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Abstract: We give a cyclic sieving phenomenon for symplectic λ-tableaux SP (λ, 2m), where λ is a partition
of an odd integer n and gcd(m, p) = 1 for any odd prime p ≤ n. We use the crystal structure on Kashiwara-
Nakashima symplectic tableaux to get a cyclic sieving action as the product σ of simple reflections in the Weyl
group. The cyclic sieving polynomial is the q-anologue of the hook-content formula for symplectic tableaux.
More generally, we give a CSP for symplectic skew tableaux with analogous conditions on the shape and a cyclic
group action that rotates tableaux weights in a way motivated by the σ-action.
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1. Introduction

The cyclic sieving phenomenon (CSP) was introduced by Reiner, Stanton, and White in [28]. Let X be a finite
set, 〈g〉 a cyclic group of order n that acts on X and f(q) ∈ Z[q]. The triple (X, 〈g〉, f(q)) exhibits the cyclic
sieving phenomenon if, for ω a primitive nth root of unity,

|{x ∈ X | gd · x = x}| = f(ωd),

for all d ≥ 0. Since then, CSPs have been widely studied in various settings. For a 2011 survey see [30].
Numerous researchers have investigated cyclic sieving phenomena for tableaux (see, for instance, [1–3,5,11,

13, 21, 22, 24, 26, 27, 29, 38]). Using the cyclic action given by Schützenberger’s promotion operator ∂ [32, 33] on
rectangular semistandard tableaux SSY T (λ,m) with entries in {1, 2, . . . ,m}, Rhoades proved that the triple

(SSY T (λ,m), 〈∂〉, q−κ(λ)sλ(1, q, . . . , qm−1))

exhibits the CSP. Here sλ(1, q, . . . , qm−1) is a principal specialization of the Schur polynomial and κ(λ) =∑
i(i− 1)λi. The above result was also proved in [38] using crystal base theory. As well, CSPs have been given

for hook shapes [5] and for stretched hook shapes [2]. In [22], the authors show that a CSP can be found for
Schur polynomials and more general shapes, but the group action is unknown.

Given a finite-dimensional simple complex Lie algebra g with irreducible highest weight Uq(g)-module Vq(λ),
the crystal base B(λ) reflects the structure of the Uq(g)-module Vq(λ) in a combinatorial way and so reveals
information about the structure of the irreducible highest weight g-module V (λ). Kashiwara and Nakashima
gave Young tableaux realizations of crystal bases B(λ) for classical simple Lie algebra types in [17]. Essentially
this is a description of each B(λ) as a set of tableaux of shape λ satisfying certain conditions. For Cartan type
Am−1, these are the usual semistandard tableaux, but for other Cartan types, the tableaux descriptions are
more complicated.

Oh and Park [21] employed the cyclic action c arising from the Uq(slm)-crystal structure for semistandard
tableaux to prove that

(SSY T (λ,m), 〈c〉, q−κ(λ)sλ(1, q, . . . , qm−1))

exhibits the CSP when `(λ) (the length of λ) is less than m and gcd(m, |λ|) = 1. This result was extended to
skew shapes in [1]. The action arising from the crystal structure of a Uq(g)-module was further studied in [22].
When g is type Am−1, `(λ) < m, and there is at least one fixed point under the action of c, they showed that
(SSY T (λ,m), 〈c〉, sλ(1, q, q2, . . . , qm−1)) exhibits the CSP if and only if λ = (am)b where b = 1 or b = m− 1.
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In this paper, we consider CSPs for symplectic tableaux. There are a few different types of symplectic
tableaux, which index bases for irreducible sp(2m)-modules V (λ), where `(λ) ≤ m (see [37] or [36]). Symplectic
King tableaux (see [18,19]) are relatively easy to describe. De Concini described a different version of symplectic
tableaux in [8] and Sheats gave a weight-preserving bijection between De Concini and King tableaux in [34].
Kashiwara and Nakashima described symplectic tableaux endowed with a crystal structure in [17]. These are
related to De Concini tableaux through a straightforward bijection.

The highest weight Uq(sp(2m))-crystal B(λ) with highest weight λ can be realized as the set of Kashiwara-
Nakashima symplectic tableaux SP (λ, 2m) of shape λ. The crystal structure leads to a cyclic action on
SP (λ, 2m) given by the product σ = σ1σ2 · · ·σm of simple reflection operators in the Weyl group and G = 〈σ〉
has order 2m.

We prove our main results in the general situation for KN-skew symplectic tableaux SP (λ/µ, 2m) coupled
with any cyclic group action, with group order 2m, such that a generator takes tableaux weights (χ1, . . . , χm)
to (−χm, χ1, . . . , χm−1). When the skew shape λ/µ has n boxes, where n is odd, and gcd(m, p) = 1 for any odd
prime p ≤ n, we prove that every orbit under such an action has order 2m in Theorem 5.1. As a corollary, this
holds for SP (λ, 2m) with the action of 〈σ〉.

As is the case for semistandard tableaux, there is a hook-content formula that counts the number of sym-
plectic tableaux (see [7, 10]) and we use its q-analogue fλsp(q) to give a CSP for SP (λ, 2m). We give a nice

form for fλsp(q) in Section 4. Next, we partition weights into sets of size 2m using an action on the weights
induced by the subgroup of Sm corresponding to the dihedral group of order 2m. This allows us to give an
appropriate form in Theorem 5.2 for the polynomial X(q) that we use to give a CSP for SP (λ/µ, 2m). When
µ = ∅, X(q) = qκ(λ)fλsp(q).

When |λ/µ| is odd and gcd(m, p) = 1 for odd primes p ≤ n, SP (λ/µ, 2m), with a cyclic group action
satisfying the properties described above, and polynomial X(q) gives a CSP, which we prove in Theorem 5.3.
As a corollary, for λ a partition of an odd integer n and gcd(m, p) = 1 for any odd prime p ≤ n, the following
is a CSP-triple:

(SP (λ, 2m), 〈σ〉, fλsp(q)).

In [23], the authors prove another new CSP for Cartan type C. They prove a CSP for the set of highest
weight elements of weight zero in the n-fold tensor power of the type Cm crystal. In [25], the authors gave
a correspondence in this setting between the highest weight elements of weight zero and chord diagrams that
intertwines promotion and rotation.

We begin the paper with a review of crystal base theory, with a particular focus on Cartan type Cm. Next,
we discuss Kashiwara-Nakashima tableaux and the associated crystal action in Section 3. In Section 4 we prove
results concerning the q-analogue of the symplectic hook-content formula. Section 5 is devoted to our main
results, where we prove our cyclic sieving phenomenon.

2. Crystal bases

In this section, we review crystal base theory. For an introduction to Lie algebras, the reader is referred to [9]
or [15]. For a more thorough coverage of crystal bases, see [6] and [14].

Let g be a finite-dimensional simple complex Lie algebra and let Uq(g) be its quantum group. Let Φ be
its root system, with index set I, weight lattice Λ and simple roots {αi | i ∈ I}. The co-root of α ∈ Φ is

α∨ =
2α

(α, α)
.

We can associate a Kashiwara crystal (crystal for short) to the root system. This is a set B together with
maps wt : B → Λ, ei, fi : B → B t {0} and εi, φi : B → Z t {−∞} satisfying the following properties:

1. fi(b) = b′ if and only if b = ei(b
′) for all b, b′ ∈ B, i ∈ I;

2. wt(ei(b)) = wt(b) + αi, if ei(b) ∈ B, and wt(fi(b)) = wt(b)− αi, if fi(b) ∈ B;

3. εi(ei(b)) = εi(b)− 1 and φi(ei(b)) = φi(b) + 1 if ei(b) ∈ B;

4. εi(fi(b)) = εi(b) + 1 and φi(fi(b)) = φi(b)− 1 if fi(b) ∈ B;

5. φi(b) = εi(b) + (wt(b), α∨i ) for all i ∈ I;

6. If φi(b) = −∞ for b ∈ B, then ei(b) = fi(b) = 0.

The crystal graph of B is a directed graph, which is given by taking B as the set of vertices and defining an

edge b
i→ b′ if and only if fi(b) = b′ for i ∈ I.

There is a crystal B(λ) associated to each irreducible highest weight Uq(g)-module Vq(λ) that reflects its
structure. Kashiwara and Nakashima gave Young tableaux realizations of crystal bases B(λ) for classical simple
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Lie algebra types in [17]. In this paper we focus on Cartan type Cm and, unless stated otherwise, when we
refer to the crystal B(λ), we mean the crystal of the irreducible highest weight Uq(sp(2m))-module with highest
weight λ.

Example 2.1. The type Cm (m ≥ 2) finite-dimensional Lie algebra can be realized as the symplectic Lie algebra
sp(2m,C). If ei = (0, . . . , 1, . . . , 0) denotes the unit vector with one in the ith position, then

Φ = {±ei ± ej | i < j} ∪ {±2ei},

and the set of positive roots are
Φ+ = {ei ± ej | i < j} ∪ {2ei}.

The weight lattice is Λ = Zm and a weight λ = (λ1, . . . , λm) is dominant if and only if λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0.
Let αi = ei − ei+1, for 1 ≤ i ≤ m− 1 and let αm = 2em. Then {α1, . . . , αm−1, αm} is the set of simple roots,
which is a basis for Φ, and the fundamental weights are ωi = e1 + e2 + · · ·+ ei, 1 ≤ i ≤ m. The Weyl group for
sp(2m) is the hyperoctahedral group, which is the group of signed permutations π of {±1,±2, . . . ,±m}, where
π(−i) = −π(i) for 1 ≤ i ≤ m.

The standard Cm-crystal B(1) has crystal graph and crystal operator as follows:

1
1−→ 2

2−→ · · · m−1−→ m
m−→ m

m−1−→ · · · 2−→ 2
1−→ 1

fi

(
j

)
=


i+1 if j = i and 1 ≤ i ≤ m− 1

i if i = j = m or j = i+ 1

0 otherwise

As well, wt
(

i

)
= ei, wt

(
i

)
= −ei, φi(x) = max{k ∈ Z≥0 | fki (x) 6= 0} and εi(x) = max{k ∈ Z≥0 |

eki (x) 6= 0}.

The tensor product B⊗C of two crystals with the same underlying root system has a crystal structure with
wt(x⊗ y) = wt(x) + wt(y), for x ∈ B, y ∈ C, and tensor product formula

fi (x⊗ y) =

{
fi (x)⊗ y if φi (y) ≤ εi (x)

x⊗ fi (y) otherwise

ei (x⊗ y) =

{
x⊗ ei (y) if φi (y) ≥ εi (x)

ei (x)⊗ y otherwise
,

where φi (x⊗ y) = φi (x)+max(0, φi (y)−εi (x)), εi (x⊗ y) = εi (y)+max(0, εi (x)−φi (y)). (The above coincides
with the tensor product rule used in [6], but is slightly different than the tensor product rule in [14].)

The procedure for applying fi to an element of B(1)⊗k can be determined combinatorially using the (sym-

plectic) signature rule. If x1 ⊗ x2 ⊗ · · · ⊗ xk ∈ B(1)⊗k, then

fi

(
x1 ⊗ x2 ⊗ · · · ⊗ xk

)
= x1 ⊗ x2 ⊗ · · · ⊗ fi

(
xj

)
⊗ · · · ⊗ xk

where xj is determined as follows:

1. Place a − above xs if xs = i or xs = i+ 1 and place a + above xs if xs = i or xs = i + 1. If every − is
left of every + then xj is equal to the rightmost xs that is labeled with −.

2. Otherwise, bracket a + with a − to its right so that there are no +’s or −’s in between.

3. Continue bracketing +’s with −’s with no unbracketed +’s or −’s in between until all unbracketed −’s are
left of unbracketed +’s.

4. Choose xj to be the rightmost unbracketed −. If there are no unbracketed −’s, the result is 0.

Example 2.2. To determine f1

(
1 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 2 ⊗ 1

)
, bracket as follows:

−

1 ⊗
−

2 ⊗
(+

1 ⊗
(+

2 ⊗
−)

2 ⊗
−)

1 , so

f1

(
1 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 2 ⊗ 1

)
= 1 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 2 ⊗ 1 .
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3. Kashiwara-Nakashima (symplectic) tableaux

Crystals of tableaux for type Cm are constructed by embedding Kashiwara-Nakashima tableaux (KN-tableaux)
into tensor powers of the standard crystal.

A partition λ of a positive integer n is a k-tuple λ = (λ1, . . . , λk), where λ1 ≥ λ2 ≥ · · · ≥ λk > 0 and

|λ| =
∑k
i=1 λi = n. The length of λ is `(λ) = k and the Young diagram of shape λ is given by arranging n boxes

in k left-justifed rows with λi boxes in the ith row. The conjugate of λ is the partition λt = (λt1, λ
t
2, ..., λ

t
r)

where λti is the number of boxes in the ith column of the Young diagram of shape λ.
A semistandard tableau of shape λ is a filling of the Young diagram of shape λ with positive integers such

that the entries in each row are weakly increasing from left to right and the entries in each column are strictly
increasing from top to bottom. The set of semistandard tableaux of a given shape λ admits a Uq(sl(n))-crystal
structure (see [6] for details).

The irreducible sp(2m)-representations are indexed by partitions λ with `(λ) ≤ m so we will assume that
`(λ) ≤ m. Semistandard KN-tableaux have entries from the set M = {1, 2, . . . ,m,m, . . . , 1} with ordering

1 < 2 < · · · < m < m < · · · < 2 < 1.

A semistandard KN-tableau T of shape λ is a filling of the Young diagram of shape λ with entries fromM that
satisfies the following properties:

1. The entries in T are weakly increasing across rows from left to right and strictly increasing down columns
from top to bottom.

2. For every column in T that contains both an i and an i, where i belongs to the p-th box from the top and
i belongs to the q-th box from the bottom, we have p+ q ≤ i.

3. If T has two adjacent columns having one of the following configurations, where p, q, r, s are the relevant
row numbers (where rows are counted from top to bottom), with p ≤ q < r ≤ s and i ≤ j, then
(q − p) + (s− r) < j − i.

p→ i

q →

r →

s→

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
j

j

i ,

i

j

j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣ i .
We will denote the set of KN-symplectic tableaux of shape λ with entries from M by SP (λ, 2m).

Example 3.1. The tableau T =
1 2

3 2

2 1

is not a KN-symplectic tableau since it violates the second property: 2

belongs to row 1 and 2 belongs to row 2 so p+ q = 3 > 2.

On the other hand, T =
1 3

3 3

2 1

is a KN-symplectic tableau. For property (2), p+q = 3 ≤ 3 and for property

(3), p = q = 1, r = 2 and s = 3 so (q − p) + (s− r) = 1 < j − i = 2.

The set SP (λ, 2m), where λ is a partition of n, admits a crystal structure, which is given by embedding
SP (λ, 2m) into the n-fold tensor power B(1)⊗n to give a bijection with a connected component of the crystal
B(1)⊗n.

The column reading word of a tableau T ∈ SP (λ, 2m) is the element C(T ) ∈ B(1)⊗n given by reading the
entries up columns from bottom to top, starting with the leftmost column. To give a crystal structure on
SP (λ, 2m), T ∈ SP (λ, 2m) is identified with its image C(T ) in B(1)⊗n and the action of a crystal operator on
T is given by its action on C(T ). The set of KN-tableaux SP (λ, 2m) is crystal isomorphic to the highest weight
Uq(sp(2m))-crystal B(λ) with highest weight λ. For details, see [6, §6.3] or [14, §8.3].

If T ∈ SP (λ, 2m) and if ai (respectively ai) is equal to the number of entries equal to i (respectively i) in T ,
then the weight of T is wt(T ) = (χ1, . . . , χm), where χi = ai−ai. Let SP (λ, χ) = {T ∈ SP (λ, 2m) | wt(T ) = χ}
and let wt(SP (λ)) denote the set of weights χ in Λ for which there is a tableau T ∈ SP (λ, 2m) with wt(T ) = χ.

ECA 4:1 (2024) Article #S2R8 4



Graeme Henrickson, Anna Stokke and Max Wiebe

Example 3.2. For T =
1 3

3 3

2 1

∈ SP ((2, 2, 2), 6), C(T ) = 2 ⊗ 3 ⊗ 1 ⊗ 1 ⊗ 3 ⊗ 3 and

wt(T ) = (0,−1,−1). We have f2(C(T )) = 2 ⊗ 3 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 3 so f2(T ) =
1 3

3 2

2 1

.

Figure 1 gives an example of a crystal graph.

1 2
2

2 2
2

1 1
2

1 1
2

1 2
2

2 2
1

2 2
2

1 2
2

1 1
2

2 2
1

2 1
2

2 1
1

2 2
1

2 1
1

1 1
2

1 2
2

1

2 1

1 2 1

2 11

1

12

1 2

2

2

2 1

Figure 1: Type C2 crystal graph for λ = (2, 1).

Given a simple reflection si in the Weyl group W, si(χ) = χ − (χ, α∨i )αi for χ ∈ Λ, i ∈ I. For type Cm,
si(χ) = (χ1, . . . , χi+1, χi, . . . , χm) for 1 ≤ i ≤ m− 1 and sm(χ) = (χ1, . . . , χm−1,−χm).

For i ∈ I, define a bijection σi on B(λ) by

σi(b) =

{
fki (b) if k ≥ 0

e−ki (b) if k < 0
, (1)

where b ∈ B(λ) and k = (wt(b), α∨i ). The Weyl groupW acts on B(λ) ( [6, Theorem 11.14]) by si ·b = σi(b), b ∈
B(λ). As well, we have (see [6, Proposition 2.36]):

wt(σi(b)) = si(wt(b)). (2)

Then σ = σ1σ2 · · ·σm gives a bijection on B(λ) and since the σi’s act on B(λ) as simple reflections of the Weyl
group, σ is a Coxeter element of W so has order equal to the Coxeter number of W. We summarize this in the
following lemma.
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Lemma 3.1. Let λ be a partition and let G = 〈σ〉, where σ = σ1 · · ·σm. Then G = 〈σ〉 has order 2m and acts
on SP (λ, 2m).

Example 3.3. Consider the action of G = 〈σ〉 on SP ((2, 1), 6), where σ = σ1σ2σ3. There are two orbits of
size two: {

1 2

3
, 2 1

3

}
,

{
1 3

2
, 2 3

1

}
,

and 10 orbits of size six.

If T ∈ SP (λ, χ), it follows from (2) that for 1 ≤ i ≤ m− 1,

wt(σiT ) = (χ1, . . . , χi+1, χi, . . . , χm) and wt(σmT ) = (χ1, . . . , χm−1,−χm).

This gives the following lemma, which will be useful throughout the paper.

Lemma 3.2. If T ∈ SP (λ, 2m) and wt(T ) = (χ1, . . . , χm) then

wt(σT ) = (−χm, χ1, . . . , χm−1).

Given two partitions µ and λ, µ ⊆ λ if µi ≤ λi for all i. The skew shape λ/µ is obtained by removing
the boxes of the Young diagram of shape µ from that of shape λ and |λ/µ| = |λ| − |µ|. The set of KN-skew
symplectic tableaux of shape λ/µ with entries from the set 1 < 2 < · · · < m < m < · · · < 1 will be denoted
SP (λ/µ, 2m). Their entries satisfy the conditions defined in [31, §2.2] (see also [20, §6]) and, when µ = ∅, we
obtain SP (λ, 2m). Our proofs in Section 5 will refer to the weights of KN-skew symplectic tableaux, which are
defined in the same way as for KN-symplectic tableaux. We let SP (λ/µ, χ) = {T ∈ SP (λ/µ) | wt(T ) = χ} and
wt(SP (λ/µ)) is the set of m-tuples χ for which there is a T ∈ SP (λ/µ, 2m) with wt(T ) = χ. There is also a
crystal structure on SP (λ/µ, 2m) (see [20, §6]). Lemma 3.2, and the discussion preceding it, also apply in this
setting.

4. The symplectic hook-content formula

Let T ∈ SP (λ, 2m) where wt(T ) = (χ1, . . . , χm) with χi = ai − ai, where ai records the number of i’s in T and
ai the number of i’s in T . Define

pwr(T ) =

m∑
i=1

((i− 1)ai + (2m− i)ai). (3)

Then qpwr(T ) is the product given by assigning qi−1 to each i ∈ {1, . . . ,m} in T and q2m−i to each entry
i ∈ {1, . . . ,m} in T .

Lemma 4.1. Let λ be a partition of n and let T ∈ SP (λ, χ). Then

pwr(T ) =

m∑
i=1

(i− 1)χi +
2m− 1

2

(
n−

m∑
i=1

χi

)
.

Proof. Let wt(T ) = χ = (χ1, . . . , χm), where χi = ai − ai. Since

m∑
i=1

(ai + ai) = n and

m∑
i=1

(ai − ai) =

m∑
i=1

χi, (4)

pwr(T ) =

m∑
i=1

iχi −
1

2

(
n+

m∑
i=1

χi

)
+m

(
n−

m∑
i=1

χi

)

=

m∑
i=1

(i− 1)χi +
2m− 1

2

(
n−

m∑
i=1

χi

)
.

�

The above lemma shows that pwr(T ) is completely determined by the weight of T . We will also use the
notation pwr(χ) to denote pwr(T ), where wt(T ) = χ. In light of the lemma, we have the following:∑

T∈SP (λ,2m)

qpwr(T ) =
∑

χ∈wt(SP (λ))

|SP (λ, χ)|qpwr(χ).

ECA 4:1 (2024) Article #S2R8 6
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Example 4.1. (1) For T ∈ SP ((2, 2, 2), 6) as in Example 3.2, pwr(T ) = 17.

(2) Let λ = (2, 1) and m = 2. Referring to Figure 1, |SP (λ, 2m)| = 16 and∑
T∈SP (λ,2m)

qpwr(T ) = q + 2q2 + 2q3 + 3q4 + 3q5 + 2q6 + 2q7 + q8

≡ 4(1 + q + q2 + q3) mod q4 − 1.

This polynomial is of the type covered by Theorem 5.2.

The hook length of a box in the ith row and jth column of the Young diagram of shape λ is the number of
boxes in its hook. In other words, h(i, j) = λi + λtj − i− j + 1. Define

rλ(i, j) =

{
λi + λj − i− j + 2 if i > j,
i+ j − λti − λtj if i ≤ j.

The hook-content formula for symplectic tableaux [7, Corollary 4.6] is given by

|SP (λ, 2m)| =
∏

(i,j)∈[λ]

2m+ rλ(i, j)

h(i, j)
. (5)

For staircase tableaux of the form λ = (m,m− 1, . . . , 1), the above formula simplifies nicely [4, Corollary 4.48].
For T ∈ SP (λ, χ), define xwt(T ) = xχ1

1 xχ2

2 · · ·xχmm =
∏m
i=1 x

ai−aī
i . The symplectic Schur function is the

character of the irreducible sp(2m)-representation with highest weight λ, defined as

spλ(x±11 , . . . , x±1m ) =
∑

T∈SP (λ,2m)

xwt(T ).

In [7], we worked with a specialization spλ(q, q3, q5, . . . , q2m−1) to prove (5), but this polynomial does not work
as a CSP polynomial with the action under consideration. Instead, we will use a natural q-analogue of (5) as
our CSP polynomial.

Using [12, Equation 24.18], with xj = qj−1 and x−1j = q2m−j , we can express
∑
qpwr(T ) as a quotient of

determinants: ∑
T∈SP (λ,2m)

qpwr(T ) =
|q(j−1)(λi+m−i+1) − q(2m−j)(λi+m−i+1)|mi,j=1

|q(j−1)(m−i+1) − q(2m−j)(m−i+1)|mi,j=1

. (6)

Here we take λi = 0 when i > `(λ). For a positive integer k define [k] = 1 − qk and let [k]! = [k][k − 1] · · · [1].
(Note that in [7] we worked with 〈k〉 = qk − q−k.)

Lemma 4.2. Let λ be a partition and let µi = λi +m− i. Then

|q(j−1)(µi+1) − q(2m−j)(µi+1)|mi,j=1 = q

m∑
i=1

(i−1)(µi+1)
m∏
i=1

[µi + 1]
∏

1≤i<j≤m

[µi − µj ][µi + µj + 2].

Proof. Using elementary row operations, |q(j−1)(µi+1) − q(2m−j)(µi+1)|1≤i,j≤m equals

(−1)m(m−1)/2
m∏
i=1

(1− qµi+1)|q(m−j)(µi+1)(1 + qµi+1)2j−2|

= (−1)m(m−1)/2
m∏
i=1

(1− qµi+1)q(m−1)(µi+1)|q−(j−1)(µi+1)(1 + qµi+1)2j−2|

= (−1)m(m−1)/2q

m∑
i=1

(m−1)(µi+1)
m∏
i=1

(1− qµi+1)|(q−(µi+1)(1 + qµi+1)2)j−1|.

The Vandermonde determinant |(q−(µi+1)(1 + qµi+1)2)j−1| is equal to∏
1≤i<j≤m

(q−(µj+1)(1 + qµj+1)2 − q−(µi+1)(1 + qµi+1)2)

=
∏

1≤i<j≤m

−q−(µi+1)(1 + q2µi+2 − qµi−µj − qµi+µj+2)
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= (−1)
m(m−1)

2 q
−

m∑
i=1

(m−i)(µi+1) ∏
1≤i<j≤m

(1− qµi−µj )(1− qµi+µj+2)

= (−1)
m(m−1)

2 q
−

m∑
i=1

(m−i)(µi+1) ∏
1≤i<j≤m

[µi − µj ][µi + µj + 2].

Substituting, we obtain the result. �

Corollary 4.1. We have

|q(j−1)(m−i+1) − q(2m−j)(m−i+1)|1≤i,j≤m = q

m∑
i=1

(i−1)(m−i+1)
m∏
i=1

[2i− 1]!

Proof. This follows from Lemma 4.2 by taking λ = ∅. We have

|q(j−1)(m−i+1) − q(2m−j)(m−i+1)| = q

m∑
i=1

(i−1)(m−i+1)
m∏
i=1

[m− i+ 1]
∏

1≤i<j≤m

[j − i][2m− j − i+ 2]

= q

m∑
i=1

(i−1)(m−i+1)
m∏
i=1

[2i− 1]!

�

Define fλsp(q) to be the q-analogue of the symplectic hook-length formula:

fλsp(q) =
∏

(i,j)∈[λ]

[2m+ rλ(i, j)]

[h(i, j)]
.

Theorem 4.1. Let λ be a partition and let κ(λ) =
∑

(i− 1)λi. Then

fλsp(q) = q−κ(λ)
∑

T∈SP (λ,2m)

qpwr(T ).

Proof. By [35, 7.101]
∏

(i,j)∈[λ]

[hλ(i, j)] =

m∏
i=1

[µi]!∏
1≤i<j≤m

[µi − µj ]
. The proof of [7, Lemma 4.3] yields

∏
(i,j)∈[λ]

[2m+ rλ(i, j)] =

m∏
i=1

[µi + 1]!

[2i− 1]!

∏
1≤i<j≤m

[µi + µj + 2].

Since
∑m
i=1(i− 1)(µi + 1)−

∑m
i=1(i− 1)(m− i+ 1) = κ(λ),

∑
T∈SP (λ,2m)

qpwr(T ) = qκ(λ)

∏m
i=1[µi + 1]

∏
1≤i<j≤m

[µi − µj ][µi + µj + 2]

m∏
i=1

[2i− 1]!

= qκ(λ)

∏m
i=1[µi + 1]!

∏
1≤i<j≤m

[µi − µj ][µi + µj + 2]

m∏
i=1

[µi]!
m∏
i=1

[2i− 1]!

= qκ(λ)
∏

(i,j)∈[λ]

[2m+ rλ(i, j)]

[h(i, j)]
= qκ(λ)fλsp(q).

�

5. A cyclic sieving phenomenon for symplectic tableaux

We will prove the results in this section for the set SP (λ/µ, 2m), with a cyclic group action that shifts weights
cyclically as in Lemma 3.2. As a corollary, we obtain a CSP for SP (λ, 2m) with action induced by the
Uq(sp(2m))-crystal structure. Our proofs rely on properties of symplectic weights. It follows from (4) that
if |λ/µ| = n and T ∈ SP (λ/µ, χ), then

∑m
i=1 χi = n− 2` for some 0 ≤ ` ≤ n. Thus, if n is odd,

∑m
i=1 χi is odd,

which is a fact we will refer to in our proofs.
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Theorem 5.1. Let |λ/µ| = n, where n is odd, and suppose that gcd(m, p) = 1 for any odd prime p with
p ≤ n. Let G = 〈g〉 be a cyclic group of order 2m with the property that wt(gT ) = (−χm, χ1, . . . , χm−1) for all
T ∈ SP (λ/µ, χ). Then every orbit in SP (λ/µ, 2m) under the action of G has cardinality 2m.

Proof. Let T ∈ SP (λ/µ, χ). Since gcd(m, p) = 1 for odd primes p ≤ n, either m = 2k for some positive integer
k or m > n and m is not divisible by any odd prime p ≤ n.

Suppose that the orbit of T has fewer than 2m elements. Then, for the case m = 2k, ga(T ) = T , for some
a = 2j with 0 ≤ j ≤ k. Since wt(T ) = wt(gaT ),

(χ1, χ2, . . . , χm) = (−χm−a+1,−χm−a+2, . . . ,−χm, χ1, · · · , χm−a).

Since a divides m, χi = χi+a = χi+2a = · · · = χm−a+i = −χi for 1 ≤ i ≤ m and, in the case where a = m, we
have (−χ1,−χ2, . . . ,−χm) = (χ1, χ2, . . . , χm), again yielding χi = −χi. But then χi = 0 for 1 ≤ i ≤ m, which
is not possible.

Now suppose m 6= 2k and that gcd(m, p) = 1 for any odd prime p, with p ≤ n. If ga(T ) = T , where a divides
m, the argument is the same as above. The other possibility is that g2a(T ) = T , where a divides m, 1 ≤ a < m
and 2a does not divide m. Then m = ba, where b = 2k + 1 is odd. Thus m = 2ak + a ≡ a mod 2a and

(χ1, χ2, . . . , χm) = (−χm−2a+1, . . . ,−χm, χ1, . . . , χm−2a) = wt(g2a(T )).

Then χi = χi+2a = χi+4a = · · · = χi+2ka = −χi+a = −χi+3a = · · · = χi, for 1 ≤ i ≤ a − 1 and χa = χ3a =
· · · = −χ2a = −χ4a = · · · = χa so

wt(T ) = (χ1, . . . , χa,−χ1, . . . ,−χa, χ1, . . . , χa, . . .).

Since m = ab, there are a total of b entries in the m-tuple that are equal to χi or −χi, for each 1 ≤ i ≤ a. Since∑m
i=1 χi 6= 0, χi 6= 0 for some 1 ≤ i ≤ a. Assuming χi > 0, T contains at least χi entries equal to i, at least χi

entries equal to i+ a, et cetera. But then T has at least b entries so n ≥ b. Since b is odd and no odd prime
less than n divides m this is impossible. �

Lemmas 3.1 and 3.2 yield the following corollary.

Corollary 5.1. Let λ be a partition of n, where n is odd, and suppose that gcd(m, p) = 1 for any odd prime p
with p ≤ n. Then every orbit in SP (λ, 2m) under the action of G = 〈σ〉 has cardinality 2m.

Remark 5.1. If λ is a partition of an even number then SP (λ, 2m) may have single-element orbits under the
action of 〈σ〉. As well, if λ is a partition of an odd number n and m is divisible by some prime p ≤ n, then
SP (λ, 2m) may have orbits with fewer than 2m elements (see Example 3.3). It is also worth pointing out that,
while our hypotheses guarantee that gcd(m,n) = 1, this is not sufficient. For example, if λ = (4, 1) and m = 6,
there are orbits with fewer than 12 elements.

For T ∈ SP (λ/µ, 2m) define pwr(T ) as in (3) and define

X(q) =
∑

T∈SP (λ/µ,2m)

qpwr(T ) =
∑

χ∈wt(SP (λ/µ))

|SP (λ/µ, χ)|qpwr(χ).

A set of integers S is a complete residue system modulo a positive integer n if |S| = n and no two elements in
S are congruent modulo n. In order to prove a CSP for SP (λ/µ, 2m), using X(q) as a CSP polynomial, we
aim to partition the set of weights wt(SP (λ/µ)) into sets Aχ of cardinality 2m such that the powers in the
polynomial X(q) associated to each Aχ form a complete residue system modulo 2m. The symplectic version
of [21, Lemma 3.2] does not hold. Instead, we will work with an action of signed permutations associated with
the dihedral group of order 2m on wt(SP (λ/µ)) to divide the powers into sets that each form complete residue
systems modulo 2m.

The symmetric group Sm acts on wt(SP (λ/µ)) by θχ = (χθ−1(1), . . . , χθ−1(m)), and

|SP (λ/µ, χ)| = |SP (λ/µ, θχ)| = |SP (λ/µ,−θχ)|, θ ∈ Sm, χ ∈ wt(SP (λ/µ)). (7)

For µ = ∅ this is well-known since |SP (λ, χ)| is equal to the dimension of the corresponding weight space for
the irreducible sp(2m)-representation with highest weight λ. For skew tableaux, this can be seen using the
bijections (1), and their impact on weights (2), and a symplectic version of the argument in [1, (3.1)].

Lemma 5.1. Let |λ/µ| = n, where n is odd, and suppose that gcd(m, p) = 1 for any odd prime p ≤ n. Let
D2m = 〈γ = (1, 2, . . . ,m), β = (2,m)(3,m−1) · · · 〉. If χ ∈ wt(SP (λ/µ)), then the set {pwr(γtχ), pwr(−γtβχ) |
0 ≤ t ≤ m− 1} is a complete residue system modulo 2m.
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Proof. For 0 ≤ t ≤ m− 1, pwr(γtχ) =

m∑
i=1

((i− 1 + t) mod m)χi +
2m− 1

2
(n−

m∑
i=1

χi). Since gcd(m, p) = 1 for

odd primes p ≤ n and
∑m
i=1 χi is odd with

∑m
i=1 χi = n− 2`, where 0 ≤ ` ≤ n, gcd(

∑m
i=1 χi,m) = 1. It follows

that the set {pwr(γtχ) | 0 ≤ t ≤ m− 1} is a complete residue system modulo m, so no two elements in the set
{pwr(γtχ) | 0 ≤ t ≤ m− 1} are congruent modulo 2m.

Also pwr(−γtβχ) ≡ pwr(−γt+1βχ) +
∑m
i=1 χi mod m, so {pwr(−γtβχ) | 0 ≤ t ≤ m − 1} is a complete

residue set modulo m. Thus none of the elements in {pwr(−γtβχ) | 0 ≤ t ≤ m− 1} are congruent modulo 2m.
Lastly,

pwr(χ)− pwr(−γtβχ) = (t+ 1)

m∑
i=1

χi − 2m

m∑
i=1

χi +m

m∑
i=t+2

χi,

so if pwr(χ)−pwr(−γtβχ) is divisible by 2m, thenm divides (t+1)
∑m
i=1 χi. Then, since gcd(m,

∑m
i=1 χi) = 1, m

divides t+1, which is only possible if m = t+1. However, if m = t+1, then pwr(χ)−pwr(−γtβχ) = −m
∑m
i=1 χi

and, since
∑m
i=1 χi is odd, this cannot be divisible by 2m, so pwr(χ) 6≡ pwr(−γtβχ) mod 2m for 0 ≤ t ≤ m−1.

It follows that pwr(γt1χ) 6≡ pwr(−γt2βχ) mod 2m, for t1 6= t2 so the set in question is a complete residue set
modulo 2m. �

Given χ ∈ wt(SP (λ/µ)), define the subset Aχ of wt(SP (λ/µ)) as Aχ = {γtχ,−γtβχ | 0 ≤ t ≤ m − 1}.
Under the conditions of Lemma 5.1, |Aχ| = 2m. A routine argument shows that whenever Aχ1 ∩ Aχ2 6= ∅, we
have Aχ1

= Aχ2
. Thus the sets Aχ partition wt(SP (λ/µ)) into sets of size 2m.

Example 5.1. (1) Let λ = (2, 1), m = 4 and χ = (2,−1, 0, 0). Then

Aχ = {(2,−1, 0, 0), (0, 2,−1, 0), (0, 0, 2,−1), (−1, 0, 0, 2), (−2, 0, 0, 1), (1,−2, 0, 0), (0, 1,−2, 0), (0, 0, 1,−2)},

which is covered by Lemma 5.1 and the corresponding powers form a complete residue set modulo 8.

(2) If the hypotheses in Lemma 5.1 are relaxed, the result does not hold. For example, if λ = (2, 1), m = 3 and
χ = (1, 1, 1, 0, 0, 0) then {pwr(γtχ), pwr(−γtβχ) | 0 ≤ t ≤ 2} is not a complete residue set modulo 6. Note that,
in this case, fλsp(q) ≡ 10q5 + 11q4 + 11q3 + 10q2 + 11q + 11 mod q6 − 1 and Corollary 5.2 does not hold.

Theorem 5.2. Let |λ/µ| = n where n is odd, and suppose that gcd(m, p) = 1 for any odd prime p with p ≤ n.
Then

X(q) ≡ |SP (λ/µ, 2m)|
2m

2m−1∑
k=0

qk mod q2m − 1.

Proof. Let A ⊆ wt(SP (λ/µ)) be a transversal for the collection of sets Aχ. By (7), |SP (λ/µ, ξ)| = |SP (λ/µ, χ)|
for all ξ ∈ Aχ. Then

|SP (λ/µ, 2m)| =
∑
χ∈A
|SP (λ/µ, χ)||Aχ| = 2m

∑
χ∈A
|SP (λ/µ, χ)|.

By Lemma 5.1,

X(q) =
∑

χ∈wt(SP (λ/µ))

|SP (λ/µ, χ)|qpwr(χ)

=
∑
χ∈A
|SP (λ/µ, χ)|

∑
ξ∈Aχ

qpwr(ξ)

≡
∑
χ∈A
|SP (λ/µ, χ)|(1 + q + · · ·+ q2m−1) mod q2m − 1

=
|SP (λ/µ, 2m)|

2m
(1 + q + · · ·+ q2m−1) mod q2m − 1.

�

Combining Theorem 5.1 and Theorem 5.2, we obtain the following CSP.

Theorem 5.3. Let |λ/µ| = n, where n is odd, and suppose that gcd(m, p) = 1 for any odd prime p ≤ n. Let 〈g〉
be a cyclic group of order 2m that acts on SP (λ/µ, 2m) with the property that wt(gT ) = (−χm, χ1, . . . , χm−1)
for all T ∈ SP (λ/µ, χ). Then (SP (λ/µ, 2m), 〈g〉, X(q)) exhibits the cyclic sieving phenomenon.

Corollary 5.2. Let λ be a partition of n, where n is odd, and suppose that gcd(m, p) = 1 for any odd prime
p ≤ n. Then (SP (λ, 2m), 〈σ〉, fλsp(q)) exhibits the cyclic sieving phenomenon, where σ is the natural action

induced by the Uq(sp(2m))-crystal and fλsp(q) is the q-analogue of the symplectic hook-content formula.

Acknowledgement. The authors wish to thank two anonymous referees for suggestions that improved the
paper, including a suggestion to generalize the main result to skew shapes.
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