl2
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x = −1

a = (0, 0)

a bw1a w2aw1w2a w2w1aw1w2w1a

PP̃

k = 0 k = 1k = −1

(M,N)

b = (0, l − 2)

WL
0 F1

l−1

Figure 8: Counting weighted paths that start at (0, 0) and end at (M,N) for M < l−1 with the wall restriction
WL

0 and the filter restriction F1
l−1. The reflection group W acts on paths, touching axes of H. Path P and

path P̃ after involution.

Similarly,

kmin = −
[N

2l

]
.

Combining all of the above, for the number of paths in Lg
N (w(0, 0)→ (M,N)) we obtain from (8):

|Lg
N (w(0, 0)→ (M,N))| = |LN (id)| − |LN (w1)|+

kmax∑
k=1

(
|LN ((w2w1)k)| − |LN (w2(w1w2)k−1)|

)
+

+

jmax∑
j=1

(
|LN ((w1w2)j)| − |LN (w1(w2w1)j)|

)
=

(
N

N−M
2

)
−
(

N
N−M

2 − 1

)
+

+

kmax∑
k=1

(( N
N−M

2 + kl

)
−
(

N
N−M

2 + kl − 1

))
+

−kmin∑
j=1

(( N
N−M

2 − kl

)
−
(

N
N−M

2 − kl − 1

))
,

that is

|LN ((0, 0)→ (M,N);S | WL
0 ,F1

l−1, 0 ≤M ≤ l − 2)| = F
(N)
M +

[
N
2l+

1
2

]∑
k=1

F
(N)
M−2kl +

[
N
2l

]∑
k=1

F
(N)
M+2kl. (9)

Theorem 5.2. The weighted number of lattice paths from (0, 0) to (M,N) with steps from S and with the wall
restriction WL

0 and the filter restriction F1
l−1 when M > l − 2 is given by

Z(LN ((0, 0)→ (M,N) | WL
0 ,F1

l−1)) = F
(N)
M +

[
N−l+1

2l

]∑
k=1

F
(N)
M+2kl. (10)

Proof. To count the weight of ”good” paths (paths from (0, 0) to (M,N) that obey the restrictions of the
theorem) we can subtract the weight of ”bad” paths from the weight of unrestricted paths:

Z(Lg
N ((0, 0)→ (M,N))) = Z(LN ((0, 0)→ (M,N)))− Z(Lb

N ((0, 0)→ (M,N))). (11)
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Here Lg
N ((0, 0) → (M,N)) are ”good” paths and Lb

N ((0, 0) → (M,N)) are ”bad” paths. According to the
assumptions of the theorem the ”bad” paths are the ones that visit the axis x = −1 and the ones that have a
step (d, y)→ (d− 1, y+ 1)(this step is forbidden by the filter F1

l−1). But when we transition from the weighted
paths to non-weighted paths by a map ψ according to Lemma 4.3, the step (d, y) → (d − 1, y + 1) is created

as a result of the action of ψ on a weighted path that has a step (d + 1, y + 1)
2−→ (d, y + 2). Therefore for

non-weighted paths ending to the right of F1
l−1 there are no forbidden steps and the only ”bad” paths are the

ones that touch the axis x = −1.
According to the reflection principle, to any such ”bad” path P from (0, 0) to (M,N) there corresponds a

partially reflected path P ′ from (−2, 0) to (M,N). Excluding these paths gives us Z(Lg
N ((0, 0) → (M,N))) =

|LN ((0, 0)→ (M,N)))|−|LN ((−2, 0)→ (M,N))|. Such procedure gives us an exact expression for Z(Lg
N ((0, 0)→

(M,N))) for N < 3l − 1.
But as N = 3l − 1 a path visiting the axis, x = −1 may actually be a ”good” path. Such path, for

example P0 (see Figure 9), can be obtained after an action of ψ (see Lemma 4.3) on a ”good” weighted path
P as ψ(P) = {P0,P ′}. The path P0 has been reflected to P−2, and has then been excluded by subtraction of
|LN ((−2, 0)→ (M,N))| from the total number of paths. To release from this contradiction we can notice that
the path P−2 visits the axis x = −l − 1. Therefore we can construct a path P−2l by reflecting a portion of
P−2 before the last visit of x = −l − 1 (see Figure 9). We then want to include the path P−2l to compensate
the exclusion of P0 by adding |LN ((−2l, 0)→ (M,N))|, so Z(Lg

N ((0, 0)→ (M,N))) = |LN ((0, 0)→ (l, N)))| −
|LN ((−2, 0)→ (M,N))|+ |LN ((−2l, 0)→ (M,N))| for N = 3l − 1.

x = −1x = −l − 1

(−2l, 0) (0, 0)(−2, 0)

WL
0 F1

l−1

ṔP0P−2P−2l

x = −2l − 1

Figure 9: Counting weighted paths that start at (0, 0) and end at (M,N) for M ≥ l−1 with the wall restriction
WL

0 and the filter restriction F1
l−1

via unweighted walks counting.

Further, as N > 3l − 1 we will need to exclude ”bad” paths that visited the axis x = −1 once before the
action of ψ, but visit this axis twice after the action of ψ. Note, that they were excluded by subtraction of
|LN ((−2, 0) → (M,N))|, but included by addition of |LN ((−2l, 0) → (M,N))| . It is clear that the exclusion
of such paths will lead to subtraction of |LN ((−2l − 2, 0)→ (M,N))|.

Continuing this procedure, overall we get

Z(Lg
N (w(0, 0)→ (M,N))) =

∑
w∈W̃

sgn(w)|LN (w(0, 0)→ (M,N))|, (12)

where W̃ is a subset of elements w ∈ W , such that x(w) ≤ 0 (the corresponding reflection axes lie at x ≤ 0).
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In terms of F
(N)
M it is

Z(Lg
N (w(0, 0)→ (M,N))) = F

(N)
M +

[
N−l+1

2l

]∑
k=1

F
(N)
M+2kl.

Note: The number of paths (4) starting at (0, 0) and staying within the first strip and the number of paths

(10) that start at (0, 0) and end to the right of the filter differ by
∑[N

2l+
1
2

]
k=1 F

(N)
M−2kl. This is an alternating sum

of the number of paths in the sets of unrestricted paths from (2kl, 0) and (2kl − 2, 0), which for k = 1, 2, . . .
start at x > 0. Cancellation of this sum corresponds to creation of the step (l− 1, y)→ (l− 2, y+ 1) as a result

of the action of ψ on a path that has a step (l, y + 1)
2−→ (l − 1, y + 2)(see Lemma 4.3).The summation limit is

determined following the same procedure as in Theorem 5.1.

6. Counting paths with two filter restrictions

Let us consider the set of paths on L that start at (0, 0) and end at (M,N) in the presence of the filter F1
l−1

and the filter F2
2l−1. We will denote it by

LN ((0, 0)→ (M,N) | F1
l−1,F2

2l−1).

Theorem 6.1. The weighted number of lattice paths from (0, 0) to (M,N) with steps from S and with the filter
restriction F1

l−1 and the filter restriction F2
2l−1 when l − 1 ≤M < 2l − 1 is given by

Z(LN ((0, 0)→ (M,N) | F1
l−1,F2

2l−1)) =

[
N−l+1

2l

]∑
k=0

(−1)kC
(N)
M+2kl +

[
N
2l+1

]∑
k=2

(−1)k−1C
(N)
M−2kl+2, (13)

where C
(N)
M =

(
N

N−M
2

)
is the number of unrestricted paths from (0, 0) to (M,N).

Proof. Let us denote by Lg
N ((0, 0) → (M,N)) the ”good” paths: paths from (0, 0) to (M,N) that obey the

restrictions of the theorem and Lb
N ((0, 0)→ (M,N)) the ”bad” paths: paths that touch the axis x = 2l− 1. To

count the weight of ”good” paths we can subtract the weight of ”bad” paths from the weight of all paths:

Z(Lg
N ((0, 0)→ (M,N))) = Z(LN ((0, 0)→ (M,N)))− Z(Lb

N ((0, 0)→ (M,N))). (14)

We will now express this in terms of unrestricted paths. Firstly, we must note that due to Lemma 4.3 we have
Z(LN ((0, 0) → (M,N))) = |LN ((0, 0) → (M,N)))|. The filter restriction F2

2l−1 at x = 2l − 1 is equivalent to

the wall restriction WR
2l−2 at x = 2l− 2 (see Lemma 4.5). Below we will illustrate the counting of the weight of

”bad” paths Z(Lb
N ((0, 0)→ (M,N))) for values of N from l − 1 to 5l − 1 (see Figure 10).

For l−1 ≤ N < 2l−1 there are no ”bad” paths, since the endpoint (l, N) has not reached the axis x = 2l−1.
For 2l− 1 ≤ N < 3l− 1 all ”bad” paths from (0, 0) to (M,N) have weight 1, so Z(Lb

N ((0, 0)→ (M,N))) =
|Lb

N ((0, 0)→ (M,N))|. According to the reflection principle, to any ”bad” path P0 from (0, 0) to (M,N) there
corresponds a path P4l−1 from (4l−1, 0) to (M,N), so Z(Lb

N ((0, 0)→ (M,N)))) = |LN ((4l−1, 0)→ (M,N)))|.
As 3l− 1 ≤ N < 4l− 1 the ”bad” paths may have the step (l, y + 1)

2−→ (l− 1, y + 2) and therefore have the
weight 2. Therefore we have to exclude two unweighted paths to compensate the weight of the ”bad” path P0.
These paths are P4l−1 and P−2l, which is obtained from P4l−1 by reflecting the its portion until the first visit of
x = l− 1. Therefore we have Z(Lb

N ((0, 0)→ (M,N))) = |LN ((4l− 1, 0)→ (M,N))|+ |LN ((−2l, 0)→ (M,N))|
for 3l − 1 ≤ N < 4l − 1.

The path P−2l coincides with P0 after its visit of x = l− 1. But since it is forbidden for the initial path P0

to cross the axis x = 2l−1, it is also forbidden to the reflected path P−2l to cross x = 2l−1. Therefore we must
exclude from LN ((4l−1, 0)→ (M,N)) the paths touching the axis x = 2l−1. We can again apply the reflection
principle w.r.t. x = 2l−1. To a path P−2l corresponds a path P6l−1 from (6l−1, 0) to (M,N). Therefore we have
Z(Lb

N ((0, 0)→ (M,N))) = |LN ((4l− 1, 0)→ (M,N))|+ |LN ((−2l, 0)→ (M,N))| − |LN ((6l− 1, 0)→ (M,N))|
for 4l − 1 < N < 5l − 1.

As 5l − 1 ≤ N < 6l − 1 the paths with weight 4 may appear. Expressing the number of weighted paths in
terms of unweighted paths, similar to the above we get the path P−4l from by reflecting P6l−1 w.r.t x = l − 1.
Including this path gives us Z(Lb

N ((0, 0)→ (M,N))) = |LN ((4l−1, 0)→ (M,N))|+ |LN ((−2l, 0)→ (M,N))|−
|LN ((6l − 1, 0)→ (M,N))|+ |LN ((−4l, 0)→ (M,N))|.
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(0, 0)
(4l − 2, 0) (6l − 2, 0)(−2l, 0)(−4l, 0)

F1
l−1 F2

2l−1

P0 P4l−2 P6l−2
P−2lP−4l

Figure 10: Counting weighted walks from (0, 0) to (M,N) for l− 1 ≤M < 2l− 1 in the presence of filters F1
l−1

and F2
2l−1 in terms of unweighted walks counting.

Overall, continuing this procedure of counting ”bad” paths and substituting their number to (14) we get

Z(Lg
N ((0, 0)→ (M,N))) =

∑
w∈Ŵ

(sgnw)|LN (w(0, 0)→ (M,N))|,

where Ŵ is the group generated by ψ̃, φ. Here ψ̃ is the reflection w.r.t. the axis x = 2l− 1 and sgnψ = 1 and φ
is the reflection with respect to the axis x = l−1 and sgnφ = −1. Since |LN (w(0, 0)→ (M,N))| =

( N
N−M+x(w)

2

)
,

where x(w) is the x coordinate of w(0, 0), as in Figure 12. Expressing this in terms of C
(N)
M we get (13).

Now we will find the upper limits of both sums in (13). Consider firstly the second sum in (13) which is the
contribution from the paths that start to the right of (0, 0). Their starting points are (2kl− 2, 0), k = 2, 3 . . . .
If we place endpoint (M,N) at M = 2l − 2, the last path that could reach it from the right must start at the
point (N + 2l − 2, 0). So for the upper limit kmax of the second sum we have 2kmaxl − 2 = N + 2l − 2, and
therefore

kmax =
[N

2l
+ 1
]
.

Similarly, consider the first sum in (13) which is the contribution from the paths that start to the left of (0, 0).
Their starting points are (−2k̃l, 0), k̃ = 0, 1, . . . . If we place endpoint (M,N) at M = l− 1, the last path that
could reach it from the left must start at point (−N + l− 1, 0). So for the upper limit k̃max of the first sum we
have 2k̃maxl = N − l + 1, therefore

k̃max =
[N − l + 1

2l

]
.

Due to translation invariance we can generalize (13):

Remark 6.1. The weighted number of lattice paths from (−2Al, 0) to (M,N) for A ≥ 0 with steps from S and
with the filter restriction F1

l−1 and the filter restriction F2
2l−1 when l − 1 ≤M < 2l − 1 is given by

Z(LN ((−2Al, 0)→ (M,N) | F1
l−1,F2

2l−1)) =

[
N−l+1

2l

]∑
k=A

(−1)k−AC
(N)
M+2kl + (15)

+

[
N
2l−1

]∑
k=A

(−1)k−A+1C
(N)
M−2(k+2)l+2,

The weighted number of lattice paths from (−2Bl − 2, 0) to (M,N) for B ≥ 0 with steps from S and with the
filter restriction F1

l−1 and the filter restriction F2
2l−1 when l − 1 ≤M < 2l − 1 is given by

Z(LN ((−2Bl − 2, 0)→ (M,N) | F1
l−1,F2

2l−1)) =

[
N−l−1

2l

]∑
k=B

(−1)k−BC
(N)
M+2kl−2 (16)
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+

[
N−2
2l −1

]∑
k=B

(−1)k−B+1C
(N)
M−2(k+2)l,

where C
(N)
M =

(
N

N−M
2

)
is the number of unrestricted paths from (0, 0) to (M,N).

7. Counting paths with wall and two filter restrictions

Let us consider set of paths on L that start at (0, 0) and end at (M,N) in the presence of the wall WL
0 the two

filters F1
l−1 and F2

2l−1. We will denote it by

LN ((0, 0)→ (M,N) | WL
0 ,F1

l−1,F2
2l−1).

Theorem 7.1. The weighted number of lattice paths from (0, 0) to (M,N) with steps from S and with the wall
WL

0 and filter restrictions F1
l−1 and F2

2l−1 when l − 1 ≤M < 2l − 1 is given by

Z(LN ((0, 0)→ (M,N) | WL
0 ,F1

l−1,F2
2l−1)) =

[
N−l+1

4l

]∑
k=0

F
(N)
M+4kl +

[
N−2l

4l

]∑
k=0

F
(N)
M−4kl−4l, (17)

where F
(N)
M =

(
N

N−M
2

)
−
(

N
N−M

2 −1
)
.

Proof. We will start by using the results of Theorem 5.2 as the boundary conditions on the axis x = l − 1 and
then apply Theorem 6.1.

Let us consider the path restrictions of Theorem 5.2 (the wall WL
0 and filter F1

l−1). According to (12) the
weighted number of paths that end (l − 1, N) is

Z(Lg
N (w(0, 0)→ (l − 1, N))) =

∑
w:x(w(0,0))≤0

(sgn(w))|LN (w(0, 0)→ (l − 1, N))| = (18)

=

...∑
i=0

|LN ((w1w2)i(0, 0)→ (l − 1, N))| −
...∑
i=0

|LN (w1(w1w2)i(0, 0)→ (l − 1, N))|.

Here and below by
∑...

, we denote the summation over all possible i that give a nonzero contribution. These
boundary conditions on the axis x = l − 1 determine the number of paths that end to the right of the filter
F1

l−1. Therefore we may change conditions to the left of the filter as long as the weighted number of paths that
end at (l− 1, N) remains the same. Expression (18) and Lemma 4.3 suggest that we can consider two separate
sets of initial conditions with no wall restriction. The first set of initial conditions includes (w1w2)i(0, 0) as the
path starting points while only the filter F1

l−1 restriction is present. The second set of initial conditions includes
w1(w1w2)i(0, 0) the path starting points and only the filter restriction F1

l−1.
To prove (17) we will take these two sets of initial conditions with F1

l−1 and place another filter restriction
F2

2l−1. Therefore the problem is reduced to two separate problems. The first problem is to count weighted
number Zi

+ of paths from each (w1w2)i(0, 0) to (M,N) in the presence of F1
l−1 and F2

2l−1 and to sum these
numbers over i. The second problem is to count weighted number Zi

− of paths from all w1(w1w2)i(0, 0) to
(M,N) in the presence of F1

l−1 and F2
2l−1 and to sum these numbers over i. The required weighted number of

paths will be given by

Z(LN ((0, 0)→ (M,N) | WL
0 ,F1

l−1,F2
2l−1)) =

...∑
i=0

Zi
+ −

...∑
i=0

Zi
−. (19)

We will further specify the summation limits in (20) and (21).
To obtain expressions for Zi

+ and Zi
− one can use Theorem 6.1 and Remark 6.1. Note that (w1w2)i(0, 0) =

(−2il, 0) and w1(w1w2)i(0, 0) = (−2il− 2, 0) for i = 0, 1, . . . . So we can apply Remark 6.1 for A = i and B = i
to calculate Zi

+ and Zi
− respectively:

Zi
+ =

[
N−l+1

2l

]∑
k=i

(−1)k−iC
(N)
M+2kl +

[
N
2l−1

]∑
k=i

(−1)k−i+1C
(N)
M−2(k+2)l+2,

Zi
− =

[
N−l−1

2l

]∑
k=i

(−1)k−iC
(N)
M+2kl−2 +

[
N−2
2l −1

]∑
k=i

(−1)k−i+1C
(N)
M−2(k+2)l.
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idw1w1w2w1(w2w1)w1w2w1w2

F1
l−1 F2

2l−1
x = −1

(4l − 2, 0) (4l, 0) (6l − 2, 0) (6l, 0)

Figure 11: Counting weighted walks from (0, 0) to (M,N) for l − 1 ≤ M < 2l − 1 in the presence of the wall
WL

0 and filters F1
l−1 and F2

2l−1 in terms of unweighted walks counting. The starting points are labeled by the
corresponding reflection group elements acting on (0, 0). The violet paths contribute to Z0

+ and the blue paths
to Z0

−. It is clear that the path starting from w1w2 contributes to both Z0
+ and Z1

+.The contribution of this
path is canceled in Z0

+ + Z1
+.

Firstly, we must calculate contributions to (19) that come from the sum of Zi
+. Most of the terms in this

sum will cancel each other. Below we will illustrate this for Z0
+ and Z1

+:

Z0
+ =

[
N−l+1

2l

]∑
k=0

(−1)kC
(N)
M+2kl +

[
N
2l−1

]∑
k=0

(−1)k−1C
(N)
M−2(k+2)l+2,

Z1
+ =

[
N−l+1

2l

]∑
k=1

(−1)k−1C
(N)
M+2kl +

[
N
2l−1

]∑
k=1

(−1)kC
(N)
M−2(k+2)l+2.

When added together most of the terms cancel each other and we get

Z0
+ + Z1

+ = C
(N)
M − C(N)

M−4l+2.

In fact, similar cancellation of terms will take place for all such pairs of Zi
+ and Zi+1

+ for even i.

Zi
+ + Zi+1

+ =

[
N−l+1

2l

]∑
k=i

(−1)k−iC
(N)
M+2kl +

[
N
2l−1

]∑
k=i

(−1)k−i+1C
(N)
M−2(k+2)l+2 +

+

[
N−l+1

2l

]∑
k=i+1

(−1)k−i−1C
(N)
M+2kl +

[
N
2l−1

]∑
k=i+1

(−1)k−iC
(N)
M−2(k+2)l+2 = C

(N)
M+2il + C

(N)
M−2il−4l+2.

Denoting i = 2k we get

...∑
i=0

Zi
+ =

[
N−l+1

4l

]∑
k=0

C
(N)
M+4kl −

[
N−2l

4l

]∑
k=0

C
(N)
M−4kl−4l+2. (20)

Contributions to (19) that come from the sum of Zi
− are obtained following the same observation. Similarly,

we get

...∑
i=0

Zi
− =

[
N−l−1

4l

]∑
k=0

C
(N)
M+4kl+2 −

[
N−2l−2

4l

]∑
k=0

C
(N)
M−4kl−4l. (21)
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The summation limits are obtained in the same manner as in Theorem 6.1. For example, the second sum
in (20) is the contribution from the paths with starting points (4(k + 1)l − 2, 0), k = 0, 1 . . . . The last
path that could reach M = 2l − 2 from the right starts at the point (N + 2l − 2, 0). So the upper limit of

summation kmax =
[
N−2l
4l

]
. Similarly, the first sum in (20) is the contribution from the paths with starting

points (−4k̃l, 0), k̃ = 0, 1, . . . . The last path that could reach M = l − 1 from the left starts at the point

(−N + l − 1, 0). So the upper limit of summation k̃max =
[
N−l+1

4l

]
. Substituting (20) (21) to (19) we obtain

(17).

8. Counting paths with wall and multiple filter restric-
tions

In previous sections, we have proven auxiliary theorems that provide enumerative formulas for counting paths
in the presence of the wall and a number of filters less than three. We are now ready to prove the main theorem.
Let us consider the set of paths on L that start at (0, 0) and end at (M,N) with steps from S in the presence
of the filter F1

l−1 of type 1 and the filters F2
nl−1 of type 2, where n = 2, 3, . . . . We will denote this set by

LN ((0, 0)→ (M,N) | F1
l−1, {F2

(n+1)l−1}, n ∈ Z+). (22)

. . .

(0, 0)

F1
l−1 F2

2l−1 F2
3l−1

Figure 12: The arrangement of filters F1
l−1 and the filters F2

(j+1)l−1, where j = 1, 2, . . . . The j-th strip is located

between F2
(j−1)l−1 and F2

jl−1.

Definition 8.1. We will denote by multiplicity function in the j-th strip the weighted number of paths in set
(22) with the endpoint (M,N) that lies within (j − 1)l − 1 ≤M < jl − 2

M j
(M,N) = Z(LN ((0, 0)→ (M,N) | F1

l−1, {F2
(n+1)l−1}, n ∈ Z+)), (23)

where M ≥ 0, j ≥ 2 and j =
[
M+1

l + 1
]
.

Theorem 8.1. The multiplicity function in the j-th strip is given by

M j
(M,N) = 2j−2

( [N−(j−1)l+1
4l

]∑
k=0

Pj(k)F
(N)
M+4kl +

[
N−jl

4l

]∑
k=0

Pj(k)F
(N)
M−4kl−2jl −
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−

[
N−(j+1)l+1

4l

]∑
k=0

Qj(k)F
(N)
M+2l+4kl −

[
N−jl−2l

4l

]∑
k=0

Qj(k)F
(N)
M−4kl−2(j+1)l

)
,

where

Pj(k) =

[
j
2

]∑
i=0

(
j − 2

2i

)(
k − i+ j − 2

j − 2

)
, Qj(k) =

[
j
2

]∑
i=0

(
j − 2

2i+ 1

)(
k − i+ j − 2

j − 2

)
, (24)

F
(N)
M =

(
N

N−M
2

)
−
(

N
N−M

2 − 1

)
.

Proof. We will first use the expression (17) for the weighted number of paths obtained in Theorem 7.1 as the
base of induction for the proof of (24). The multiplicity M2

(M,N) in the second strip is given by expression (17):

M2
(M,N)(l) = Z(LN ((0, 0)→ (M,N) | WL

0 ,F1
l−1,F2

2l−1)) =

[
N−l+1

4l

]∑
k=0

F
(N)
M+4kl +

[
N−2l

4l

]∑
k=0

F
(N)
M−4kl−4l. (25)

Clearly this expression satisfies (24) for j = 2 with P2(k) = 1, Q2(k) = 0.
Expression (25) serves as the base of induction. For the inductive step, we consider

M j
(M,N) = 2j−2

( [N−(j−1)l+1
4l

]∑
k=0

Pj(k)F
(N)
M+4kl +

[
N−jl

4l

]∑
k=0

Pj(k)F
(N)
M−4kl−2jl −

−

[
N−(j+1)l+1

4l

]∑
k=0

Qj(k)F
(N)
M+2l+4kl −

[
N−(j+2)l

4l

]∑
k=0

Qj(k)F
(N)
M−4kl−2(j+1)l

)
,

to hold for j-th strip, located between F2
(j−1)l−1 and F2

jl−1, where Pj(k) and Qj(k) given by (24). We will use
the auxiliary theorems proven in the previous sections to get the multiplicity function for the j + 1-th strip,
which is located between F2

jl−1 and F2
(j+1)l−1. We will proceed with the proof in 2 steps.

At the first step we consider the setup with filters F1
l−1,F2

2l−1, . . . ,F2
jl−1 but without filter F2

(j+1)l−1. We

will denote the weighted number of paths from (0, 0) to (M,N) under these restrictions as

M̃ j
(M,N)(l) = Z(LN ((0, 0)→ (M,N) | F1

l−1, . . . ,F2
jl−1), (26)

For (j − 1)l − 1 ≤ M < jl − 1 this function coincides with multiplicity function for j-th strip M j
(M,N) but for

M ≥ jl − 1 the weighted number of paths is

M̃ j
(M,N)(l) = 2j−1

( [N−jl+1
4l

]∑
k=0

Pj(k)F
(N)
M+4kl −

[
N−(j+2)l+1

4l

]∑
k=0

Qj(k)F
(N)
M+2l+4kl

)
, (27)

This expression differs from M j
(M,N) by two sums which correspond to number of unrestricted paths in the

sets with the initial points with x > jl − 1 and by a factor 2. It could be proven similar to Theorem 5.2 via
unweighted path counting by creation of the step (jl − 1, y) → (jl − 2, y + 1) as a result of the action of ψ on

a path that has a step (jl, y + 1)
2−→ (jl − 1, y + 2) and doubling of the total number of paths when passing

through F2
jl−1(see Lemma 4.6).

In the second step, we consider value of (27) on the axis x = jl− 1 as the boundary conditions and use the
same proof technique as in Theorem 7.1. The boundary conditions on the axis x = jl−1 determine the number
of paths that end to the right of the filter F2

jl−1. Therefore we may change conditions to the left of the filter as
long as the weighted number of paths that end at (jl− 1, N) remains the same. It is clear that we can consider
(w1w2)i(0, 0) and w1(w1w2)i(0, 0) as the path starting points:

M̃ j
(M,N) = 2j−1

( [
N−jl+1

4l

]∑
k=0

Pj(k)
(

|LN ((w1w2)2k(0, 0)→ (jl − 1, N))| −

−|LN (w1(w2w1)2k(0, 0)→ (jl − 1, N))|
)
−

−

[
N−(j+2)l+1

4l

]∑
k=0

Qj(k)
(
|LN ((w1w2)2k+1(0, 0)→ (jl − 1, N))| −
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−|LN (w1(w2w1)2k+1(0, 0)→ (jl − 1, N))|
))
,

To obtain the multiplicity function for j + 1-th strip we will take the same sets of path starting points

idw1w1w2w1(w2w1)w1w2w1w2

F2
jl−1 F2

(j+1)l−1

(6l − 2, 0) (6l, 0)

Figure 13: Counting weighted walks from (0, 0) to (M,N) for 2l − 1 ≤ M < 3l − 1 in the presence of filters
F1

2l−1 and F2
3l−1 in terms of unweighted path counting. The starting points are labeled by the corresponding

reflection group elements acting on (0, 0).The violet paths contribute to Z0
+(3) and the blue paths to Z0

−(3).

(w1w2)i(0, 0) and w1(w1w2)i(0, 0) as initial conditions and place another filter restriction F2
(j+1)l−1. The

weighted number of paths in the j + 1-th strip will be given by

M j+1
(M,N)(l) = 2j−1

( [
N−jl+1

4l

]∑
k=0

Pj(k)
(
Z2k
+ (j + 1)− Z2k

− (j + 1)
)
− (28)

−

[
N−(j+2)l+1

4l

]∑
k=0

Qj(k)
(
Z2k+1
+ (j + 1)− Z2k+1

− (j + 1)
))
,

where
Zi
+(j + 1) is the weighted number of paths from (w1w2)i(0, 0) to (M,N) for jl − 1 ≤ M < (j + 1)l − 1 in

the presence of F1
jl−1 and F2

(j+1)l−1 , and

Zi
−(j + 1) is the weighted number of paths from w1(w2w1)i(0, 0) to (M,N) in the presence of F1

jl−1 and

F2
(j+1)l−1.

Now, we will write the expression for each summand explicitly in terms of binomial coefficients. It is clear
that

Zi
+(j + 1) = Z(LN ((−2il, 0)→ (M,N) | F1

jl−1,F2
(j+1)l−1)),

Zi
−(j + 1) = Z(LN ((−2il − 2, 0)→ (M,N) | F1

jl−1,F2
(j+1)l−1)).

Due to translation invariance similar to Remark 6.1 we get

Lemma 8.1. The weighted number of lattice paths from (−2il, 0) to (M,N) for i ≥ 0 and with the filter
restriction F1

l−1 and the filter restriction F2
2l−1 when jl − 1 ≤M < (j + 1)l − 1 is given by

Zi
+(j + 1) =

[
N−jl+1

2l

]∑
p=i

(−1)p−iC
(N)
M+2pl +

[
N−(j+1)l

2l

]∑
p=i

(−1)p−i+1C
(N)
M−2(j+1+p)l+2, (29)

The weighted number of lattice paths from (−2il − 2, 0) to (M,N) for i ≥ 0 and with the filter restriction F1
l−1

and the filter restriction F2
2l−1 when l − 1 ≤M < (j + 1)l − 1 is given by

Zi
−(j + 1) =

[
N−jl−1

2l

]∑
p=i

(−1)p−iC
(N)
M+2pl−2 +

[
N−(j+1)l−2

2l

]∑
p=i

(−1)p−i+1C
(N)
M−2(j+1+p)l, (30)
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where C
(N)
M =

(
N

N−M
2

)
is the number of unrestricted paths from (0, 0) to (M,N).

Note that for j + 1 = 2 (29) and (30) coincide with (15) and (16) respectively. The proof of this lemma is
completely parallel to that of Theorem 6.1.

So we obtain

Zi
+(j + 1)− Zi

−(j + 1) =

[
N−jl+1

2l

]∑
p=i

(−1)p−iF
(N)
M+2pl +

[
N−(j+1)l

2l

]∑
p=i

(−1)p−iF
(N)
M−2(j+1+p)l.

Let us substitute the obtained expressions to (28).
For the multiplicity function in the j + 1-th strip, we get

M j+1
(M,N)(l) = 2j−1

[
N−jl+1

4l

]∑
k=0

Pj(k)


[

N−jl+1
2l

]∑
p=2k

(−1)p−2kF
(N)
M+2pl +

[
N−(j+1)l

2l

]∑
p=2k

(−1)p−2kF
(N)
M−2pl−2(j+1)l


−2j−1

[
N−(j+2)l+1

4l

]∑
k=0

Qj(k)


[

N−jl+1
2l

]∑
p=2k+1

(−1)p−2k−1F
(N)
M+2pl +

[
N−(j+1)l

2l

]∑
p=2k+1

(−1)p−2k−1F
(N)
M−2pl−2(j+1)l

 .

In the expression above we have the following set of terms

F
(N)
M , −F (N)

M+2l, F
(N)
M+4l, . . . , (−1)pF

(N)
M+2pl, . . . , (−1)

[
N−jl+1

2l

]
F

(N)

M+2
[

N−jl+1
2l

]
l

and, similarly,

F
(N)
M−2(j+1)l, . . . , (−1)pF

(N)
M−2(j+1)l−2pl, . . . , (−1)

[
N−(j+1)l

2l

]
F

(N)

M−2(j+1)l−2
[

N−(j+1)l
2l

]
l
.

If we carefully recollect the terms, we get the following coefficients

( p
2∑

n=0

Pj(n) +

p
2−1∑
n=0

Qj(n)
)
F

(N)
M+2pl, for even p,

−
( p−1

2∑
n=0

Pj(n) +

p−1
2∑

n=0

Qj(n)
)
F

(N)
M+2pl, for odd p,

( p
2∑

n=0

Pj(n) +

p
2−1∑
n=0

Qj(n)
)
F

(N)
M−2(j+1)l−2pl, for even p,

−
( p−1

2∑
n=0

Pj(n) +

p−1
2∑

n=0

Qj(n)
)
F

(N)
M−2(j+1)l−2pl, for odd p.

In order to obtain the desired result of the form

M j+1
(M,N) = 2j−1

( [N−jl+1
4l

]∑
k=0

Pj+1(k)F
(N)
M+4kl +

[
N−(j+1)l

4l

]∑
k=0

Pj+1(k)F
(N)
M−4kl−2(j+1)l −

−

[
N−(j+2)l+1

4l

]∑
k=0

Qj+1(k)F
(N)
M+2l+4kl −

[
N−(j+3)l

4l

]∑
k=0

Qj+1(k)F
(N)
M−4kl−2(j+2)l

)
,

it remains to check if the following recurrence relations

Pj+1(k) =

k∑
n=0

Pj(n) +

k−1∑
n=0

Qj(n), (31)

Qj+1(k) =

k∑
n=0

Pj(n) +

k∑
n=0

Qj(n). (32)
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are satisfied by Pj(k) and Qj(k), which we have assumed to hold for j-th strip:

Pj(k) =

[
j
2

]∑
i=0

(
j − 2

2i

)(
k − i+ j − 2

j − 2

)
,

Qj(k) =

[
j
2

]∑
i=0

(
j − 2

2i+ 1

)(
k − i+ j − 2

j − 2

)
.

Indeed,

k∑
n=0

Pj(n) +

k∑
n=0

Qj(n) =

k∑
n=0

[
j
2

]∑
i=0

((
j − 2

2i

)
+

(
j − 2

2i+ 1

))(
n− i+ j − 2

j − 2

)
=

=

[
j+1
2

]∑
i=0

(
j − 1

2i+ 1

) k∑
n=0

(
n− i+ j − 2

j − 2

)
=

[
j+1
2

]∑
i=0

(
j − 1

2i+ 1

)(
k − i+ j − 1

j − 1

)
= Qj+1(k).

The recurrence (31) can be shown to hold in the same manner.
Note that by the index j this recurrence is similar to that of binomial coefficients, and by the variable k it

is similar to that of a number of integer points in tetrahedron [12]. At the inductive step, we have shown that
the initial conditions of these recurrence relations are given by

P2(k) = 1, Q2(k) = 0 ∀k = 0, 1, . . . . (33)

The theorem is proven.

9. Conclusion

In this paper, we explored two-dimensional lattice path model with a periodic arrangement of multiple filter
restrictions. We introduced two types of filters and counted the numbers of paths descending from (0, 0) to
(M,N) in different configurations. We started by considering two filter restrictions and proceeded to multiple
filters arranged periodically. Using the reflection principle we obtained exact formulas for number of descending
paths in considered configurations.

As it was mentioned earlier the filter appears naturally in the context of representation theory of quantum
groups at roots of unity:

• Lattice path model considered in the present paper and depicted in Figure 12 can be used to obtain the
model, weighted numbers of paths of which reproduce recurrence relations for the multiplicities in the
decomposition of tensor powers of the fundamental representation of Uq(sl2) with divided powers, where
q is a root of unity. In order to do so one needs to consider all filters of type 1 instead of the ones of type
2 and add long steps. The resultant model is depicted in Figure 14.

This can be seen as a folding transformation of the model considered in the present paper, which is
schematically depicted in Figure 15.

This model was studied in [16] and its asymptotic analysis will be carried in [11].

• Similarly to the application above, lattice path model considered in the present paper is also of use for
deriving formulas for multiplicities in the case of the small quantum group uq(sl2). One needs to restrict it
to the first two strips and add one sequence of long steps with double multiplicities. The resultant model
is depicted in Figure 16.

This can be seen as a folding transformation of the model considered in the present paper with identification
of the layers, which is schematically depicted in Figure 17.

Full analysis of this model will be carried in [11].

• One can obtain uq(sl2) from restricting Uq(sl2) with divided powers to u−q U
0
q u

+
q , where u±q are subalgebras

of the small quantum group uq(sl2), generated by F and E respectively, and U0
q is a central subalgebra

of Uq(sl2), and then restricting u−q U
0
q u

+
q to uq(sl2). This gives another folding procedure for obtaining

multiplicity formulas for the small quantum group uq(sl2) from the lattice path model considered in the
present paper.
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l − 1 2l − 1

. . .

3l − 1

(0, 0)

l − 2 l 2l − 2 2l 3l − 2 3l0
k

N

Figure 14: Lattice path model reproducing multiplicities in tensor product decomposition of Uq(sl2) at roots
of unity with divided powers. Horizontal axis corresponds to the highest weight of the component in tensor
product decomposition, vertical axis corresponds to the considered tensor power. Examples of possible paths
in such a walk are highlighted in green and blue.

. . .

1

2

3

4

5

1 2
3

4
5

Figure 15: Folding transformation of the lattice path model with periodic filters, leading to the model for Uq(sl2)
with divided powers. The left subfigure shows the initial lattice path model and the right subfigure shows the
resultant one. Bottom-right subfigure is the view of the resultant lattice from above, where numbers are added
for the purpose of showing layers.
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l − 1 2l − 1

(0, 0)

l − 2 l 2l − 2 2l 3l − 20
k

N

Figure 16: Lattice path model reproducing multiplicities in tensor product decomposition of uq(sl2). The
horizontal axis corresponds to the highest weight of the component in tensor product decomposition, vertical
axis corresponds to the considered tensor power. Examples of possible paths in such a walk are highlighted in
green and blue.

Figure 17: Folding transformation of the lattice path model with periodic filters, leading to the model for
uq(sl2). Bottom-right subfigure is the view of the resultant lattice from above, all layers are identified into two.
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Firstly, one needs to branch the initial model into two identical ones, starting from the right boundary
of the second strip, then proceed with adding long steps similar to the model corresponding to Uq(sl2).
As a result, we obtain lattice path model reproducing multiplicities in tensor product decomposition of
representations of u−q U

0
q u

+
q . This model is depicted in Figure 18.

l − 1

C[l]⊗ (2l − 1)
C[−l]⊗ (2l − 1)

l − 1

C[l]⊗ (2l − 1)

C[−l]⊗ (2l − 1)

l − 1 C[l]⊗ (2l − 1)

C[−l]⊗ (2l − 1)

. . .

. . .

Figure 18: Lattice path model reproducing multiplicities in tensor product decomposition of u−q U
0
q u

+
q . The left

subfigure shows branching, right subfigure shows folding. Bottom-right subfigure is the view of the resultant
lattice from above.

Secondly, one needs to identify layers as in the rule depicted in Figure 19, which corresponds to restriction
of u−q U

0
q u

+
q to uq(sl2).

. . .

. . .

Figure 19: Colors showing the rule of identification of the layers.

This folding procedure gives the same formulas for multiplicities in tensor product decomposition for
uq(sl2), as the one depicted in Figure 17.

• Similar lattice path models emerge when studying the category of tilting modules for Uq(sl2) when q is
an odd root of unity and the ground field is Fp [17].

• We expect that for lattice path models reproducing multiplicities in tensor product decomposition of
Uq(sln) at roots of unity, derivation of formulas for weighted numbers of paths will rely on similar com-
binatorial ideas: reflection principle involving Weyl group of the affine Kac-Moody algebra corresponding
to sln. It is worth mentioning that obtaining such formulas explicitly is of interest for asymptotic rep-
resentation theory, mainly, for constructing Plancherel measure and possibly obtaining its limit shape in
different regimes, including regime when n→∞ ( [3], [13], [11]).
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