

Enumerative Combinatorics and Applications

 ECA 5:1 (2025) Article $\#S2R1$ https://doi.org/10.54550/ECA2025V5S1R1

Set Partitions that Require a Maximum Number of Sorts Through the aba−avoiding Stack

Yunseo Choi[†], Katelyn Gan[‡], Andrew Li[∗], and Tiffany Zhu[#]

†Department of Mathematics, Harvard University Email: ychoi@college.harvard.edu

> $\frac{1}{2}$ Sage Hill School Email: katelyngan77@gmail.com

[∗]Highland Park High School Email: andrewli10062006@gmail.com

> #The Harker School Email: 26tiffanyz@gmail.com

Received: March 8, 2024, Accepted: August 27, 2024, Published: September 6, 2024 The authors: Released under the CC BY-ND license (International 4.0)

ABSTRACT: Recently, Xia introduced a deterministic variation ϕ_{σ} of Defant and Kravitz's stack-sorting maps for set partitions and showed that any set partition p is sorted by $\phi_{aba}^{N(p)}$, where $N(p)$ is the number of distinct letters in p. Xia then asked which set partitions p are not sorted by $\phi_{aba}^{N(p)-1}$. In this note, we prove that the minimal length of a set partition p that is not sorted by $\phi_{aba}^{N(p)-1}$ is $2N(p)$. Then we show that there is only one set partition of length $2N(p)$ and $\binom{N(p)+1}{2} + 2\binom{N(p)}{2}$ set partitions of length $2N(p) + 1$ that are not sorted by $\phi_{aba}^{N(p)-1}$.

Keywords: Pattern avoidance; Stack sort; Set partitions 2020 Mathematics Subject Classification: 05A15; 05A16; 05A18

1. Introduction

In 1973, Knuth [6] introduced a non-deterministic stack-sorting machine that at each step, either pushes the leftmost remaining entry of the input permutation into the stack or pops the topmost entry of the stack. In 1990, West [8] modified Knuth's stack-sorting machine to make it deterministic. In West's deterministic stack-sorting map s, the input permutation is sent through a stack in a right-greedy manner, while insisting that the stack is increasing from top to bottom (see for example, Figure 1). Put differently, the stack in West's stack-sorting map s must avoid subsequences that are order-isomorphic to 21. It is well-known that $s^{n-1}(\pi) = id$ for any $\pi \in S_n$.

Figure 1: West's stack-sorting map s on $\pi = 4213$

West's stack-sorting map [8] has been extended since. In 2002, Atkinson, Murphy, and Ruskuc [1] introduced a stack-sorting map that processes the input permutation in a left-greedy manner instead of in a right-greedy

manner as in West's stack-sorting map [8]. In 2014, Smith [7] extended West's stack-sorting map so that the stack decreases from top to bottom as opposed to increase as in West's stack-sorting map [8]. In 2020, Cerbai, Claesson, and Ferrari [3] extended West's stack-sorting map s to $s \circ s_{\sigma}$, where the map s_{σ} sends the input permutation through a stack in a right greedy manner, while maintaining that the stack avoids subsequences that are order-isomorphic to some permutation σ (Note that $s_{21} = s$). In the following year, Berlow [2] generalized s_{σ} to s_T , in which the stack must simultaneously avoid subsequences that are order isomorphic to any of the permutations in the set T, while Defant and Zheng [5] generalized s_{σ} to $s_{\overline{\sigma}}$, in which the stack must avoid substrings that are order isomorphic to σ at all times.

More recently, in 2024, Defant and Kravitz [4] generalized Knuth's non-deterministic stack-sorting-machine [6] to set partitions, which are sequences of (possibly repeated) letters from some infinite alphabet A. In the same year, Xia [9] introduced a deterministic variation ϕ_{σ} of Defant and Kravitz's stack-sorting map for set partitions [4] as West did [8] of Knuth's stack-sorting machine [6]. A set partition is said to be sorted if all occurrences of the same letter appear consecutively in the set partition, and two set partitions $p = p_1p_2 \cdots p_n$ and $q = q_1q_2 \cdots q_n$ are equivalent if there exists some bijection $f : A \to A$ such that $q = f(p_1)f(p_2) \cdots f(p_n)$. In Xia's deterministic stack-sorting map ϕ_{σ} for set partitions, the input set partition is sent through a stack in a right-greedy manner, while insisting that the stack avoids subsequences that are equivalent to the set partition σ (see for example, Figure 2).

Figure 2: Xia's stack-sorting map ϕ_{aba} on $p = abcac$

In addition to introducing ϕ_{σ} , Xia [9, Proposition 5.2] showed that ϕ_{aba} is the only ϕ_{σ} that eventually sorts all set partitions. Then Xia [9, Theorem 3.1] showed that any set partition p is sorted after applying $\phi_{aba}^{N(p)}$, where $N(p)$ is the number of distinct letters in p, and demonstrated the sharpness of her bound by proving that $p = (a_1 a_2 \cdots a_{N(p)})^2$ is not sorted after applying $\phi_{aba}^{N(p)-1}$ for any $N(p) \geq 3$. Finally, Xia [9, Question 6.1] asked which set partitions p are not sorted after applying $\phi_{aba}^{N(p)-1}$. We first answer Xia's question with the restriction that $|p| \leq 2N(p)$.

Theorem 1.1. If set partition p satisfies $|p| \le 2N(p)$ for some $N(p) \ge 3$ and is not sorted after applying $\phi_{aba}^{N(p)-1}$, then p is equivalent to $(a_1a_2\cdots a_{N(p)})^2$.

Theorem 1.1 proves that for any fixed $N(p) \geq 3$, Xia's example in [9, Theorem 3.1] is, up to equivalence, the only shortest set partition p that is not sorted after applying $\phi_{aba}^{N(p)-1}$. In Theorem 1.2, we enumerate the set partitions of length $2N(p) + 1$ that are not sorted after applying $\phi_{aba}^{N(p)-1}$.

Theorem 1.2. For a fixed $N(p) \geq 3$, the number of inequivalent set partitions p that satisfy $|p| = 2N(p) + 1$ and are not sorted after applying $\phi_{aba}^{N(p)-1}$ is $\binom{N(p)+1}{2} + 2\binom{N(p)}{2}$.

The rest of this note is organized as follows. In Section 2, we establish the preliminaries. In Section 3, we prove Theorems 1.1 and 1.2.

2. Preliminaries

Let A be an infinite alphabet. In this note, we use a_1, a_2, a_3, \ldots or the standard Latin alphabet a, b, c, \ldots to refer to the letters of A. Unless otherwise specified, a_1, a_2, a_3, \ldots are distinct letters of A.

First, for a (possibly empty) set partition p, let |p| be its length, and let $p^m = pp \cdots p$. In addition, for a \overline{m} times

(possibly empty) set partition $p = p_1 p_2 \cdots p_{|p|}$, let $p_{[i:j]} = p_i p_{i+1} \cdots p_j$. Next, let the *reverse* of a set partition p be $r(p) = p_{|p|}p_{|p|-1} \cdots p_1$. For example, if $p = abcac$, then $r(p) = cacba$.

Next, for $p = p_1p_2 \cdots p_{|p|}$ and $a \in A$, say that $a \in p$ if there exists some i such that $p_i = a$. Furthermore, as in Xia [9], let $I(p, B)$ be the set of i such that $p_i \in B$ for a set of letters $B \subseteq A$. If $|B| = 1$, then we omit the brackets around the set B. For example, if $p = a_1a_2a_2a_3a_1a_1$, then $I(p, a_1) = \{1, 5, 6\}$, and $I(p, \{a_1, a_3\}) = \{1, 4, 5, 6\}$. Let the *i*th smallest number in the set $I(p, B)$ be $I^{i}(p, B)$.

Next, for any p, let $\text{mcount}(p) = \max_{a \in A} |I(p, a)|$. For example, $\text{mcount}(p) = 2$ for $p = a_1 a_2 a_3 a_1 a_3$. Now, for $\{a_j, a_k\} \subseteq p$ such that $|I(p, a_j)| \geq 2$ and $|I(p, a_k)| \geq 2$, say that a_j and a_k are crossing in p if

 $\min(I(p, a_i)) < \min(I(p, a_k)) < \max(I(p, a_j)) < \max(I(p, a_k)).$

For example, a_1 and a_2 are crossing in $p = a_1 a_2 a_1 a_3 a_2 a_3$, but a_1 and a_3 are not.

Also, as defined by Xia $[9]$, say that a letter in p is *clumped* in p if all instances of the letter appear consecutively in p. Let $C(p)$ be the number of clumped letters in p, and let $nc(p)$ be the leftmost letter in p that is not clumped in p. For example, in $p = a_1a_1a_1a_2a_3a_4a_2a_4$, the letters a_1 and a_3 are clumped, so $C(p) = 2$ and $nc(p) = a_2$. Note that p is sorted if and only if $C(p) = N(p)$. Now, every set partition p can be uniquely written as $p = a_1^{\ell_1} a_2^{\ell_2} \cdots a_m^{\ell_m}$ for some possibly repeating set of letters a_1, a_2, \ldots, a_m such that $a_i \neq a_{i+1}$ for all $1 \leq i \leq m-1$ and $\ell_i > 0$ for all $1 \leq i \leq m$. Then let the *truncation* of a set partition p be trunc(p) = $a_1 a_2 \cdots a_m$. For example, if $p = a_1a_1a_1a_2a_2a_1a_1a_3$, then trunc(p) = $a_1a_2a_1a_3$. We end this section by citing a lemma and a corollary in Xia [9].

Lemma 2.1 (Xia [9, Lemma 3.1]). Let $p = p_1^{\ell_1} s_1 p_1^{\ell_2} s_2 \cdots p_1^{\ell_m} s_m p_1^{\ell_{m+1}}$ for $\ell_1, \ell_2, \ldots, \ell_m > 0$ and $\ell_{m+1} \ge 0$ such that p_1 is the first letter of p and s_i are nonempty set partitions such that $p_1 \notin s_i$ for all $1 \leq i \leq m$. Then

 $\phi_{aba}(p) = \phi_{aba}(s_1) \phi_{aba}(s_2) \cdots \phi_{aba}(s_m) p_1^{\ell_1 + \ell_2 + \cdots + \ell_{m+1}}.$

Now, it follows as a corollary of Lemma 2.1 that if p is not sorted, then $C(\phi_{aba}(p)) > C(p)$, because $nc(p)$ is not clumped in p but is clumped in $\phi_{aba}(p)$.

Corollary 2.1 (Xia [9, Proof of Theorem 3.1]). If p is not sorted, then $C(\phi_{aba}(p)) > C(p)$.

The following corollary follows immediately from Corollary 2.1.

Corollary 2.2. If p is not sorted by $\phi_{aba}^{N(p)-1}$, then $C(\phi_{aba}^i(p)) = i$ for all $0 \le i \le N(p)$.

3. Proofs of the Main Results

To prove Theorem 1.1, we first note that the following proposition follows directly from the definition of truncation.

Proposition 3.1. For any p, it holds that $\text{trunc}(\phi_{aba}(p)) = \text{trunc}(\phi_{aba}(\text{trunc}(p)))$.

We now prove Theorem 1.1 through Lemma 2.1, Corollary 2.2, and Proposition 3.1.

Proof of Theorem 1.1. By Xia [9, Theorem 3.1], any set partition that is equivalent to $(a_1a_2\cdots a_{N(p)})^2$ is not sorted after applying $\phi_{aba}^{N(p)-1}$ for $N(p) \geq 3$. It thus suffices to show that if p satisfies $|p| \leq 2N(p)$ and is not sorted after applying $\phi_{aba}^{N(p)-1}$, then it is equivalent to $(a_1a_2\cdots a_{N(p)})^2$, towards which, we induct on $N(p)$.

The statement clearly holds for $N(p) = 3$. Now, suppose that $N(p) \geq 4$ and that if some set partition q satisfies $|q| \leq 2N(q) - 2$ and is not sorted after applying $\phi_{aba}^{N(q)-2}$, then it is equivalent to $(a_1 a_2 \cdots a_{N(q)-1})^2$. First, by Corollary 2.2, $C(\phi_{aba}^0(p)) = C(p) = 0$, so every $a \in p$ must satisfy $|I(p,a)| \geq 2$. But because $|p| \leq 2N(p)$, it must be that $|I(p,a)| = 2$ for all $a \in p$.

Now, let $p = p_1 s_1 p_1 s_2$ for some set partitions s_1 and s_2 . Then because $C(\phi_{aba}(p)) = 1$, each $a \neq p_1 \in p$ satisfies $a \in s_1$ and $a \in s_2$; otherwise, by Lemma 2.1, at least one of $nc(s_1)$ or $nc(s_2)$ are clumped in $\phi_{aba}(p)$ in addition to p_1 , which negates Corollary 2.2 for $i = 1$.

Next, because all $a(\neq p_1) \in p$ satisfy $a \in s_1$ and $a \in s_2$, if p is not equivalent to $(a_1 a_2 \cdots a_{N(p)})^2$, then some a_j and a_k must not be crossing in p. Furthermore, by Lemma 2.1, the same a_j and a_k must not be crossing in $\phi_{aba}(p)$ as well. Now, by Proposition 3.1, the set partition $q = \phi_{aba}(p)_{[1:2N(p)-2]}$ satisfies $|q| = 2N(p) - 2 = 2N(q)$, and $\phi_{aba}^{N(q)-1}(q)$ must not be sorted; otherwise, $\phi_{aba}^{N(p)-1}(p)$ will be sorted. Thus, by the induction hypothesis, a_j and a_k must be crossing in $q = \phi_{aba}(p)_{[1:2N(p)-2]}$. Therefore, p must be equivalent to $(a_1a_2 \cdots a_{N(p)})^2$.

Next, we prove auxiliary lemmas that lead up to Theorem 1.2. First, for a set partition p such that $|p| = 2N(p) + 1$ and p is not sorted after applying $\phi_{aba}^{N(p)-1}$, we prove that $|I(p, a)| = 2$ for all but one $a \in p$ and $|I(p, a_*)| = 3$ for exactly one $a_* \in p$.

Lemma 3.1. If p satisfies $|p| = 2N(p) + 1$ and is not sorted after applying $\phi_{aba}^{N(p)-1}$, then there exists exactly one $a_* \in p$ such that $|I(p, a_*)| = 3$, and for any other $a \in p$, it holds that $|I(p, a)| = 2$.

Proof. By Corollary 2.2, $C(p) = 0$. Thus, $|I(p, a)| \ge 2$ for all $a \in p$ and because $|p| = 2N(p) + 1$, all but one $a \in p$ must satisfy $|I(p, a)| = 2$ and one $a_* \in p$ must satisfy $|I(p, a_*)| = 3$. \Box

Next, we show that if a set partition p satisfies the statement of Theorem 1.2 and in addition $|I(p, p_1)| = 2$, then a_* as in the statement of Lemma 3.1 appears exactly twice in $p_{[1:I^2(p,p_1)-1]}$ or $p_{[I^2(p,p_1)+1:[p]]}$ and any other $a \in p$ that satisfies $a \notin \{p_1, a_*\}$ appears exactly once in both $p_{[1:I^2(p,p_1)-1]}$ and $p_{[I^2(p,p_1)+1:[p]]}$.

Lemma 3.2. If p satisfies $|p| = 2N(p) + 1$, is not sorted after applying $\phi_{aba}^{N(p)-1}$, and satisfies $|I(p, p_1)| = 2$, then either mcount $(p_{[1:I^2(p,p_1)-1]})=2$ or mcount $(p_{[I^2(p,p_1)+1:[p]]})=2$.

Proof. Let $p = p_1s_1p_1s_2$ for (possibly empty) set partitions s_1 and s_2 , and let $a_* \in p$ be as defined in the statement of Lemma 3.1. Note that $a_* \neq p_1$, because $|I(p, p_1)| = 2$. Now, for any $s \in \{s_1, s_2\}$, if $a \in s$ satisfies $|I(p,a)| = |I(s,a)|$, then p_1 and nc(s) are clumped in $\phi_{aba}(p)$ by Lemma 2.1. But this negates Corollary 2.2 for $i = 1$. Thus, $|I(s, a)| < |I(p, a)|$ for $s \in \{s_1, s_2\}$ for all $a \in s$. Now, by Lemma 3.1, every $a \in s$ satisfies $|I(p,a)| \in \{2,3\}$ for $s \in \{s_1,s_2\}$. Thus, either mcount $(s_1) = \text{mcount}(p_{[1:1^2(p,p_1)-1]}) = 2$ or $\text{mcount}(s_2) =$ mcount $(p_{[I^2(p,p_1)+1:[p]]})=2.$ \Box

Next, we count the number of inequivalent set partitions p that satisfy the conditions of Theorem 1.2 and contain 2 occurrences of p_1 and a letter that appears twice to the right of the rightmost p_1 .

Lemma 3.3. The number of inequivalent p that satisfy $|p| = 2N(p) + 1$, are not sorted after applying $\phi_{aba}^{N(p)-1}$, and satisfy $|I(p, p_1)| = \text{mcount}(p_{[I^2(p, p_1)+1:|p|]}) = 2$ is $\binom{N(p)}{2}$.

Proof. Let p be a set partition that satisfies the lemma statement. Let a_* be defined as in the statement of Lemma 3.1, and let $p = p_1s_1p_1s_2a*s_3a*s_4$ for (possibly empty) set partitions s_1, s_2, s_3 , and s_4 . In addition, let $S = \{s_1, s_2, s_3, s_4\}.$ Now, by Lemma 3.2, $a_* \in s_1$. Furthermore, for any $s \in S$, if some $a \in s$ satisfies $|I(s, a)| = 2$, then nc(s) is clumped in $\phi_{aba}(p)$ by Lemma 2.1. But this negates Corollary 2.2 for $i = 1$. Therefore, all $a \in s$ for each $s \in S$ must satisfy $|I(s, a)| = 1$.

Next, no $a \in s_2$ satisfies $a \in s_3$ or $a \in s_4$, because if so, $nc(s_2a_*s_3a_*s_4)$ is clumped in $\phi_{aba}(p)$ and $C(\phi_{aba}(p)) > 1$, which negates Corollary 2.2 for $i = 1$. Thus, $\phi_{aba}(p) = r(s_1)r(s_3)r(s_4)a_*^2r(s_2)p_1^2$ and so, trunc $(\phi_{aba}(p)) = r(s_1)r(s_3)r(s_4)a_*r(s_2)p_1$, because p_1 is the only letter clumped in $\phi_{aba}(p)$ by Corollary 2.2 for $i = 1$.

Next, by Proposition 3.1, if p is not sorted by $\phi_{aba}^{N(p)-1}$, then $r(s_1)r(s_3)r(s_4)a_*r(s_2)$ must not be sorted by $\phi_{aba}^{N(p)-2}$. Thus, by Theorem 1.1, it must be that

$$
r(s_1)r(s_3)r(s_4)a_*r(s_2)=(\phi_{aba}(p)_1\phi_{aba}(p)_2\cdots\phi_{aba}(p)_{N(p)-1})^2.
$$

Now, because $a_* \in s_1$ by Lemma 3.2 and no $a \in s_2$ satisfies $a \in s_3$ or $a \in s_4$, it must be that $|r(s_1)| \ge N(p)-1$. But because each $a \in s_1$ satisfies $|I(s_1, a)| = 1$, it holds that $|r(s_1)| \le N(p) - 1$. Thus, $|r(s_1)| = N(p) - 1$. As a result,

$$
r(s_3)r(s_4)a_*r(s_2) = r(s_1) = r(p_2p_3\cdots p_{N(p)}).
$$

Therefore, each ordered triple of nonnegative integers $(|s_2|, |s_3|, |s_4|)$ such that $|s_2| + |s_3| + |s_4| = N(p) - 2$ corresponds to a unique set partition p that satisfies the lemma statement. Thus, $\binom{N(p)}{2}$ set partitions satisfy the lemma statement. \Box

Next, we count the number of inequivalent set partitions p that satisfy the conditions of Theorem 1.2 and contain 2 occurrences of p_1 and a letter that appears twice to the left of the rightmost p_1 . The proof follows in the same way as in Lemma 3.3 and is thus omitted.

Lemma 3.4. The number of inequivalent p that satisfy $|p| = 2N(p) + 1$, are not sorted after applying $\phi_{aba}^{N(p)-1}$, and satisfy $|I(p, p_1)| = \text{mcount}(p_{[1:I^2(p, p_1)-1]}) = 2$ is $\binom{N(p)}{2}$.

Next, we count the number of inequivalent set partitions p that are not sorted after applying $\phi_{aba}^{N(p)-1}$ and contain each letter in p other than p_1 exactly twice.

Lemma 3.5. The number of inequivalent set partitions p that satisfy $|p| = 2(N(p) - 1) + |I(p, p_1)|$ and are not sorted after applying $\phi_{aba}^{N(p)-1}$ is given by

$$
\binom{2N(p) + |I(p, p_1)| - 3}{|I(p, p_1)| - 1} - |I(p, p_1)| \binom{N(p) + |I(p, p_1)| - 3}{|I(p, p_1)| - 1}.
$$

Proof. Let p be a set partition that satisfies the lemma statement. By Corollary 2.2, $C(\phi_{aba}^0(p)) = C(p) = 0$. Thus, all $a \neq p_1 \in p$ must satisfy $|I(p,a)| = 2$. Let $p = p_1 s_1 p_1 s_2 \cdots p_1 s_{|I(p,p_1)|}$ for (possibly empty) set partitions $s_1, s_2, \ldots, s_{|I(p,p_1)|}$. Also, let $S = \{s_1, s_2, \ldots, s_{|I(p,p_1)|}\}$. Now, if there exists some $s \in S$ and $a \in s$ such that $|I(s, a)| = 2$, then nc(s) is clumped in $\phi_{aba}(p)$. But if so, $C(\phi_{aba}(p)) > 1$, which negates Corollary 2.2 for $i = 1$. Thus, each $a \in s$ must satisfy $|I(s, a)| = 1$. In particular, $|s_i| \le N(p) - 1$ for all $1 \le i \le |I(p, p_1)|$. Now, by Lemma 2.1, $\phi_{aba}(p) = r(s_1) \cdots r(s_{|I(p,p_1)|}) p_1^{|I(p,p_1)|}$. Thus, $\text{trunc}(\phi_{aba}(p)) = r(s_1) \cdots r(s_{|I(p,p_1)|}) p_1$, because p_1 is the only letter clumped in $\phi_{aba}(p)$ by Corollary 2.2 for $i = 1$.

Next, by Proposition 3.1, if p is not sorted by $\phi_{aba}^{N(p)-1}$, then $r(s_1)\cdots r(s_{|I(p,p_1)|})$ must not be sorted by ϕ _{aba} $N(p)-2$. Thus, by Theorem 1.1, it must be that

$$
r(s_1)\cdots r(s_{|I(p,p_1)|})=(\phi_{aba}(p)_1\phi_{aba}(p)_2\cdots\phi_{aba}(p)_{N(p)-1})^2.
$$

Thus, each ordered $|I(p, p_1)|$ -tuple of nonnegative integers $(|s_1|, |s_2|, \cdots, |s_{|I(p, p_1)|}|)$ such that $\sum_{i=1}^{|I(p, p_1)|} |s_i|$ $2N(p) - 2$ and $|s_i| \leq N(p) - 1$ for all $1 \leq i \leq |I(p, p_1)|$ corresponds to a unique set partition p that satisfies the lemma statement. The number of $|I(p, p_1)|$ -tuples of nonnegative integers $(|s_1|, |s_2|, \cdots, |s_{|I(p, p_1)|}|)$ such that $\sum_{i=1}^{|I(p,p_1)|} |s_i| = 2N(p)-2$ is $\binom{2N(p)+|I(p,p_1)|-3}{|I(p,p_1)|-1}$ $|I(p,p_1)|-3$. However, of those, $|I(p,p_1)| {N(p)+|I(p,p_1)|-3 \choose |I(p,p_1)|-1}$ tuples violate $|s_i| \le N(p)-1$ for exactly one $1 \le i \le |I(p,p_1)|$; none violate $|s_i| \le N(p)-1$ for more than one $1 \le i \le |I(p,p_1)|$. Thus, $\binom{2N(p)+|I(p,p_1)|-3}{|I(p,p_1)|-1}$ $|I(p,p_1)|^{-3}$ $- |I(p,p_1)| {N(p)+|I(p,p_1)|-3 \choose |I(p,p_1)|-1}$ set partitions satisfy the statement of the lemma. \Box

We end by using Lemmas 3.1, 3.2, 3.3, 3.4, and 3.5 to prove Theorem 1.2.

Proof of Theorem 1.2. Let a_* be as defined in Lemma 3.1. Lemma 3.2 shows that Lemmas 3.3 and 3.4 count all set partitions p that satisfy the statement of Theorem 1.2 and $a_* \neq p_1$. Therefore, by Lemmas 3.3 and 3.4, $2\binom{N(p)}{2}$ set partitions p satisfy the statement of Theorem 1.2 and $a_* \neq p_1$. Lastly, by Lemma 3.5, $\binom{2N(p)}{2}$ $3{N(p) \choose 2} = {N(p+1) \choose 2}$ set partitions satisfy the statement of Theorem 1.2 and $a_* = p_1$. Thus, ${N(p+1) \choose 2} + 2{N(p) \choose 2}$ set partitions satisfy the statement of Theorem 1.2.

Acknowledgements

The authors thank an anonymous referee for their advice on the presentation of the paper.

References

- [1] M. D. Atkinson, M. M. Murphy, and N. Ruškuc, *Sorting with two ordered stacks in series*, Theor. Comput. Sci. 289 (2002), 205–223.
- [2] K. Berlow, Restricted stacks as functions, Discrete Math. 344 (2021), 112571.
- [3] G. Cerbai, A. Claesson, and L. Ferrari, Stack sorting with restricted stacks, J. of Combin. Theory Ser. A 173 (2020), 105230.
- [4] C. Defant and N. Kravitz, Foot-sorting for socks, Electron. J. Comb. 31:3 (2024), 3.5.
- [5] C. Defant and K. Zheng, Stack-sorting with consecutive-pattern-avoiding stacks, Adv. Appl. Math. 128 (2021), 102192.
- [6] D. E. Knuth, The Art of Computer Programming, Volume 3, Pearson Education (1997).
- [7] R. Smith, Two stacks in series: A decreasing stack followed by an increasing stack, Ann. Comb. 18 (2014), 359–363.
- [8] J. West, Permutations with restricted subsequences and stack-sortable permutations, MIT Ph.D. Thesis (1990).
- [9] J. Xia, Deterministic stack-sorting for set partitions, Enumer. Combin. Appl. 4:3 (2024), Article S2R23.