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Abstract: Let Un denote the set of integral sequences u1 · · ·un such that |ui+1 − ui| ≤ 1 for 1 ≤ i ≤ n − 1,
with u1 = 1, which are referred to as smooth words. In this paper, we enumerate the members of Un according
to the number of occurrences of any subword pattern of length two or three. We consider, more generally,
the joint distribution on Un of several pairs (and one trio) of subword patterns, together with the final letter
statistic, and compute the generating function of this joint distribution in each case. We make use of the
kernel method to solve the functional equation satisfied by the generating function. In some instances, one or
more auxiliary generating functions are needed giving rise to a system of functional equations. As particular
cases of our results, we obtain the generating function of the univariate distribution on Un for n ≥ 1 for each
subword pattern of length two or three. Special attention is paid to the subset Vn consisting of those members
of Un ending in 1, which are enumerated by the Motzkin number Mn−1 for n ≥ 1. Explicit formulas for the
total number of occurrences of a pattern on Un or Vn can be found by differentiating the respective generating
functions.

Keywords: Generating function; Kernel method; Motzkin path; Smooth word; Subword pattern
2020 Mathematics Subject Classification: 05A15; 05A05

1. Introduction

Let π = π1 · · ·πn and ρ = ρ1 · · · ρm denote positive integral sequences, where n ≥ m ≥ 1 and ρ contains each
letter in [`] = {1, . . . , `} for some ` ≥ 1 at least once. Then π is said to contain ρ as a subword (or consecutive
pattern) if there exists a string πaπa+1 · · ·πa+m−1 of letters of π where 1 ≤ a ≤ n−m+1 that is order-isomorphic
to ρ, and is said to avoid ρ (as a subword) otherwise. For example, the sequence π = 532343445421 contains
two occurrences of 212 as a subword (as witnessed by 323 and 434) and three occurrences of 321 (the strings
532, 542, and 421). It avoids 231 as a subword, though it contains subsequences that are isomorphic to 231
not corresponding to a string. Note that two occurrences of a subword pattern need not be disjoint, as seen
with the second and third occurrences of 321 in π. An occurrence of a 12, 21, or 11 subword is known as an
ascent, descent, or level, respectively. Among the various kinds of integer sequences that have been enumerated
according to the number of occurrences of subword patterns include k-ary words [8], compositions [19], and
finite set partitions [18] (represented sequentially as restricted growth functions). Henceforth, when discussing
the question of avoidance concerning a particular pattern or its distribution on a set, it will be in the context
of subword containment.

A smooth word w1 · · ·wn is one on the alphabet of positive integers satisfying |wi+1−wi| ≤ 1 for all i ∈ [n−1].
Smooth words and compositions were studied initially by Mansour et al. in [14] subject to various restrictions.
Smooth words satisfying w1 = 1 (and more generally having a fixed, but arbitrary, first letter) were considered
briefly in [17], where the generating function of the joint distribution for the statistics tracking the sums of
ascent tops and level values was found. Here, we consider the distribution of certain parameters on the set of
smooth words starting and/or ending in 1. This extends recent work (see, e.g., [3, 6, 20]) done on the set of
right-smooth words satisfying wi+1−wi ≤ 1 for all i with w1 = 1, which are also known as Catalan words (being
an object enumerated by the n-th Catalan number, see [26]). In these works, avoidance classes of Catalan words
both in the classical and subword sense were enumerated with respect to the number of descents. See also [24]
for the distribution of subword patterns of length two or three on the set of all Catalan words of length n. A
further variant of the notion of smoothness was recently considered in [16], where the difference in the positions
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corresponding to two adjacent letter changes within an integral sequence (going from left to right) is bounded
above by a fixed number.

Let Un denote the set of smooth words of length n starting with 1, i.e., the set of positive integral sequences
u1 · · ·un satisfying |ui+1 − ui| ≤ 1 for all i, with u1 = 1. For example, we have

U4 = {1111, 1112, 1121, 1122, 1123, 1211, 1212, 1221, 1222, 1223, 1232, 1233, 1234}.

The cardinality of Un for each n ≥ 1 is given by sequence A005773(n) in [25], which we will denote here by Ln.
Recall that Ln = |Ln|, where Ln is the set of lattice paths from (0, 0) to the line x = n − 1 using u = (1, 1),
d = (1,−1), and h = (1, 0) steps that never go below the x-axis. Members of Ln are known as Motzkin
left factors (see, e.g., [2, p. 111]). Let Vn denote the subset of Un whose members satisfy un = 1; note that
|Vn| = Mn−1 for n ≥ 1, where Mn is the n-th Motzkin number (see, e.g., [1] or [25, A001006]).

A simple bijection  between Un and Ln is obtained by putting u, d, or h according to if the difference
ui+1 − ui for i ∈ [n− 1] is 1, −1, or 0, respectively, and considering the resulting lattice path. For example, if
w = 12322112 ∈ U8, then (w) = uudhdhu ∈ L8. Note that the final height of (w) is equal to one less than the
final letter of w for all w. LetMn denote the subset of Ln+1 whose members terminate at the point (n, 0) (i.e.,
have final height zero). Members of Mn are known as Motzkin paths and are enumerated by Mn for all n ≥ 0.
Under , the subset Vn of Un corresponds to Mn−1. At times, we will identify members of Un or Vn with their
corresponding lattice paths in Ln or Mn−1 under .

In this paper, we study the distribution of statistics on Un and Vn recording the number of occurrences of
subword patterns of length two or three. Let σ(π) denote the final letter of π ∈ Un and µρ(π) the number of
occurrences of the subword ρ in π. We consider, more generally, a joint distribution of the form

αn(v, p, q) =
∑
π∈Un

vσ(π)−1pµρ(π)qµτ (π), n ≥ 1,

for a fixed pair of subword patterns ρ and τ . Note that αn(v, p, q) reduces to Ln when v = p = q = 1 and to Mn−1
when v = 0 and p = q = 1. Hence, the distribution αn(v, p, q) will yield some new polynomial generalizations
of the sequences Ln and Mn−1 as ρ and τ vary. For other extensions of the Motzkin number sequence, see,
e.g., [4, 5, 7, 10, 22, 23, 27, 29]. We will find explicit formulas for the generating function h(x) = h(x; v, p, q),
defined by

h(x) =
∑
n≥1

αn(v, p, q)xn,

for several pairs of patterns ρ and τ as well as for one triple of patterns.
Let

fτ (x; q) =
∑
n≥1

(∑
π∈Un

qµτ (π)

)
xn

and

gτ (x; q) =
∑
n≥1

(∑
π∈Vn

qµτ (π)

)
xn

denote the generating functions for the respective univariate distributions of the subword pattern τ on Un and
Vn. Note that fτ (x; q) = h(x; 1, 1, q) and gτ (x; q) = h(x; 0, 1, q). As corollaries of our main results, one obtains
simple explicit formulas for fτ (x; q) and gτ (x; q) for all τ of length two or three. See Tables 1 and 2 at the end
of the fourth section. Taking q = 1 in these formulas for fτ (x; q) and gτ (x; q) is seen to recover in each case the
generating function for the sequence Ln or Mn−1, respectively. Note that we need not deal with the patterns
132, 213, 231, or 312 since a smooth word clearly must avoid each one as a subword.

To determine h(x), we derive a functional equation in each case which may be solved explicitly for all v,
p, and q in general, if desired, using the kernel method [13]. In several instances, it is useful to define one or
more auxiliary sequences representing various restrictions of the joint distribution αn = αn(v, p, q). This allows
one to write a system of linear recurrences involving αn and the auxiliary sequence(s), which leads to a system
of functional equations satisfied by the corresponding generating functions. In solving these systems using the
kernel method, we remark that the special case v = 0 plays a pivotal role. Indeed, it is for this reason that the
v variable in αn marks the parameter value σ − 1, instead of σ.

Further, via , these joint distributions on Un and Vn may be viewed equivalently as distributions on Ln and
Mn−1 of lattice path statistics which track the number of occurrences of various kinds of step patterns (taken
together with the final height parameter). For example, the polynomial αn(v, p, q) when ρ = 123 and τ = 321
(see Section 3) would correspond to the joint distribution for the parameters on Ln tracking the final height,
occurrences of uu, and occurrences of dd (marked by v, p, and q, respectively). Thus, one obtains new formulas
for the generating functions of several joint distributions of such statistics on Ln and Mn−1 for n ≥ 1. For
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comparable results on Dyck paths involving a single step pattern, see, e.g., [11, 15, 21], and for Motzkin paths,
see [7, 23].

The organization of this paper is as follows. In the next section, we consider the joint distribution of the
final letter, ascents, and descents statistics on Un and compute the associated generating function (see Theorem
2.1 below). As a consequence, one can readily obtain by differentiation explicit formulas for the total number
of ascents, descents, or levels in all the members of Un or Vn. One may subsequently explain these formulas
(and others in later sections) bijectively in several instances. Further, finding alternative expressions for these
totals yields identities relating Ln and Mn. Also, the ideas from this section lead to a new combinatorial proof
of the two-term recurrence for Mn. For other combinatorial proofs of this recurrence, see [27–29]. In the third
section, we provide a comparable treatment of the 123 and 321 patterns. In the fourth section, we deal with
the remaining patterns of length three, each of which contains a repeated letter. For this, it is convenient to
group the remaining patterns according to if they end in an ascent, descent, or level. Hence, we consider in
turn the joint distributions for the three pattern sets 112/212, 121/221, and 111/122/211. In the final section,
some further subword equivalences on Un and Vn are noted.

We will make use of the following well-known generating function formulas:

∑
n≥1

Lnx
n =

3x− 1 +
√

1− 2x− 3x2

2(1− 3x)

and ∑
n≥1

Mn−1x
n =

1− x−
√

1− 2x− 3x2

2x
,

which will be denoted by L(x) and M(x), respectively. Also, let Gn be the set of lattice paths from (0, 0) to
(n, 0) using u, d, and h steps with no restriction concerning going below the x-axis, the members of which are
referred to as grand Motzkin paths. The terms of the sequence Gn = |Gn| are known as grand Motzkin numbers
(see [25, A002426]) and have generating function given by∑

n≥0

Gnx
n =

1√
1− 2x− 3x2

.

2. Distribution of ascents and descents

Given n ≥ 2, i ∈ [n − 1], and j ∈ [n], let Un,i,j denote the subset of Un whose members have last two letters i
and j in that order. If n ≥ 2 and 1 ≤ j ≤ n, let Un,j = ∪n−1i=1 Un,i,j , with U1,1 = {1}. Let an,i,j = an,i,j(p, q)
denote the joint distribution for the statistics on Un,i,j recording the number the ascents and descents (marked
by p and q, respectively). Note that an,i,j = 0 if it is not the case i ∈ [n − 1] with j ∈ [i − 1, i + 1], as the
underlying set Un,i,j is empty for such i and j. If n ≥ 2 and 1 ≤ j ≤ n, let an,j = an,j−1,j + an,j,j + an,j+1,j ,
with a1,1 = 1. Define the joint distribution polynomial

an(v) =

n∑
j=1

an,jv
j−1, n ≥ 1,

where v is an indeterminate.
The an(v) for n ≥ 2 satisfy the following recursion.

Lemma 2.1. If n ≥ 2, then

an(v) =
(
pv + 1 +

q

v

)
an−1(v)− q

v
an−1(0), (1)

with a1(v) = 1.

Proof. By the definitions, we have an,j−1,j = pan−1,j−1 for 2 ≤ j ≤ n, an,j,j = an−1,j for 1 ≤ j ≤ n − 1, and
an,j+1,j = qan−1,j+1 for 1 ≤ j ≤ n− 2. If n ≥ 3 and 2 ≤ j ≤ n− 1, then

an,j = an,j−1,j + an,j,j + an,j+1,j = pan−1,j−1 + an−1,j + qan−1,j+1,

which is also seen to hold in the j = 1 and j = n cases for all n ≥ 2, upon assuming an,m = 0 if m < 1 or
m > n. Thus, we have

an(v) =

n∑
j=1

an,jv
j−1 = p

n∑
j=2

an−1,j−1v
j−1 +

n−1∑
j=1

an−1,jv
j−1 + q

n−2∑
j=1

an−1,j+1v
j−1
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= pvan−1(v) + an−1(v) + q

n−1∑
j=2

an−1,jv
j−2

= pvan−1(v) + an−1(v) +
q

v
(an−1(v)− an−1,1)

=
(
pv + 1 +

q

v

)
an−1(v)− q

v
an−1(0),

as desired.

Let A(x; v) = A(x; v, p, q) be defined by A(x; v) =
∑
n≥1 an(v)xn. Multiplying both sides of (1) by xn, and

summing over all n ≥ 2, implies

A(x; v) = x+ x
(
pv + 1 +

q

v

)
A(x; v)− qx

v
A(x; 0),

which yields the following functional equation.

Lemma 2.2. We have (
1− (pv + 1)x− qx

v

)
A(x; v) = x− qx

v
A(x; 0). (2)

We have the following explicit formulas for A(x; v) in the cases v = 1 and v = 0.

Theorem 2.1. The generating functions for the joint distributions of the ascents and descents statistics on Un
and Vn for n ≥ 1 are given respectively by

A(x; 1) =
(2p+ 1)x− 1 +

√
1− 2x+ (1− 4pq)x2

2p(1− (p+ q + 1)x)
(3)

and

A(x; 0) =
1− x−

√
1− 2x+ (1− 4pq)x2

2pqx
. (4)

Proof. We apply the kernel method and let v0 = v0(x; p, q) satisfy 1−(pv+1)x− qx
v = 0, i.e., qx−(1−x)v+pxv2 =

0, and hence

v0 =
1− x±

√
1− 2x+ (1− 4pq)x2

2px
.

We select the negative root since only this one will lead to a solution that is analytic at x = 0. Taking v = v0
in (2) gives

A(x; 0) =
v0
q

=
1− x−

√
1− 2x+ (1− 4pq)x2

2pqx
.

Solving for A(x; v) in (2) now implies

A(x; v) =
x(v − v0)

v − (pv + 1)vx− qx
,

and taking v = 1 gives

A(x; 1) =
x(1− v0)

1− (p+ q + 1)x
=

(2p+ 1)x− 1 +
√

1− 2x+ (1− 4pq)x2

2p(1− (p+ q + 1)x)
,

which completes the proof.

By (3), we have

f12(x; q) = A(x; 1, q, 1) =
(2q + 1)x− 1 +

√
1− 2x+ (1− 4q)x2

2q(1− (q + 2)x)
(5)

and

f21(x; q) = A(x; 1, 1, q) =
3x− 1 +

√
1− 2x+ (1− 4q)x2

2(1− (q + 2)x)
. (6)

Since the sum of the number of ascents, descents, and levels is n − 1 in any integral sequence of length n, we
also get

f11(x; q) = (1/q)A(qx; 1, 1/q, 1/q) =
(q + 2)x− 1 +

√
1− 2qx+ (q2 − 4)x2

2(1− (q + 2)x)
. (7)

Note that each of the expressions in (5)–(7) reduces to L(x) when q = 1, as expected.
Given a subword pattern ρ, let totn(ρ) and tot′n(ρ) denote the total number of occurrences of ρ in all the

members of Un and Vn, respectively. We have the following explicit formulas for 12, 21, and 11.
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Corollary 2.1. If n ≥ 1, then

totn(12) = 3n−1 − Ln +

n−1∑
i=1

(Li −Gi−1)3n−i−1,

totn(21) =

n−1∑
i=1

(Li −Gi−1)3n−i−1,

and

totn(11) = (1/2)(3n−1 −Gn−1) +

n−1∑
i=1

(Li −Gi−1)3n−i−1.

Proof. Note that all three formulas are seen to hold for n = 1, so we may assume n ≥ 2. By (5), we have

∂

∂q
f12(x; q) |q=1 =

∂

∂q

(
(2q + 1)x− 1 +

√
1− 2x+ (1− 4q)x2

2q(1− (q + 2)x)

)
q=1

= L(x)

(
x

1− 3x
− 1

)
+

x

1− 3x

(
1− x√

1− 2x− 3x2

)
,

and hence

totn(12) = [xn]
∂

∂q
f12(x; q) |q=1=

n−1∑
i=1

Li3
n−i−1 − Ln + 3n−1 −

n−1∑
i=1

Gi−13n−i−1

= 3n−1 − Ln +

n−1∑
i=1

(Li −Gi−1)3n−i−1.

By (6), we have

[xn]
∂

∂q
f21(x; q) |q=1 = [xn]

(
x

1− 3x
L(x)− x2

(1− 3x)
√

1− 2x− 3x2

)
=

n−1∑
i=1

(Li −Gi−1)3n−i−1,

which implies the second formula. Finally, by (7), we have

[xn]
∂

∂q
f11(x; q) |q=1 = [xn]

(
x

1− 3x
L(x) +

x

2(1− 3x)

(
1− 1− x√

1− 2x− 3x2

))
=

n−1∑
i=1

Li3
n−i−1 +

1

2

(
3n−1 −

n∑
i=1

Gi−13n−i +

n−1∑
i=1

Gi−13n−i−1

)

=

n−1∑
i=1

Li3
n−i−1 +

1

2

(
3n−1 − 2

n−1∑
i=1

Gi−13n−i−1 −Gn−1

)
,

which leads to the third formula and completes the proof.

The generating function A(x; 0) is symmetric in p and q, which may be realized directly by considering the
reversal operation. By (4), we have

g12(x; q) = g21(x; q) = A(x; 0, 1, q) =
1− x−

√
1− 2x− (1− 4q)x2

2qx

and

g11(x; q) = (1/q)A(qx; 0, 1/q, 1/q) =
1− qx−

√
1− 2qx+ (q2 − 4)x

2x
.

Taking q = 1 in both of these formulas gives M(x), as expected.
Differentiating with respect to q, setting q = 1, and extracting the coefficient of xn yields the following

formulas for the totals of the corresponding statistics on Vn.

Corollary 2.2. If n ≥ 1, then tot′n(12) = tot′n(21) = Gn−1 −Mn−1 and tot′n(11) = (1/2)(Gn −Gn−1).
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It should be noted that totn(11) = A132894(n − 1) for n ≥ 1, tot′n(11) = A005717(n − 1) for n ≥ 2, and
tot′n(12) = A014531(n− 2) for n ≥ 3, where A######(m) denotes the OEIS sequence parameterized as in
the indicated entry.

Given λ ∈ Un, consider marking the second letter of some level within λ, or equivalently some h step within
the lattice path (λ). Since there are n − 1 possible positions for the marked step, with all other steps of (λ)
constituting an arbitrary member of Ln−1, it follows that there are (n− 1)Ln−1 h steps altogether in Ln, and
hence levels in Un. Likewise, there are (n − 1)Mn−2 total levels in Vn. Equating these expressions with those
from Corollaries 2.1 and 2.2, and replacing n with n+ 1, yields the following pair of identities.

Corollary 2.3. If n ≥ 1, then

nLn = (1/2)(3n −Gn) +

n∑
i=1

(Li −Gi−1)3n−i

and
nMn−1 = (1/2)(Gn+1 −Gn).

Using Corollaries 2.1 and 2.3, one may obtain explicit formulas without summations for the totals above
on Un for n ≥ 1 as follows: totn(11) = (n − 1)Ln−1, totn(21) = (n − 1)Ln−1 − (1/2)(3n−1 − Gn−1), and
totn(12) = (n− 1)Ln−1 + (1/2)(3n−1 +Gn−1)− Ln.

Taking q = 0 in (7) gives

[xn]f11(x; 0) = [xn]

(
−1

2
+

1 + 2x

2
√

1− 4x2

)
=

{(
2m
m

)
, if n = 2m+ 1;(

2m−1
m

)
, if n = 2m.

To realize this last formula directly, note first that members of U2m+1 containing no levels are synonymous with
lattice paths of length 2m starting from the origin and staying above the x-axis. It is well-known that such
lattice paths number

(
2m
m

)
, see, e.g., [25, A000984], which implies the odd case of the formula. Members of U2m

are synonymous with first-quadrant lattice paths wherein there are 2m− 1 steps. Consider appending either a
u or d to such a path, and note that all first-quadrant paths of length 2m arise uniquely in this manner. Thus,
there are 1

2

(
2m
m

)
=
(
2m−1
m

)
paths of length 2m− 1, which implies the even case of the formula.

We now provide bijective arguments for the tot′n expressions in Corollary 2.2 and seek comparable proofs of
the formulas in Corollary 2.1.

Combinatorial proof of Corollary 2.2:

To find tot′n(21), we count equivalently the d steps within all the members ofMn−1. Upon replacing n by n+1,
we show that the number of d steps altogether inMn is given by Gn−Mn. To do so, we count marked members
of Mn wherein some d step is marked. Let λ ∈ Mn be decomposed as λ = λ′dλ′′, where the marked step is
underlined and λ′′ is possibly empty. Let ν(λ) = r̃ev(λ′)ur̃ev(λ′′), where r̃ev(ρ) for a lattice path ρ consisting
of u, d, and h steps is obtained by reading ρ backwards and replacing each u with d and d with u, leaving all
h steps unchanged. One may verify ν(λ) ∈ Gn −Mn for all λ. Further, it is seen that ν is onto and may be
reversed by considering the position of the rightmost point of minimum height within a member of Gn −Mn.
Since ν is a bijection, it follows that the total number of d steps in members of Mn is given by Gn −Mn, as
desired.

To establish the second formula in Corollary 2.2, it suffices to show that there are in total (1/2)(Gn+1−Gn)
h steps in all the members ofMn. Suppose some h within ρ ∈Mn is marked, which we decompose as ρ = ρ′hρ′′,
where the marked h is underlined and ρ′ or ρ′′ may be empty. Let µ(ρ) = r̃ev(ρ′)dr̃ev(ρ′′)u. Then µ is onto
the subset of Gn+1 whose members end in u and is reversible, upon considering the leftmost point of minimum
height. By subtraction, there are Gn+1 −Gn members of Gn+1 ending in u or d, and hence (1/2)(Gn+1 −Gn)
that end in u, by symmetry. Since µ is a bijection with such members of Gn+1, the formula for tot′n(11) is
established.

Figures 1 and 2 below illustrate the bijections ν and µ applied respectively to the lattice paths λ and ρ in
M12. The marked steps of λ and ρ are indicated in red, with the corresponding steps in ν(λ) and µ(ρ) in green.

We now demonstrate how the well-known two-term Motzkin recurrence given by (n+2)Mn = (2n+1)Mn−1+
3(n− 1)Mn−2 for n ≥ 2 can be derived from the preceding bijective arguments.

Combinatorial derivation of Motzkin recurrence:

We establish the recurrence, rewritten as

4(n− 1)Mn−2 = (n+ 2)Mn − nMn−1 − ((n+ 1)Mn−1 − (n− 1)Mn−2), n ≥ 2. (8)
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From the bijective proof given above for the tot′n(11) formula, we have 2(n− 1)Mn−2 = Gn −Gn−1. Hence, to
establish (8), it suffices to show

(n+ 2)Mn − nMn−1 = 2Gn. (9)

For (9), note first that there are nMn letters within all the members of Vn+1, ignoring the initial 1 in each
word. Classifying each such letter as the second letter in an ascent, descent, or level, we also have that there
are 2(Gn −Mn) + nMn−1 letters which do not start words in all the members of Vn+1, by the combinatorial
argument given for Corollary 2.2. Equating expressions yields (9) and completes the proof of (8), as desired.
For a different combinatorial proof of (9), see [12].
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Figure 2: Lattice paths ρ ∈M12 and µ(ρ) ∈ G13.

3. Distribution of 123 and 321 subwords

Let bn,i,j = bn,i,j(p, q) denote the joint distribution of the statistics on Un,i,j recording the number of occurrences
of the subwords 123 and 321 (marked by p and q, respectively). Let bn,j for n ≥ 1 and 1 ≤ j ≤ n denote the
same distribution on Un,j . Define bn(v) =

∑n
j=1 bn,jv

j−1 for n ≥ 1. To aid in finding the generating function
for the sequence of polynomials bn(v), we define the auxiliary sequences

b′n(v) =

n∑
j=2

bn,j−1,jv
j−1 and b∗n(v) =

n−2∑
j=1

bn,j+1,jv
j−1.

The bn(v), b′n(v), and b∗n(v) satisfy the following system of recurrences.

Lemma 3.1. If n ≥ 2, then
bn(v) = b′n(v) + b∗n(v) + bn−1(v), (10)

b′n(v) = (p− 1)vb′n−1(v) + vbn−1(v), (11)

and

b∗n(v) =
q − 1

v
(b∗n−1(v)− b∗n−1(0)) +

1

v
(bn−1(v)− bn−1(0)), (12)

with b1(v) = 1 and b′1(v) = b∗1(v) = 0.

Proof. We may assume n ≥ 3 since (10)–(12) are seen to hold for n = 2, as b2(v) = v + 1, b′2(v) = v, and
b∗2(v) = 0. Let bn,i,j = 0 if (i, j) /∈ [n − 1] × [n] and bn,j = 0 if j /∈ [n]. We then have bn,j,j = bn−1,j for
1 ≤ j ≤ n− 1,

bn,j−1,j = (p− 1)bn−1,j−2,j−1 + bn−1,j−1, 2 ≤ j ≤ n,

and
bn,j+1,j = (q − 1)bn−1,j+2,j+1 + bn−1,j+1, 1 ≤ j ≤ n− 2.
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If 2 ≤ j ≤ n− 1, then

bn,j = bn,j−1,j + bn−1,j + bn,j+1,j ,

which is also seen to hold for j = 1 and j = n. Multiplying both sides of the last equality by vj−1, and summing
over 1 ≤ j ≤ n, then yields

bn(v) =

n∑
j=2

bn,j−1,jv
j−1 +

n−1∑
j=1

bn−1,jv
j−1 +

n−2∑
j=1

bn,j+1,jv
j−1

= b′n(v) + bn−1(v) + b∗n(v),

which gives (10). Also, for n ≥ 3, we have

b′n(v) = (p− 1)

n∑
j=3

bn−1,j−2,j−1v
j−1 +

n∑
j=2

bn−1,j−1v
j−1 = (p− 1)vb′n−1(v) + vbn−1(v)

and

b∗n(v) = (q − 1)

n−4∑
j=1

bn−1,j+2,j+1v
j−1 +

n−2∑
j=1

bn−1,j+1v
j−1

=
q − 1

v
(b∗n−1(v)− b∗n−1(0)) +

1

v
(bn−1(v)− bn−1(0)),

which gives (11) and (12).

Define the joint distribution generating function B(x; v) = B(x; v, p, q) by B(x; v) =
∑
n≥1 bn(v)xn, and

also B′(x; v) =
∑
n≥2 b

′
n(v)xn and B∗(x; v) =

∑
n≥3 b

∗
n(v)xn. Multiplying both sides of (10)–(12) by xn, and

summing over all n ≥ 2, leads to the following system of functional equations.

Lemma 3.2. We have
(1− x)B(x; v) = x+B′(x; v) +B∗(x; v), (13)

B′(x; v) =
vx

1− (p− 1)vx
B(x; v), (14)

and

B∗(x; v) =
(q − 1)x

v
(B∗(x; v)−B∗(x; 0)) +

x

v
(B(x; v)−B(x; 0)). (15)

By solving the preceding system of functional equations, we obtain an explicit formula for the generating
function of the joint distribution.

Theorem 3.1. The generating functions for the joint distributions of the 123 and 321 subwords on Un and Vn
for n ≥ 1 are given respectively by

B(x; 1) =
x(1− (p− 1)x)(1− v0)

1− (p+ q + 1)x+ (pq + p+ q − 3)x2 − (p− 1)(q − 1)x3
(16)

and
B(x; 0) =

v0
q + (1− q)x

, (17)

where v0 = v0(x; p, q) is given by

v0 =
1− x+ (pq − 1)x2 − (p− 1)(q − 1)x3

2x(p+ (1− p)x)

−
√

(1− x+ (pq − 1)x2 − (p− 1)(q − 1)x3)2 − 4x2(p+ (1− p)x)(q + (1− q)x)

2x(p+ (1− p)x)
.

Proof. By (13) and (14), we have

(1− x)B = x+
vx

1− (p− 1)vx
B +B∗,

and hence

B =
x+B∗

1− x− vx
1−(p−1)vx

=
(1− (p− 1)vx)(x+B∗)

1− x− pvx+ (p− 1)vx2
, (18)
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where the arguments for B(x; v) and B∗(x; v) have been suppressed. By (15), we have

B∗ =
(q − 1)x

v
(B∗ −B∗(0)) +

x

v

(
(1− (p− 1)vx)(x+B∗)

1− x− pvx+ (p− 1)vx2
− x+B∗(0)

1− x

)
,

and thus (
1− (q − 1)x

v
− x(1− (p− 1)vx)

v(1− x− pvx+ (p− 1)vx2)

)
B∗

=
x2(1− (p− 1)vx)

v(1− x− pvx+ (p− 1)vx2)
− x2

v(1− x)
+
xB∗(0)

v

(
1− q − 1

1− x

)
, (19)

where B∗(0) denotes evaluation of B∗(x; v) at v = 0.
Let v0 = v0(x; p, q) satisfy

1− (q − 1)x

v
− x(1− (p− 1)vx)

v(1− x− pvx+ (p− 1)vx2)
= 0,

and thus v0 is as given above. Taking v = v0 in (19) implies

1

v0
B∗(0)

(
1− q − 1

1− x

)
=

x

(1− x)v0
− x(1− (p− 1)xv0)

(1− x− pxv0 + (p− 1)x2v0)v0

=
x

(1− x)v0
+

(q − 1)x

v0
− 1,

where the latter inequality follows from the equation for v0. Hence,

B∗(0) = −x+
1− x

1− (1− q)(1− x)
v0. (20)

By (19) and (20), we have

α(x; v, p, q)B∗ =
x2(1− (p− 1)vx)

1− x− pvx+ (p− 1)vx2
− x2

1− x
+
xB∗(0)

1− x
((1− q)(1− x)− 1)

=
x2(1− (p− 1)vx)

1− x− pvx+ (p− 1)vx2
− x2

1− x
+ x

(
x(1− (1− q)(1− x))

1− x
− v0

)
=

x2(1− (p− 1)vx)

1− x− pvx+ (p− 1)vx2
+ (q − 1)x2 − xv0

=
x2(q + (1− q)x)− (pq − 1)vx3 + (p− 1)(q − 1)vx4

1− x− pvx+ (p− 1)vx2
− xv0,

where α(x; v, p, q) is given by

−x(q + (1− q)x) + (1− x+ (pq − 1)x2 − (p− 1)(q − 1)x3)v − x(p+ (1− p)x)v2

1− x− pvx+ (p− 1)vx2
.

Adding xα(x; v, p, q) to both sides of the last equation gives

α(x; v, p, q)(B∗ + x)

=
x2(q + (1− q)x)− (pq − 1)vx3 + (p− 1)(q − 1)vx4

1− x− pvx+ (p− 1)vx2
− xv0

+
−x2(q + (1− q)x) + x(1− x+ (pq − 1)x2 − (p− 1)(q − 1)x3)v − x2(p+ (1− p)x)v2

1− x− pvx+ (p− 1)vx2

=
x(1− x)v − x2(p+ (1− p)x)v2

1− x− pvx+ (p− 1)vx2
− xv0

=
xv(1− x− x(p+ (1− p)x)v)

1− x− x(p+ (1− p)x)v
− xv0 = x(v − v0),

and hence by (18),

B =
x(1− (p− 1)vx)(v0 − v)

x(q + (1− q)x)− (1− x+ (pq − 1)x2 − (p− 1)(q − 1)x3)v + x(p+ (1− p)x)v2
. (21)

Formulas (16) and (17) now follow respectively from taking v = 1 and v = 0 in (21).
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Letting p = q = 1 in (16) and (17) recovers the formulas for L(x) and M(x), respectively. From (16), we
obtain

f123(x; q) = B(x; 1, q, 1)

=
(1 + (1− q)x)(3(1− q)x2 + (1 + 2q)x− 1 +

√
(1− x− (1− q)x2)2 − 4x2(q + (1− q)x))

2(q + (1− q)x)(1− (2 + q)x− 2(1− q)x2)

and

f321(x; q) = B(x; 1, 1, q) =
(1− q)x2 + 3x− 1 +

√
(1− x− (1− q)x2)2 − 4x2(q + (1− q)x)

2(1− (2 + q)x− 2(1− q)x2)
.

Differentiation with respect to q of the formula for f123(x; q) leads to

totn(123) = Ln−1 − Ln + 3n−2 + (1/2)

n−2∑
i=1

(2Li −Gi +Gi−1)3n−i−2, n ≥ 2.

This expression may be simplified using the fact 2Li = Gi + Gi−1 for i ≥ 1, with a similar proof applying to
the formula for totn(321), which yields the following result.

Corollary 3.1. If n ≥ 2, then

totn(123) = Ln−1 − Ln + 3n−2 +

n−3∑
i=0

Gi3
n−i−3

and
totn(321) = totn(123) + Ln − 2 · 3n−2.

Setting p or q equal to unity in (17) gives

g123(x; q) = g321(x; q) = B(x; 0, 1, q) =
1− x− (1− q)x2 −

√
(1− x− (1− q)x2)2 − 4x2(q + (1− q)x)

2x(q + (1− q)x)
,

which leads to the following result.

Corollary 3.2. If n ≥ 2, then tot′n(123) = tot′n(321) = Mn−2 −Mn−1 + (1/2)(Gn−1 −Gn−2).

Note that tot′n(123) coincides with the sequence A014532(n − 4) for n ≥ 5. We conclude this section by
providing a bijective proof of the prior corollary.

Combinatorial proof of Corollary 3.2:

Note first that 123 and 321 are equally distributed on Vn, by symmetry, and hence their total number of
occurrences is the same. We may assume n ≥ 5, as the formula is seen to hold for n = 2, 3, 4 (it is zero in each
case). Replacing n by n + 1, we count occurrences of 321 in Vn+1, or equivalently, occurrences of d2 in Mn

where n ≥ 4. Suppose an occurrence of d2 in π ∈ Mn is marked, which we decompose as π = π′d2π′′, where
the marked d2 is underlined. Let γ(π) = r̃ev(π′)dr̃ev(π′′). Let T denote the set of lattice paths from (0, 0) to
(n− 1,−3) using u, d, and h steps. One may verify that γ(π) ∈ T for all π, and is onto T and reversible, upon
considering the position of the leftmost point of minimum height. Thus, to complete the proof, it suffices to
show

|T | = (1/2)(Gn −Gn−1)− (Mn −Mn−1). (22)

To do so, note first that there are (1/2)(Gn−Gn−1) members of Gn starting with u, and of these, Mn−Mn−1
belong to Mn. Thus, by subtraction, the right-hand side of (22) enumerates members of Gn starting with u
and dipping below the x-axis at least once, the subset of Gn of which we denote by S. Let ρ ∈ S be decomposed
as ρ = uρ′ρ′′, where ρ′ ends at the leftmost d step of ρ having final height −1. Define δ(ρ) = ρ′r̃ev(ρ′′) and note
δ(ρ) ∈ T for all ρ. Further, the mapping δ is seen to be onto T and reversible, upon considering the position
of the leftmost d step terminating at height −2. Thus, δ provides a bijection between the sets S and T , which
implies (22) and completes the proof.

Figures 3 and 4 illustrate the bijections γ and δ applied respectively to π ∈M12 and ρ ∈ S. The marked d2

of π and the section ρ′ of ρ are indicated in red, with the corresponding steps in γ(π) and δ(ρ) in green.
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Figure 3: Lattice paths π ∈M12 and γ(π) ∈ T .

-

6

�
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp�@

@ �
�
�@

ρ = udhdud2hu3d

-6pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp�@
@
@ �

�@
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Figure 4: Lattice paths ρ ∈ S and δ(ρ) ∈ T where n = 12.

4. Subwords with repeated letters

4.1 The patterns 112 and 212

Let dn,i,j = dn,i,j(p, q) denote the joint distribution of 112 and 212 on Un,i,j , and dn,j the comparable distribution
on Un,j . Assume dn,i,j or dn,j to be zero whenever the corresponding subset of Un is empty. Define dn(v) =∑n
j=1 dn,jv

j−1 for n ≥ 1 and the auxiliary sequence d′n(v) =
∑n
j=2 dn,j−1,jv

j−1 for n ≥ 2.
The sequences dn(v) and d′n(v) satisfy the following system of intertwined recurrences.

Lemma 4.1. We have

dn(v) = d′n(v) + dn−1(v) +
1

v
(dn−1(v)− dn−1(0)), n ≥ 2, (23)

and
d′n(v) = vd′n−1(v) + pvdn−2(v) + q(dn−2(v)− dn−2(0)), n ≥ 3, (24)

with d1(v) = 1 and d′2(v) = v.

Proof. The initial conditions and the n = 2 case of (23) are readily verified, so we may assume n ≥ 3. Considering
the penultimate letter within a member of Un,j implies

dn,j = dn,j−1,j + dn,j,j + dn,j+1,j = dn,j−1,j + dn−1,j + dn−1,j+1, 1 ≤ j ≤ n.

This yields

dn(v) =

n∑
j=2

dn,j−1,jv
j−1 +

n−1∑
j=1

dn−1,jv
j−1 +

n−2∑
j=1

dn−1,j+1v
j−1

= d′n(v) + dn−1(v) +
1

v
(dn−1(v)− dn−1(0)).

Further, considering the antepenultimate letter within a member of Un,j−1,j , we have

d′n(v) =

n∑
j=2

dn,j−1,jv
j−1

=

n∑
j=3

dn−1,j−2,j−1v
j−1 + p

n−1∑
j=2

dn−2,j−1v
j−1 + q

n−2∑
j=2

dn−2,jv
j−1

= vd′n−1(v) + pvdn−2(v) + q(dn−2(v)− dn−2(0)),

which completes the proof.
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Define the generating functions D(x; v) and D′(x; v) by

D(x; v) =
∑
n≥1

dn(v)xn and D′(x; v) =
∑
n≥2

d′n(v)xn.

From (23) and (24), one obtains(
1− x− x

v

)
D(x; v) = x+D′(x; v)− x

v
D(x; 0),

D′(x; v) =
x2

1− vx
(v + (pv + q)D(x; v)− qD(x; 0)) .

Substituting the second equation into the first, and rearranging, leads to the following functional equation.

Lemma 4.2. We have(
1− x− x

v
− (pv + q)x2

1− vx

)
D(x; v) =

x

1− vx
−
(
x

v
+

qx2

1− vx

)
D(x; 0). (25)

Solving (25) yields the following result.

Theorem 4.1. The generating functions for the joint distributions of the 112 and 212 subwords on Un and Vn
for n ≥ 1 are given respectively by

D(x; 1) =
−(q − 1)2x3 + 2(p− q)x2 + (q + 2)x− 1

2(q + (p− q)x)(1− 3x+ (2− p− q)x2)

+
(1 + (q − 1)x)

√
(1− x− (q − 1)x2)2 − 4x2(1 + (p− 1)x)

2(q + (p− q)x)(1− 3x+ (2− p− q)x2)
(26)

and

D(x; 0) =
1− x+ (q − 1)x2 −

√
(1− x− (q − 1)x2)2 − 4x2(1 + (p− 1)x)

2x(q + (p− q)x)
. (27)

Proof. Let v0 = v0(x; p, q) satisfy 1− x− x
v −

(pv+q)x2

1−vx = 0, and hence it is given by

v0 =
1− x− (q − 1)x2 −

√
(1− x− (q − 1)x2)2 − 4x2(1 + (p− 1)x)

2x(1 + (p− 1)x)
.

Letting v = v0 in (25), and solving for D(x; 0), yields

D(x; 0) =
v0

1 + (q − 1)xv0
.

Note

1

v0
=

1− x− (q − 1)x2 +
√

(1− x− (q − 1)x2)2 − 4x2(1 + (p− 1)x)

2x
,

and thus

D(x; 0) =
1

1
v0

+ (q − 1)x

=
1− x+ (q − 1)x2 −

√
(1− x− (q − 1)x2)2 − 4x2(1 + (p− 1)x)

2x(q + (p− q)x)
,

which gives (27).
Taking v = 1 in (25), we have(

1− 2x− (p+ q)x2

1− x

)
D(x; 1) =

x

1− x
−
(
x+

qx2

1− x

)
D(x; 0),

and hence

(1− 3x+ (2− p− q)x2)D(x; 1) = x− (x+ (q − 1)x2)D(x; 0)
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= x−
(1 + (q − 1)x)(1− x+ (q − 1)x2 −

√
(1− x− (q − 1)x2)2 − 4x2(1 + (p− 1)x))

2(q + (p− q)x)

=
−(q − 1)2x3 + 2(p− q)x2 + (q + 2)x− 1

2(q + (p− q)x)

+
(1 + (q − 1)x)

√
(1− x− (q − 1)x2)2 − 4x2(1 + (p− 1)x)

2(q + (p− q)x)
,

which implies (26).

Taking p or q to be unity in (26) and (27) gives the generating functions of the corresponding univariate
distributions on Un or Vn for 112 and 212. Differentiation of these formulas with respect to q, and setting q = 1,
gives the following expressions for the totals on Un and Vn.

Corollary 4.1. If n ≥ 2, then

totn(112) = 3n−2 − Ln−1 +

n−2∑
i=1

(Li −Gi−1)3n−i−2

and

totn(212) = Ln−1 − Ln + (1/2)(3n−2 +Gn−1) +

n−2∑
i=1

(Li −Gi−1)3n−i−2.

Corollary 4.2. If n ≥ 2, then tot′n(112) = Gn−2−Mn−2 and tot′n(212) = Mn−2−Mn−1+(1/2)(Gn−1−Gn−2).

Comparing the last two results with Corollaries 2.1 and 2.2, we have totn(112) = totn−1(12) and tot′n(112) =
tot′n−1(12) for all n ≥ 2. This can be explained directly by distinguishing some ascent within a member of Un−1
or Vn−1 and inserting an extra copy of the smaller letter in the ascent directly prior to it. A simpler formula
for totn(212) can be realized via the apparently new identity

Ln−1 − Ln + (1/2)(3n−2 +Gn−1) +

n−2∑
i=1

(Li −Gi−1)3n−i−2 = (n− 2)Ln−2 + 2Ln−1 − Ln, n ≥ 2,

which may be shown by computing the generating function of each side.
It is possible to give a combinatorial explanation of this latter expression for totn(212) as well as the one

above for tot′n(212).

Combinatorial proof of totn(212) and tot′n(212) formulas:

Both formulas are seen to hold for n = 2, 3, 4, so we may assume n ≥ 5. First note that the number of 212’s in
Un equals the number of non-1 letters in Un−2, upon inserting a− 1, a directly after some letter a > 1 within an
arbitrary member of Un−2 and marking the resulting occurrence of 212. By a return within a member of Lm, we
mean an h or d step terminating on the x-axis. Equivalently, we find the number of steps within members of Ln−2
not corresponding to returns, which is given by (n − 3)Ln−2 − (# returns in Ln−2). To establish the formula
for totn(212), it then suffices to show that the number of returns in Lm is given by am = Lm+2 − 2Lm+1 −Lm
for all m ≥ 2.

To do so, let P denote the subset of Lm+2 consisting of those lattice paths π expressible as π = uπ′dπ′′,
where π′ is a non-empty Motzkin path. Let α(π) = π′π′′, where we mark the return within α(π) corresponding
to the final step of π′. Then α is a bijection from P to the set of marked members of Lm wherein some return
is marked. Thus, to complete the proof of the formula for totn(212), one can show |P| = am for all m ≥ 2. To
do so, first note that there are Lm+1 members of Lm+2 starting with h and the same number that start u but
do not return to the x-axis. Also, there are Lm additional members of Lm+2 which start ud. Combining the
preceding cases gives 2Lm+1 + Lm members of Lm+2 − P altogether, which implies |P| = am, as desired.

To establish the formula for tot′n(212) (with n replaced by n + 1), first note that the number of 212’s in
Vn+1 equals the number of valleys (i.e., occurrences of du) within the members of Mn. Suppose that a valley
of some ρ ∈ Mn is marked and we decompose ρ as ρ = ρ′duρ′′, where the marked valley is underlined. Let
β(ρ) = r̃ev(ρ′)dr̃ev(ρ′′). Note that β is onto the set R consisting of the lattice paths from (0, 0) to (n− 1,−1)
using u, d, and h steps and having minimum height −2 or less, and may be reversed by considering the position of
the leftmost step of minimum height. Thus, the total number of valleys inMn is given by |R|. To complete the
proof, it suffices to show |R| = |T |, where T is the set of lattice paths from (0, 0) to (n−1,−3) considered in the
combinatorial proof of Corollary 3.2 above and shown there to have cardinality Mn−1−Mn+(1/2)(Gn−Gn−1).
Let τ ∈ R be decomposed as τ = τ ′dτ ′′, where the d denotes the leftmost step of τ terminating at height −2.
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Let ref(τ ′′) be obtained from τ ′′ by replacing each u with d and d with u, leaving all h steps unchanged (i.e.,
reflecting the subpath τ ′′ in the line y = −2). Let θ(τ) = τ ′dref(τ ′′). Then θ is seen to provide a bijection
between R and T , which completes the proof.

Figure 5 illustrates the bijections β and θ from the preceding proof applied in that order to ρ ∈M12 wherein
the marked du in ρ is indicated in red. The steps corresponding to the marked du in ρ within the lattice paths
β(ρ) and θ(β(ρ)) are indicated in green, with the leftmost step ending at height −2 in blue.
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Figure 5: Lattice paths ρ ∈M12, β(ρ) ∈ R, and θ(β(ρ)) ∈ T .

4.2 The patterns 121 and 221

Let rn,i,j = rn,i,j(p, q) denote the joint distribution of 121 and 221 on Un,i,j , and rn,j the comparable distribution

on Un,j . Define rn(v) =
∑n
j=1 rn,jv

j−1 for n ≥ 1 and r∗n(v) =
∑n−2
j=1 rn,j+1,jv

j−1 for n ≥ 3. Let R(x; v) =∑
n≥1 rn(v)xn and R∗(x; v) =

∑
n≥3 r

∗
n(v)xn.

Proceeding similarly as in the prior section, one can establish the following results.

Lemma 4.3. We have
rn(v) = r∗n(v) + (1 + v)rn−1(v), n ≥ 2,

and

r∗n(v) = prn−2(v) +
1

v
(r∗n−1(v)− r∗n−1(0)) +

q

v
(rn−2(v)− rn−2(0)), n ≥ 3,

with r1(v) = 1 and r∗2(v) = 0.

Lemma 4.4. We have
(1− (1 + v)x)R(x; v) = x+R∗(x; v)

and (
1− x

v

)
R∗(x; v) = x2

(
p+

q

v

)
R(x; v)− qx2

v
R(x; 0)− x

v
R∗(x; 0).

Theorem 4.2. The generating functions for the joint distributions of the 121 and 221 subwords on Un and Vn
for n ≥ 1 are given respectively by

R(x; 1) =
3x− 1− (1− p)x2 +

√
(1− x+ (1− p)x2)2 − 4x2(1− (1− q)x)

2(1− 3x+ (2− p− q)x2)

and

R(x; 0) =
1− x+ (1− p)x2 −

√
(1− x+ (1− p)x2)2 − 4x2(1− (1− q)x)

2x(1− (1− q)x)
.

Corollary 4.3. If n ≥ 2, then

totn(121) =

n−3∑
i=0

Gi3
n−i−3

and

totn(221) =

n−2∑
i=1

(Li −Gi−1)3n−i−2.

Corollary 4.4. If n ≥ 2, then tot′n(121) = (1/2)(Gn−1 −Gn−2) and tot′n(221) = Gn−2 −Mn−2.
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Comparing the last two results with Corollaries 2.1 and 2.2 shows totn(221) = totn−1(21) and tot′n(221) =
tot′n−1(21) for all n ≥ 2, which may be explained directly as before. Further, for n ≥ 3, we have that the
total number of 121’s in Un and Vn equals the number of letters in Un−2 and Vn−2, respectively, upon inserting
a+ 1, a right after any letter a within an arbitrary member of either set and marking the resulting occurrence
of 121. Since there are (n − 2)Ln−2 letters altogether in the members of Un−2, equating this expression for
totn(121) with the one from Corollary 4.3, and replacing n by n+ 2, yields the following identity:

nLn =

n−1∑
i=0

Gi3
n−i−1, n ≥ 1.

Likewise, there are (n− 2)Mn−3 total letters in the members of Vn−2, and equating this with the expression for
tot′n(121) from Corollary 4.4 recovers the second identity in Corollary 2.3.

4.3 The patterns 111, 122, and 211

Let sn,i,j = sn,i,j(p, q, r) denote the joint distribution of 111, 122, and 211 on Un,i,j (marked by p, q, and r,
respectively), and let sn,j denote the comparable distribution on Un,j . Define sn(v) =

∑n
j=1 sn,jv

j−1 for n ≥ 1

and s′n(v) =
∑n−1
j=1 sn,j,jv

j−1 for n ≥ 2. Let S(x; v) =
∑
n≥1 sn(v)xn and S′(x; v) =

∑
n≥2 s

′
n(v)xn.

Proceeding as before, one can prove the following results.

Lemma 4.5. We have

sn(v) = s′n(v) + vsn−1(v) +
1

v
(sn−1(v)− sn−1(0)), n ≥ 2,

and
s′n(v) = ps′n−1(v) + qvsn−2(v) +

r

v
(sn−2(v)− sn−2(0)), n ≥ 3,

with s1(v) = s′2(v) = 1.

Lemma 4.6. We have (
1− vx− x

v

)
S(x; v) = x+ S′(x; v)− x

v
S(x; 0)

and

(1− px)S′(x; v) = x2 + x2
(
qv +

r

v

)
S(x; v)− rx2

v
S(x; 0).

Theorem 4.3. The generating functions for the joint distributions of the 111, 122, and 211 subwords on Un
and Vn for n ≥ 1 are given respectively by

S(x; 1) =
(1 + (1− p)x)(2(q − p)x2 + (2 + p)x− 1)

2(1 + (q − p)x)(1− (2 + p)x+ (2p− q − r)x2)

+
(1 + (1− p)x)

√
(1− px)2 − 4x2(1 + (q − p)x)(1 + (r − p)x)

2(1 + (q − p)x)(1− (2 + p)x+ (2p− q − r)x2)

and

S(x; 0) =
(1 + (1− p)x)(1− px−

√
(1− px)2 − 4x2(1 + (q − p)x)(1 + (r − p)x))

2x(1 + (q − p)x)(1 + (r − p)x)
.

Corollary 4.5. If n ≥ 2, then

totn(111) = totn−1(11), totn(122) = totn−1(12), and totn(211) = totn−1(21).

Corollary 4.6. If n ≥ 2, then

tot′n(111) = tot′n−1(11) and tot′n(122) = tot′n(211) = tot′n−1(12).

The formulas in the preceding two corollaries follow from differentiation of the respective generating functions
(and comparison with earlier results) or by direct reasoning. Differentiating S(x; 1) with respect to p, and setting
p = q = r = 1, one gets

∂

∂q
f111(x; q) |q=1=

x(1− 2x)

1− 3x
L(x) +

x

2(1− 3x)

(
1− 2x− 1− x− 4x2√

1− 2x− 3x2

)
.
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Extracting the coefficient of xn then gives

totn(111) = Ln−1 − 3n−2 +

n−2∑
i=1

Li3
n−i−2 − (1/2)

n−1∑
i=2

(Gi −Gi−1 − 4Gi−2)3n−i−1, n ≥ 2.

Equating this expression with the obvious formula totn(111) = (n− 2)Ln−2 gives a further identity relating Ln
and Gn.

As special cases of the main results of the prior sections, one obtains the formulas in Tables 1 and 2 below
for the generating functions fτ (x; q) and gτ (x; q) of the corresponding univariate distributions.

τ fτ (x; q)

11
(q+2)x−1+

√
1−2qx+(q2−4)x2

2(1−(q+2)x)

12
(1+2q)x−1+

√
1−2x+(1−4q)x2

2q(1−(q+2)x)

21
3x−1+

√
1−2x+(1−4q)x2

2(1−(2+q)x)

111
2(1−q)x2+(2+q)x−1+

√
(1−qx)2−4x2(1+(1−q)x)2

2(1−(2+q)x−2(1−q)x2)

112
2(q−1)x2+3x−1+

√
1−2x−3x2−4(q−1)x3

2(1+(q−1)x)(1−3x−(q−1)x2)

121
(q−1)x2+3x−1+

√
(1−x−(q−1)x2)2−4x2

2(1−3x−(q−1)x2)

122 same as 112

123
(1+(1−q)x)(3(1−q)x2+(1+2q)x−1+

√
(1−x−(1−q)x2)2−4x2(q+(1−q)x))

2(q+(1−q)x)(1−(2+q)x−2(1−q)x2)

211
3x−1+

√
1−2x−3x2+4(1−q)x3

2(1−3x+(1−q)x2)

212
−(1−q)2x3+2(1−q)x2+(2+q)x−1+(1−(1−q)x)

√
(1−x+(1−q)x2)2−4x2

2(q+(1−q)x)(1−3x+(1−q)x2)

221 same as 211

321
(1−q)x2+3x−1+

√
(1−x−(1−q)x2)2−4x2(q+(1−q)x)

2(1−(2+q)x−2(1−q)x2)

Table 1: The generating functions fτ (x; q) for all subwords τ of length two or three.

τ gτ (x; q)

11
1−qx−

√
1−2qx+(q2−4)x

2x

12
1−x−

√
1−2x+(1−4q)x2

2qx

21 same as 12

111
1−qx−

√
(1−qx)2−4x2(1+(1−q)x)2
2x(1+(1−q)x)

112
1−x−

√
1−2x−3x2−4(q−1)x3

2x(1+(q−1)x)

121
1−x+(1−q)x2−

√
(1−x+(1−q)x2)2−4x2

2x

122 same as 112

123
1−x−(1−q)x2−

√
(1−x−(1−q)x2)2−4x2(q+(1−q)x)
2x(q+(1−q)x)

211 same as 112
212 same as 123
221 same as 112
321 same as 123

Table 2: The generating functions gτ (x; q) for all subwords τ of length two or three.

5. Concluding remarks

From Table 1, one has the following pair of non-trivial equivalences on Un.

Theorem 5.1. The 211 and 221 subword patterns have equal distributions on Un for all n ≥ 1, as do the
patterns 112 and 122.
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Proof. To show the first equivalence bijectively, suppose π = π1 · · ·πn ∈ Un. By a (decreasing) block within π,
we mean a subsequence B of consecutive letters πa · · ·πb within π such that πa ≥ πa+1 ≥ · · · ≥ πb with πa > πb
and that is not strictly contained within any other weakly decreasing string of letters. Note that B a block
implies a = 1 or a > 1 with πa−1 < πa and either b = n or b < n with πb+1 > πb. Suppose that the distinct
letters of a block B of π are given by x1 > · · · > xr for some r ≥ 2, with xi for each i occurring exactly mi times
in B. That is, B = xm1

1 · · ·xmrr . We replace the sequence of letters comprising the block B with the sequence
B∗ = xmr1 xm2

2 · · ·x
mr−1

r−1 xm1
r , and perform this operation on each block of π. Let π∗ denote the resulting member

of Un.
Let U (a,b)

n denote the subset of Un whose members contain a occurrences of the subword 211 and b occurrences
of 221. Then the mapping π 7→ π∗ is an involution on Un which maps U (a,b)

n to U (b,a)
n , and vice versa, for all

a and b. To see this, suppose that an arbitrary block B within π contains exactly k occurrences of 211 and `
occurrences of 221. Then we have that k and ` equal respectively the number of indices i ∈ [2, r] and i ∈ [r− 1]
such that mi > 1. Thus, the block B∗ within π∗ is seen to contain ` and k occurrences of 211 and 221,

respectively. Since every occurrence of either pattern is contained in some block, it follows that π ∈ U (a,b)
n for

some a and b implies π∗ ∈ U (b,a)
n , which completes the proof of the first equivalence. The second can be shown

in a similar manner by considering increasing, instead of decreasing, blocks.

Note that the pair of equivalences in Theorem 5.1 also holds for Vn since the mapping π 7→ π∗ preserves
final letters. All other equivalences of subword patterns on Vn may be explained using the reversal operation
(except for the one between 123 and 212). In particular, the four patterns in Theorem 5.1 are equivalent on
Vn. Further, combining the reversal operation with the mapping π 7→ π∗ accounts for the symmetry of q and
r witnessed by the generating function formula for S(x; 0) in Theorem 4.3. Finally, to realize the equivalence
of 123 and 212 on Vn, note that it is the same as the equivalence of the statistics recording the number of uu’s
and du’s on Mn−1. The latter equidistribution is true due to a previous bijection of Callan [9].
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