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Abstract: Recently, Xia introduced a deterministic variation φσ of Defant and Kravitz’s stack-sorting maps

for set partitions and showed that any set partition p is sorted by φ
N(p)
aba , where N(p) is the number of distinct

letters in p. Xia then asked which set partitions p are not sorted by φ
N(p)−1
aba . In this note, we prove that the

minimal length of a set partition p that is not sorted by φ
N(p)−1
aba is 2N(p). Then we show that there is only one

set partition of length 2N(p) and
(
N(p)+1

2

)
+ 2
(
N(p)
2

)
set partitions of length 2N(p) + 1 that are not sorted by

φ
N(p)−1
aba .
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1. Introduction

In 1973, Knuth [6] introduced a non-deterministic stack-sorting machine that at each step, either pushes the
leftmost remaining entry of the input permutation into the stack or pops the topmost entry of the stack. In 1990,
West [8] modified Knuth’s stack-sorting machine to make it deterministic. In West’s deterministic stack-sorting
map s, the input permutation is sent through a stack in a right-greedy manner, while insisting that the stack
is increasing from top to bottom (see for example, Figure 1). Put differently, the stack in West’s stack-sorting
map s must avoid subsequences that are order-isomorphic to 21. It is well-known that sn−1(π) = id for any
π ∈ Sn.
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Figure 1: West’s stack-sorting map s on π = 4213

West’s stack-sorting map [8] has been extended since. In 2002, Atkinson, Murphy, and Rusǩuc [1] introduced
a stack-sorting map that processes the input permutation in a left-greedy manner instead of in a right-greedy
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manner as in West’s stack-sorting map [8]. In 2014, Smith [7] extended West’s stack-sorting map so that the
stack decreases from top to bottom as opposed to increase as in West’s stack-sorting map [8]. In 2020, Cerbai,
Claesson, and Ferrari [3] extended West’s stack-sorting map s to s ◦ sσ, where the map sσ sends the input
permutation through a stack in a right greedy manner, while maintaining that the stack avoids subsequences
that are order-isomorphic to some permutation σ (Note that s21 = s). In the following year, Berlow [2]
generalized sσ to sT , in which the stack must simultaneously avoid subsequences that are order isomorphic to
any of the permutations in the set T , while Defant and Zheng [5] generalized sσ to sσ, in which the stack must
avoid substrings that are order isomorphic to σ at all times.

More recently, in 2024, Defant and Kravitz [4] generalized Knuth’s non-deterministic stack-sorting-machine
[6] to set partitions, which are sequences of (possibly repeated) letters from some infinite alphabet A. In the
same year, Xia [9] introduced a deterministic variation φσ of Defant and Kravitz’s stack-sorting map for set
partitions [4] as West did [8] of Knuth’s stack-sorting machine [6]. A set partition is said to be sorted if all
occurrences of the same letter appear consecutively in the set partition, and two set partitions p = p1p2 · · · pn
and q = q1q2 · · · qn are equivalent if there exists some bijection f : A→ A such that q = f(p1)f(p2) · · · f(pn). In
Xia’s deterministic stack-sorting map φσ for set partitions, the input set partition is sent through a stack in a
right-greedy manner, while insisting that the stack avoids subsequences that are equivalent to the set partition
σ (see for example, Figure 2).
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Figure 2: Xia’s stack-sorting map φaba on p = abcac

In addition to introducing φσ, Xia [9, Proposition 5.2] showed that φaba is the only φσ that eventually sorts

all set partitions. Then Xia [9, Theorem 3.1] showed that any set partition p is sorted after applying φ
N(p)
aba ,

where N(p) is the number of distinct letters in p, and demonstrated the sharpness of her bound by proving that

p = (a1a2 · · · aN(p))
2 is not sorted after applying φ

N(p)−1
aba for any N(p) ≥ 3. Finally, Xia [9, Question 6.1] asked

which set partitions p are not sorted after applying φ
N(p)−1
aba . We first answer Xia’s question with the restriction

that |p| ≤ 2N(p).

Theorem 1.1. If set partition p satisfies |p| ≤ 2N(p) for some N(p) ≥ 3 and is not sorted after applying

φ
N(p)−1
aba , then p is equivalent to (a1a2 · · · aN(p))

2.

Theorem 1.1 proves that for any fixed N(p) ≥ 3, Xia’s example in [9, Theorem 3.1] is, up to equivalence,

the only shortest set partition p that is not sorted after applying φ
N(p)−1
aba . In Theorem 1.2, we enumerate the

set partitions of length 2N(p) + 1 that are not sorted after applying φ
N(p)−1
aba .

Theorem 1.2. For a fixed N(p) ≥ 3, the number of inequivalent set partitions p that satisfy |p| = 2N(p) + 1

and are not sorted after applying φ
N(p)−1
aba is

(
N(p)+1

2

)
+ 2
(
N(p)
2

)
.

The rest of this note is organized as follows. In Section 2, we establish the preliminaries. In Section 3, we
prove Theorems 1.1 and 1.2.

2. Preliminaries

Let A be an infinite alphabet. In this note, we use a1, a2, a3, . . . or the standard Latin alphabet a, b, c, . . . to
refer to the letters of A. Unless otherwise specified, a1, a2, a3, . . . are distinct letters of A.

First, for a (possibly empty) set partition p, let |p| be its length, and let pm = pp · · · p︸ ︷︷ ︸
m times

. In addition, for a

(possibly empty) set partition p = p1p2 · · · p|p|, let p[i:j] = pipi+1 · · · pj . Next, let the reverse of a set partition
p be r(p) = p|p|p|p|−1 · · · p1. For example, if p = abcac, then r(p) = cacba.

Next, for p = p1p2 · · · p|p| and a ∈ A, say that a ∈ p if there exists some i such that pi = a. Furthermore, as in
Xia [9], let I(p,B) be the set of i such that pi ∈ B for a set of letters B ⊆ A. If |B| = 1, then we omit the brackets
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around the set B. For example, if p = a1a2a2a3a1a1, then I(p, a1) = {1, 5, 6}, and I(p, {a1, a3}) = {1, 4, 5, 6}.
Let the ith smallest number in the set I(p,B) be Ii(p,B).

Next, for any p, let mcount(p) = maxa∈A |I(p, a)|. For example, mcount(p) = 2 for p = a1a2a3a1a3. Now,
for {aj , ak} ⊆ p such that |I(p, aj)| ≥ 2 and |I(p, ak)| ≥ 2, say that aj and ak are crossing in p if

min(I(p, aj)) < min(I(p, ak)) < max(I(p, aj)) < max(I(p, ak)).

For example, a1 and a2 are crossing in p = a1a2a1a3a2a3, but a1 and a3 are not.
Also, as defined by Xia [9], say that a letter in p is clumped in p if all instances of the letter appear

consecutively in p. Let C(p) be the number of clumped letters in p, and let nc(p) be the leftmost letter in p that
is not clumped in p. For example, in p = a1a1a1a2a3a4a2a4, the letters a1 and a3 are clumped, so C(p) = 2
and nc(p) = a2. Note that p is sorted if and only if C(p) = N(p). Now, every set partition p can be uniquely
written as p = a`11 a

`2
2 · · · a`mm for some possibly repeating set of letters a1, a2, . . . , am such that ai 6= ai+1 for all

1 ≤ i ≤ m−1 and `i > 0 for all 1 ≤ i ≤ m. Then let the truncation of a set partition p be trunc(p) = a1a2 · · · am.
For example, if p = a1a1a1a2a2a1a1a3, then trunc(p) = a1a2a1a3. We end this section by citing a lemma and a
corollary in Xia [9].

Lemma 2.1 (Xia [9, Lemma 3.1]). Let p = p`11 s1p
`2
1 s2 · · · p

`m
1 smp

`m+1

1 for `1, `2, . . . , `m > 0 and `m+1 ≥ 0 such
that p1 is the first letter of p and si are nonempty set partitions such that p1 6∈ si for all 1 ≤ i ≤ m. Then

φaba(p) = φaba(s1)φaba(s2) · · ·φaba(sm)p
`1+`2+···+`m+1

1 .

Now, it follows as a corollary of Lemma 2.1 that if p is not sorted, then C(φaba(p)) > C(p), because nc(p)
is not clumped in p but is clumped in φaba(p).

Corollary 2.1 (Xia [9, Proof of Theorem 3.1]). If p is not sorted, then C(φaba(p)) > C(p).

The following corollary follows immediately from Corollary 2.1.

Corollary 2.2. If p is not sorted by φ
N(p)−1
aba , then C(φiaba(p)) = i for all 0 ≤ i ≤ N(p).

3. Proofs of the Main Results

To prove Theorem 1.1, we first note that the following proposition follows directly from the definition of
truncation.

Proposition 3.1. For any p, it holds that trunc(φaba(p)) = trunc(φaba(trunc(p))).

We now prove Theorem 1.1 through Lemma 2.1, Corollary 2.2, and Proposition 3.1.

Proof of Theorem 1.1. By Xia [9, Theorem 3.1], any set partition that is equivalent to (a1a2 · · · aN(p))
2 is not

sorted after applying φ
N(p)−1
aba for N(p) ≥ 3. It thus suffices to show that if p satisfies |p| ≤ 2N(p) and is not

sorted after applying φ
N(p)−1
aba , then it is equivalent to (a1a2 · · · aN(p))

2, towards which, we induct on N(p).
The statement clearly holds for N(p) = 3. Now, suppose that N(p) ≥ 4 and that if some set partition q

satisfies |q| ≤ 2N(q) − 2 and is not sorted after applying φ
N(q)−2
aba , then it is equivalent to (a1a2 · · · aN(q)−1)2.

First, by Corollary 2.2, C(φ0aba(p)) = C(p) = 0, so every a ∈ p must satisfy |I(p, a)| ≥ 2. But because
|p| ≤ 2N(p), it must be that |I(p, a)| = 2 for all a ∈ p.

Now, let p = p1s1p1s2 for some set partitions s1 and s2. Then because C(φaba(p)) = 1, each a( 6= p1) ∈ p
satisfies a ∈ s1 and a ∈ s2; otherwise, by Lemma 2.1, at least one of nc(s1) or nc(s2) are clumped in φaba(p) in
addition to p1, which negates Corollary 2.2 for i = 1.

Next, because all a(6= p1) ∈ p satisfy a ∈ s1 and a ∈ s2, if p is not equivalent to (a1a2 · · · aN(p))
2, then some aj

and ak must not be crossing in p. Furthermore, by Lemma 2.1, the same aj and ak must not be crossing in φaba(p)
as well. Now, by Proposition 3.1, the set partition q = φaba(p)[1:2N(p)−2] satisfies |q| = 2N(p)− 2 = 2N(q), and

φ
N(q)−1
aba (q) must not be sorted; otherwise, φ

N(p)−1
aba (p) will be sorted. Thus, by the induction hypothesis, aj and

ak must be crossing in q = φaba(p)[1:2N(p)−2]. Therefore, p must be equivalent to (a1a2 · · · aN(p))
2.

Next, we prove auxiliary lemmas that lead up to Theorem 1.2. First, for a set partition p such that

|p| = 2N(p) + 1 and p is not sorted after applying φ
N(p)−1
aba , we prove that |I(p, a)| = 2 for all but one a ∈ p and

|I(p, a∗)| = 3 for exactly one a∗ ∈ p.

Lemma 3.1. If p satisfies |p| = 2N(p) + 1 and is not sorted after applying φ
N(p)−1
aba , then there exists exactly

one a∗ ∈ p such that |I(p, a∗)| = 3, and for any other a ∈ p, it holds that |I(p, a)| = 2.
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Proof. By Corollary 2.2, C(p) = 0. Thus, |I(p, a)| ≥ 2 for all a ∈ p and because |p| = 2N(p) + 1, all but one
a ∈ p must satisfy |I(p, a)| = 2 and one a∗ ∈ p must satisfy |I(p, a∗)| = 3.

Next, we show that if a set partition p satisfies the statement of Theorem 1.2 and in addition |I(p, p1)| = 2,
then a∗ as in the statement of Lemma 3.1 appears exactly twice in p[1:I2(p,p1)−1] or p[I2(p,p1)+1:|p|] and any other
a ∈ p that satisfies a 6∈ {p1, a∗} appears exactly once in both p[1:I2(p,p1)−1] and p[I2(p,p1)+1:|p|].

Lemma 3.2. If p satisfies |p| = 2N(p) + 1, is not sorted after applying φ
N(p)−1
aba , and satisfies |I(p, p1)| = 2,

then either mcount(p[1:I2(p,p1)−1]) = 2 or mcount(p[I2(p,p1)+1:|p|]) = 2.

Proof. Let p = p1s1p1s2 for (possibly empty) set partitions s1 and s2, and let a∗ ∈ p be as defined in the
statement of Lemma 3.1. Note that a∗ 6= p1, because |I(p, p1)| = 2. Now, for any s ∈ {s1, s2}, if a ∈ s satisfies
|I(p, a)| = |I(s, a)|, then p1 and nc(s) are clumped in φaba(p) by Lemma 2.1. But this negates Corollary 2.2
for i = 1. Thus, |I(s, a)| < |I(p, a)| for s ∈ {s1, s2} for all a ∈ s. Now, by Lemma 3.1, every a ∈ s satisfies
|I(p, a)| ∈ {2, 3} for s ∈ {s1, s2}. Thus, either mcount(s1) = mcount(p[1:I2(p,p1)−1]) = 2 or mcount(s2) =
mcount(p[I2(p,p1)+1:|p|]) = 2.

Next, we count the number of inequivalent set partitions p that satisfy the conditions of Theorem 1.2 and
contain 2 occurrences of p1 and a letter that appears twice to the right of the rightmost p1.

Lemma 3.3. The number of inequivalent p that satisfy |p| = 2N(p) + 1, are not sorted after applying φ
N(p)−1
aba ,

and satisfy |I(p, p1)| = mcount(p[I2(p,p1)+1:|p|]) = 2 is
(
N(p)
2

)
.

Proof. Let p be a set partition that satisfies the lemma statement. Let a∗ be defined as in the statement of
Lemma 3.1, and let p = p1s1p1s2a∗s3a∗s4 for (possibly empty) set partitions s1, s2, s3, and s4. In addition, let
S = {s1, s2, s3, s4}. Now, by Lemma 3.2, a∗ ∈ s1. Furthermore, for any s ∈ S, if some a ∈ s satisfies |I(s, a)| = 2,
then nc(s) is clumped in φaba(p) by Lemma 2.1. But this negates Corollary 2.2 for i = 1. Therefore, all a ∈ s
for each s ∈ S must satisfy |I(s, a)| = 1.

Next, no a ∈ s2 satisfies a ∈ s3 or a ∈ s4, because if so, nc(s2a∗s3a∗s4) is clumped in φaba(p) and
C(φaba(p)) > 1, which negates Corollary 2.2 for i = 1. Thus, φaba(p) = r(s1)r(s3)r(s4)a∗

2r(s2)p21 and so,
trunc(φaba(p)) = r(s1)r(s3)r(s4)a∗r(s2)p1, because p1 is the only letter clumped in φaba(p) by Corollary 2.2 for
i = 1.

Next, by Proposition 3.1, if p is not sorted by φ
N(p)−1
aba , then r(s1)r(s3)r(s4)a∗r(s2) must not be sorted by

φ
N(p)−2
aba . Thus, by Theorem 1.1, it must be that

r(s1)r(s3)r(s4)a∗r(s2) = (φaba(p)1φaba(p)2 · · ·φaba(p)N(p)−1)2.

Now, because a∗ ∈ s1 by Lemma 3.2 and no a ∈ s2 satisfies a ∈ s3 or a ∈ s4, it must be that |r(s1)| ≥ N(p)−1.
But because each a ∈ s1 satisfies |I(s1, a)| = 1, it holds that |r(s1)| ≤ N(p)− 1. Thus, |r(s1)| = N(p)− 1. As
a result,

r(s3)r(s4)a∗r(s2) = r(s1) = r(p2p3 · · · pN(p)).

Therefore, each ordered triple of nonnegative integers (|s2|, |s3|, |s4|) such that |s2| + |s3| + |s4| = N(p) − 2

corresponds to a unique set partition p that satisfies the lemma statement. Thus,
(
N(p)
2

)
set partitions satisfy

the lemma statement.

Next, we count the number of inequivalent set partitions p that satisfy the conditions of Theorem 1.2 and
contain 2 occurrences of p1 and a letter that appears twice to the left of the rightmost p1. The proof follows in
the same way as in Lemma 3.3 and is thus omitted.

Lemma 3.4. The number of inequivalent p that satisfy |p| = 2N(p) + 1, are not sorted after applying φ
N(p)−1
aba ,

and satisfy |I(p, p1)| = mcount(p[1:I2(p,p1)−1]) = 2 is
(
N(p)
2

)
.

Next, we count the number of inequivalent set partitions p that are not sorted after applying φ
N(p)−1
aba and

contain each letter in p other than p1 exactly twice.

Lemma 3.5. The number of inequivalent set partitions p that satisfy |p| = 2(N(p)− 1) + |I(p, p1)| and are not

sorted after applying φ
N(p)−1
aba is given by(

2N(p) + |I(p, p1)| − 3

|I(p, p1)| − 1

)
− |I(p, p1)|

(
N(p) + |I(p, p1)| − 3

|I(p, p1)| − 1

)
.
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Proof. Let p be a set partition that satisfies the lemma statement. By Corollary 2.2, C(φ0aba(p)) = C(p) = 0.
Thus, all a( 6= p1) ∈ p must satisfy |I(p, a)| = 2. Let p = p1s1p1s2 · · · p1s|I(p,p1)| for (possibly empty) set
partitions s1, s2, . . . , s|I(p,p1)|. Also, let S = {s1, s2, . . . , s|I(p,p1)|}. Now, if there exists some s ∈ S and a ∈ s
such that |I(s, a)| = 2, then nc(s) is clumped in φaba(p). But if so, C(φaba(p)) > 1, which negates Corollary 2.2
for i = 1. Thus, each a ∈ s must satisfy |I(s, a)| = 1. In particular, |si| ≤ N(p)−1 for all 1 ≤ i ≤ |I(p, p1)|. Now,

by Lemma 2.1, φaba(p) = r(s1) · · · r(s|I(p,p1)|)p
|I(p,p1)|
1 . Thus, trunc(φaba(p)) = r(s1) · · · r(s|I(p,p1)|)p1, because

p1 is the only letter clumped in φaba(p) by Corollary 2.2 for i = 1.

Next, by Proposition 3.1, if p is not sorted by φ
N(p)−1
aba , then r(s1) · · · r(s|I(p,p1)|) must not be sorted by

φ
N(p)−2
aba . Thus, by Theorem 1.1, it must be that

r(s1) · · · r(s|I(p,p1)|) = (φaba(p)1φaba(p)2 · · ·φaba(p)N(p)−1)2.

Thus, each ordered |I(p, p1)|-tuple of nonnegative integers (|s1|, |s2|, · · · , |s|I(p,p1)||) such that
∑|I(p,p1)|
i=1 |si| =

2N(p) − 2 and |si| ≤ N(p) − 1 for all 1 ≤ i ≤ |I(p, p1)| corresponds to a unique set partition p that satisfies
the lemma statement. The number of |I(p, p1)|-tuples of nonnegative integers (|s1|, |s2|, · · · , |s|I(p,p1)||) such

that
∑|I(p,p1)|
i=1 |si| = 2N(p)− 2 is

(
2N(p)+|I(p,p1)|−3
|I(p,p1)|−1

)
. However, of those, |I(p, p1)|

(
N(p)+|I(p,p1)|−3
|I(p,p1)|−1

)
tuples violate

|si| ≤ N(p)−1 for exactly one 1 ≤ i ≤ |I(p, p1)|; none violate |si| ≤ N(p)−1 for more than one 1 ≤ i ≤ |I(p, p1)|.
Thus,

(
2N(p)+|I(p,p1)|−3
|I(p,p1)|−1

)
− |I(p, p1)|

(
N(p)+|I(p,p1)|−3
|I(p,p1)|−1

)
set partitions satisfy the statement of the lemma.

We end by using Lemmas 3.1, 3.2, 3.3, 3.4, and 3.5 to prove Theorem 1.2.

Proof of Theorem 1.2. Let a∗ be as defined in Lemma 3.1. Lemma 3.2 shows that Lemmas 3.3 and 3.4 count
all set partitions p that satisfy the statement of Theorem 1.2 and a∗ 6= p1. Therefore, by Lemmas 3.3 and 3.4,
2
(
N(p)
2

)
set partitions p satisfy the statement of Theorem 1.2 and a∗ 6= p1. Lastly, by Lemma 3.5,

(
2N(p)

2

)
−

3
(
N(p)
2

)
=
(
N(p)+1

2

)
set partitions satisfy the statement of Theorem 1.2 and a∗ = p1. Thus,

(
N(p)+1

2

)
+ 2
(
N(p)
2

)
set partitions satisfy the statement of Theorem 1.2.
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